1
|
Vazirzadeh M, Azarpira N, Vosough M, Ghaedi K. Galactosylation of rat natural scaffold for MSC differentiation into hepatocyte-like cells: A comparative analysis of 2D vs. 3D cell culture techniques. Biochem Biophys Rep 2023; 35:101503. [PMID: 37601454 PMCID: PMC10439353 DOI: 10.1016/j.bbrep.2023.101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
The liver plays a crucial role in drug detoxification, and the main source of liver transplants is brain-dead patients. However, the demand for transplants exceeds the available supply, leading to controversies in selecting suitable candidates for acute liver diseases. This research aimed to differentiate mesenchymal stem cells (MSCs) into hepatocyte-like cells using galactosylated rat natural scaffolds and comparing 2-D and 3-D cell culture methods. The study involved isolating and culturing Wharton's jelly cells from the umbilical cord, examining surface markers and adipogenic differentiation potential of MSCs, and culturing mesenchymal cells on galactosylated scaffolds. The growth and proliferation of stem cells on the scaffolds were evaluated using the MTT test, and urea synthesis was measured in different culture environments. Changes in gene expression were analyzed using real-time PCR. Flow cytometry results confirmed the presence of specific surface antigens on MSCs, indicating their identity, while the absence of a specific antigen indicated their differentiation into adipocytes. The MTT test revealed higher cell attachment to galactosylated scaffolds compared to the control groups. Urea secretion was observed in differentiated cells, with the highest levels in cells cultured on galactosylated scaffolds. Gene expression analysis showed differential expression patterns for OCT-4, HNF1, ALB, AFP, and CYP genes under different conditions. The findings indicated that hepatocyte-like cells derived from 3D cultures on galactosylated scaffolds exhibited superior characteristics compared to cells in other culture conditions. These cells demonstrated enhanced proliferation, stability, and urea secretion ability. The study also supported the differentiation potential of MSCs derived from Wharton's jelly umbilical cord into liver-like cells.
Collapse
Affiliation(s)
- Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
3
|
Panahi F, Baheiraei N, Sistani MN, Salehnia M. Analysis of decellularized mouse liver fragment and its recellularization with human endometrial mesenchymal cells as a candidate for clinical usage. Prog Biomater 2022; 11:409-420. [PMID: 36117225 DOI: 10.1007/s40204-022-00203-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022] Open
Abstract
Decellularized tissue has been used as a natural extracellular matrix (ECM) or bioactive biomaterial for tissue engineering. The present study aims to compare and analyze different decellularization protocols for mouse liver fragments and cell seeding and attachment in the created scaffold using human endometrial mesenchymal cells (hEMCs).After collecting and dissecting the mouse liver into small fragments, they were decellularized by Triton X-100 and six concentrations of sodium dodecyl sulfate (SDS; 0.025, 0.05, 0.1, 0.25, 0.5, and 1%) at different exposure times. The morphology and DNA content of decellularized tissues were studied, and the group with better morphology and lower DNA content was selected for additional assessments. Masson's tri-chrome and periodic acid Schiff staining were performed to evaluate ECM materials. Raman confocal spectroscopy analysis was used to quantify the amount of collagen type I, III and IV, glycosaminoglycans and elastin. Scanning electron microscopy and MTT assay were applied to assess the ultrastructure and porosity and cytotoxicity of decellularized scaffolds, respectively. In the final step, hEMCs were seeded on the decellularized scaffold and cultured for one week, and finally the cell attachment and homing were studied morphologically.The treated group with 0.1% SDS for 24 h showed a well preserved ECM morphology similar to native control and showing the minimum level of DNA. Raman spectroscopy results demonstrated that the amount of collagen type I and IV was not significantly changed in this group compared to the control, but a significant reduction in collagen III and elastin protein levels was seen (P < 0.001). The micrographs showed a porous ECM in decellularized sample similar to the native control with the range of 2.25 µm to 7.86 µm. After cell seeding, the infiltration and migration of cells in different areas of the scaffold were seen. In conclusion, this combined protocol for mouse liver decellularization is effective and its recellularization with hEMCs could be suitable for clinical applications in the future.
Collapse
Affiliation(s)
- Fatomeh Panahi
- Department of Biomaterial Engineering, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering Division, Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nezhad Sistani
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Biomaterial Engineering, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran. .,Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran.
| |
Collapse
|
4
|
Jang Y, Wee H, Oh J, Jung J. Single Microdroplet Breakup-Assisted Viscosity Measurement. MICROMACHINES 2022; 13:mi13040558. [PMID: 35457863 PMCID: PMC9032506 DOI: 10.3390/mi13040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022]
Abstract
Recently, with the development of biomedical fields, the viscosity of prepolymer fluids, such as hydrogels, has played an important role in determining the mechanical properties of the extracellular matrix (ECM) or being closely related to cell viability in ECM. The technology for measuring viscosity is also developing. Here, we describe a method that can measure the viscosity of a fluid with trace amounts of prepolymers based on a simple flow-focused microdroplet generator. We also propose an equation that could predict the viscosity of a fluid. The viscosity of the prepolymer was predicted by measuring and calculating various lengths of the disperse phase at the cross junction of two continuous-phase channels and one disperse-phase channel. Bioprepolymer alginates and gelatin methacryloyl (GelMA) were used to measure the viscosity at different concentrations in a microdroplet generator. The break-up length of the dispersed phase at the cross junction of the channel gradually increased with increasing flow rate and viscosity. Additional viscosity analysis was performed to validate the standard viscosity calculation formula depending on the measured length. The viscosity formula derived based on the length of the alginate prepolymer was applied to GelMA. At a continuous phase flow rate of 400 uL/h, the empirical formula of alginate showed an error within about 2%, which was shown to predict the viscosity very well in the viscometer. Results of this study are expected to be very useful for hydrogel tuning in biomedical and tissue regeneration fields by providing a technology that can measure the dynamic viscosity of various prepolymers in a microchannel with small amounts of sample.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Hwabok Wee
- Department of Orthopaedics & Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (J.O.); (J.J.)
| | - Jinmu Jung
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (J.O.); (J.J.)
| |
Collapse
|
5
|
Alonzo M, Kumar SA, Allen S, Delgado M, Alvarez-Primo F, Suggs L, Joddar B. Hydrogel scaffolds with elasticity-mimicking embryonic substrates promote cardiac cellular network formation. Prog Biomater 2020; 9:125-137. [PMID: 32978746 PMCID: PMC7544760 DOI: 10.1007/s40204-020-00137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shweta Anil Kumar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shane Allen
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA
| | - Monica Delgado
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Fabian Alvarez-Primo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Laura Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA.
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
6
|
Gotoh Y, Niimi S, Tamura K, Akahira R, Inamura M. Comparative study between lactose-silk fibroin conjugates and extracellular matrices as a substrate for the culture of human induced pluripotent stem cell-derived hepatocytes. Biomed Mater Eng 2020; 31:35-45. [PMID: 32144969 DOI: 10.3233/bme-201078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Human induced pluripotent stem cell (hiPSC)-derived hepatocytes are an attractive alternative cell source to primary human hepatocytes for tissue regeneration. OBJECTIVES This study presents an application of lactose-silk fibroin conjugates (Lac-CY-SF) bearing 𝛽-galactose residues as a substrate for culture of hiPSC-derived hepatocytes. A comparison of hiPSC-derived hepatocytes cultured on three different substrates; Lac-CY-SF conjugates, Matrigel and type I collagen was performed. METHODS Cell morphology, viability, maturation and albumin secretory function were assessed by phase-contrast microscopy, tetrazolium-based colorimetric assay, immunofluorescence staining and enzyme-linked immunosorbent assay. RESULTS Morphological characteristics of the cells cultured on the conjugates resembled those on Matrigel throughout the 6-day culture period. The number of viable cells cultured on the conjugates was comparable to that on Matrigel at day 2 and 6. The protein expression of mature hepatocyte markers, asialoglycoprotein receptor 1 and albumin, by the cells cultured on the conjugates resembled that by the cells cultured on collagen at day 2 and 6. Albumin secretory function per cell cultured on the conjugates was higher than that on collagen and comparable to that on Matrigel. CONCLUSIONS These limited results suggest that Lac-CY-SF conjugates may be as useful as Matrigel and collagen for cultivation of hiPSC-derived hepatocytes.
Collapse
Affiliation(s)
- Yohko Gotoh
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki, Japan
| | - Shigo Niimi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kanagawa, Japan
| | - Kenichi Tamura
- REPROCELL Inc., 3-8-11 Shin-yokohama, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Rina Akahira
- REPROCELL Inc., 3-8-11 Shin-yokohama, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Mitsuru Inamura
- REPROCELL Inc., 3-8-11 Shin-yokohama, Kohoku-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Heydari Z, Najimi M, Mirzaei H, Shpichka A, Ruoss M, Farzaneh Z, Montazeri L, Piryaei A, Timashev P, Gramignoli R, Nussler A, Baharvand H, Vosough M. Tissue Engineering in Liver Regenerative Medicine: Insights into Novel Translational Technologies. Cells 2020; 9:E304. [PMID: 32012725 PMCID: PMC7072533 DOI: 10.3390/cells9020304] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Organ and tissue shortage are known as a crucially important public health problem as unfortunately a small percentage of patients receive transplants. In the context of emerging regenerative medicine, researchers are trying to regenerate and replace different organs and tissues such as the liver, heart, skin, and kidney. Liver tissue engineering (TE) enables us to reproduce and restore liver functions, fully or partially, which could be used in the treatment of acute or chronic liver disorders and/or generate an appropriate functional organ which can be transplanted or employed as an extracorporeal device. In this regard, a variety of techniques (e.g., fabrication technologies, cell-based technologies, microfluidic systems and, extracorporeal liver devices) could be applied in tissue engineering in liver regenerative medicine. Common TE techniques are based on allocating stem cell-derived hepatocyte-like cells or primary hepatocytes within a three-dimensional structure which leads to the improvement of their survival rate and functional phenotype. Taken together, new findings indicated that developing liver tissue engineering-based techniques could pave the way for better treatment of liver-related disorders. Herein, we summarized novel technologies used in liver regenerative medicine and their future applications in clinical settings.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1665659911, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, B-1200 Brussels, Belgium;
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 121135879, Iran;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, 119146 Moscow, Russia; (A.S.); (P.T.)
| | - Marc Ruoss
- Siegfried Weller Institute for Trauma Research, University of Tübingen, 72076 Tübingen, Germany; (M.R.); (A.N.)
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Abbas Piryaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119146 Moscow, Russia; (A.S.); (P.T.)
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 117977 Moscow, Russia
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Andreas Nussler
- Siegfried Weller Institute for Trauma Research, University of Tübingen, 72076 Tübingen, Germany; (M.R.); (A.N.)
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1665659911, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
8
|
Dhaware V, Díaz Díaz D, Sen Gupta S. Biopolymer/Glycopolypeptide‐Blended Scaffolds: Synthesis, Characterization and Cellular Interactions. Chem Asian J 2019; 14:4837-4846. [DOI: 10.1002/asia.201901227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/31/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Vinita Dhaware
- Polymer Science Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Campus Postal Staff, College Area Ghaziabad 201002 Uttar Pradesh India
| | - David Díaz Díaz
- Department of Natural Product SynthesisInstituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna Tenerife Spain
- Institute of Organic ChemistryUniversity of Regensburg Universitätstrasse. 31 93040 Regensburg Germany
| | - Sayam Sen Gupta
- Department of Chemical SciencesIndian Institute of Science Education and Research-Kolkata Mohanpur 741246 India
| |
Collapse
|
9
|
Pu W, Xu D, Zhang C, Zhao Z, Yang M. Rapid generation of functional hepatocyte-like cells from human minor salivary gland-derived stem cells. Biochem Biophys Res Commun 2019; 522:805-810. [PMID: 31791589 DOI: 10.1016/j.bbrc.2019.11.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
Liver failure is one of the major risk factors for death worldwide, and the only effective liver transplantation is currently very limited. Adult stem cells can be induced into hepatocytes in vitro and implanted into the body to repair damaged liver. However, most of the induction time in vitro is relatively long, which is not suitable for practical application. Therefore, search for new seed cells that can rapidly differentiate into functional hepatocytes is crucial for the clinical application of cell transplantation therapy. In this study, we explored a three-step protocol to rapidly induce human minor salivary gland mesenchymal stem cells (hMSG-MSCs) into hepatocytes in vitro, and finally obtained hepatocyte-like cells within 6 days. After a series of relevant detection from gene, protein and functional levels, we confirmed that the finally induced cells were mature hepatocyte-like cells with certain hepatocyte functions to some extent. Besides, we injected the preliminary induced cells into mice with acute liver injury, showing a good repair effect on the damaged liver. All these results indicate that the hMSG-MSCs have potential to be a kind of seed cells for rapid hepatic differentiation.
Collapse
Affiliation(s)
- Wenwen Pu
- Department No.14, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Duojiao Xu
- Department of Stomatology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Chen Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Mingyong Yang
- Department No.14, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
10
|
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17:383. [PMID: 31752920 PMCID: PMC6873477 DOI: 10.1186/s12967-019-02137-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeostasis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells and updates current knowledge on liver regenerative medicine.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2019; 226:119522. [PMID: 31669894 DOI: 10.1016/j.biomaterials.2019.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
A number of bioengineering strategies, using biophysical stimulation, are being explored to guide the human mesenchymal stem cells (hMScs) into different lineages. In this context, we have limited understanding on the transdifferentiation of matured cells to another functional-cell type, when grown with stem cells, in a constrained cellular microenvironment under biophysical stimulation. While addressing such aspects, the present work reports the influence of the electric field (EF) stimulation on the phenotypic and functionality modulation of the coculture of murine myoblasts (C2C12) with hMScs [hMSc:C2C12=1:10] in a custom designed polymethylmethacrylate (PMMA) based microfluidic device with in-built metal electrodes. The quantitative and qualitative analysis of the immunofluorescence study confirms that the cocultured cells in the conditioned medium with astrocytic feed, exhibit differentiation towards neural-committed cells under biophysical stimulation in the range of the endogenous physiological electric field strength (8 ± 0.06 mV/mm). The control experiments using similar culture protocols revealed that while C2C12 monoculture exhibited myotube-like fused structures, the hMScs exhibited the neurosphere-like clusters with SOX2, nestin, βIII-tubulin expression. The electrophysiological study indicates the significant role of intercellular calcium signalling among the differentiated cells towards transdifferentiation. Furthermore, the depolarization induced calcium influx strongly supports neural-like behaviour for the electric field stimulated cells in coculture. The intriguing results are explained in terms of the paracrine signalling among the transdifferentiated cells in the electric field stimulated cellular microenvironment. In summary, the present study establishes the potential for neurogenesis on-chip for the coculture of hMSc and C2C12 cells under tailored electric field stimulation, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India.
| |
Collapse
|
12
|
Alonso S. Exploiting the bioengineering versatility of lactobionic acid in targeted nanosystems and biomaterials. J Control Release 2018; 287:216-234. [DOI: 10.1016/j.jconrel.2018.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022]
|
13
|
Bi J, Song K, Wu S, Zhang Y, Wang Y, Liu T. Effect of thermal-responsive surfaces based on PNIPAAm on cell adsorption/desorption. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2016.1252359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jiajie Bi
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yu Zhang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, New South Wales, Australia
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
14
|
Wang Y, Lee JH, Shirahama H, Seo J, Glenn JS, Cho NJ. Extracellular Matrix Functionalization and Huh-7.5 Cell Coculture Promote the Hepatic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells in a 3D ICC Hydrogel Scaffold. ACS Biomater Sci Eng 2016; 2:2255-2265. [PMID: 33465898 DOI: 10.1021/acsbiomaterials.6b00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we constructed a microporous hydrogel scaffold with hexagonally packed interconnected cavities and extracellular matrix (ECM)-functionalized interior surface, and systematically investigated the hepatic differentiation of human adipose-derived mesenchymal stem cells (hAD-MSCs) under the influence of three key factors: three-dimensional (3D) geometry, ECM presence, and coculture with hepatocyte-derived cell line. Results confirmed that (i) hepatic differentiation of hAD-MSC is more efficient in a 3D microporous scaffold than in 2D monolayer culture; (ii) the presence of both ECM components (fibronectin and collagen-I) in the scaffold is superior to collagen-I only, highlighting the importance of fibronectin; and (iii) coculture with Huh-7.5 hepatocyte-derived cells promoted liver-specific functions of the hAD-MSC-derived hepatocytes. The optimized differentiation process only took 21 days to complete, a time length that is shorter or at least comparable to previous reports, and more importantly, yielded an albumin production more than 10-fold higher than conventional 2D culture. Our approach of optimizing hAD-MSC hepatic differentiation could provide a potential solution to the challenges such as hepatocyte transplantation or the establishment of human physiologically relevant liver models in vitro.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jae-Ho Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Hitomi Shirahama
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jeongeun Seo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Alway Building, Room M211, 300 Pasteur Drive, Stanford, California 94305, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild Building, D300, 299 Campus Drive, Stanford, California 94305, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.,School of Chemical and Biomolecular Engineering, Nanyang Technological University, 62 Nanyang Avenue 637459, Singapore
| |
Collapse
|
15
|
Improved Survival and Initiation of Differentiation of Human Induced Pluripotent Stem Cells to Hepatocyte-Like Cells upon Culture in William's E Medium followed by Hepatocyte Differentiation Inducer Treatment. PLoS One 2016; 11:e0153435. [PMID: 27073925 PMCID: PMC4830564 DOI: 10.1371/journal.pone.0153435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/29/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocyte differentiation inducer (HDI) lacks both glucose and arginine, but is supplemented with galactose and ornithine, and is added together with other reagents such as apoptosis inhibitor and oncostatin M. Although human induced pluripotent stem (iPS) cells initiate hepatocyte differentiation, most die within 7 days. In this study, we investigated both HDI and conventional media for their potential to improve cell survival. MATERIALS AND METHODS 201B7 iPS cells were cultured in conventional media. This consisted of three cycles of 5-day culture in William's E (WE) medium, followed by a 2-day culture in HDI. RESULTS Expression levels of α-feto protein (AFP) were higher in cells cultured in WE and in Dulbecco's Modified Eagle's Medium/Nutrient F-12 Ham (DF12). 201B7 cells expressed the highest AFP and albumin (ALB) when cultured in HDI for 2 days following 7-day culture in WE. After three cycles of 5-day culture in WE followed by 2 days in HDI, 201B7 cells expressed AFP and ALB 54 ± 2.3 (average ± standard deviation) and 73 ± 15.1 times higher, respectively, than those cultured in ReproFF (feeder-free condition). CONCLUSION 201B7 cells survived culture in WE for 7 days followed HDI for 2 days. After three cycles of culture under these conditions, hepatocyte differentiation was enhanced, as evidenced by increased AFP and ALB expression.
Collapse
|
16
|
Hosseinkhani H, Abedini F, Ou KL, Domb AJ. Polymers in gene therapy technology. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3432] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Center of Excellence in Nanomedicine; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute; Karaj Alborz IRAN
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Abraham J. Domb
- Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
17
|
Xu LB, Liu C. Role of liver stem cells in hepatocarcinogenesis. World J Stem Cells 2014; 6:579-590. [PMID: 25426254 PMCID: PMC4178257 DOI: 10.4252/wjsc.v6.i5.579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/24/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the “cancer stem cell hypothesis”, which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells (liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future.
Collapse
|
18
|
Han HC, Lo HC, Wu CY, Chen KH, Chen LC, Ou KL, Hosseinkhani H. Nano-textured fluidic biochip as biological filter for selective survival of neuronal cells. J Biomed Mater Res A 2014; 103:2015-23. [DOI: 10.1002/jbm.a.35338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Hsieh-Cheng Han
- Research Center for Applied Sciences; Academia Sinica; Taipei 11529 Taiwan
| | - Hung-Chun Lo
- Center for Condensed Matter Sciences; National Taiwan University; Taipei 10617 Taiwan
| | - Chia-Yu Wu
- School of Dentistry; College of Oral Medicine, Taipei Medical University; Taipei 110 Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry; Taipei Medical University Hospital; Taipei Taiwan
- Research Center for Biomedical Devices and Prototyping Production; Taipei Medical University; Taipei 110 Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences; National Taiwan University; Taipei 10617 Taiwan
- Institute of Atomic and Molecular Sciences; Academia Sinica; Taipei 10617 Taiwan
| | - Li-Chyong Chen
- Research Center for Applied Sciences; Academia Sinica; Taipei 11529 Taiwan
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production; Taipei Medical University; Taipei 110 Taiwan
- Nanomedicine Research Center of Taiwan; Taipei Medical University; Taipei 110 Taiwan
- Research Center for Biomedical Implants and Microsurgery Devices; Taipei Medical University; Taipei 110 Taiwan
- Graduate Institute of Biomedical Materials and Engineering; College of Oral Medicine, Taipei Medical University; Taipei 110 Taiwan
- Department of Dentistry; Taipei Medical University-Shuang-Ho Hospital; Taipei 110 Taiwan
| | - Hossein Hosseinkhani
- Research Center for Biomedical Devices and Prototyping Production; Taipei Medical University; Taipei 110 Taiwan
- Nanomedicine Research Center of Taiwan; Taipei Medical University; Taipei 110 Taiwan
- Research Center for Biomedical Implants and Microsurgery Devices; Taipei Medical University; Taipei 110 Taiwan
- Graduate Institute of Biomedical Materials and Engineering; College of Oral Medicine, Taipei Medical University; Taipei 110 Taiwan
- Department of Dentistry; Taipei Medical University-Shuang-Ho Hospital; Taipei 110 Taiwan. Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
| |
Collapse
|
19
|
Development of 3D in vitro technology for medical applications. Int J Mol Sci 2014; 15:17938-62. [PMID: 25299693 PMCID: PMC4227198 DOI: 10.3390/ijms151017938] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering.
Collapse
|
20
|
Jahani H, Jalilian FA, Wu CY, Kaviani S, Soleimani M, Abbasi N, Ou KL, Hosseinkhani H. Controlled surface morphology and hydrophilicity of polycaprolactone toward selective differentiation of mesenchymal stem cells to neural like cells. J Biomed Mater Res A 2014; 103:1875-81. [PMID: 25203786 DOI: 10.1002/jbm.a.35328] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/24/2022]
Abstract
Differentiation of mesenchymal stem cells (MSCs) into neuron cells has great potential in therapy of damaged nerve tissue. It has been shown that three-dimensional biomaterials have great ability to up regulate the expression of neuronal proteins. In this study, O2 plasma technology was used to enhance hydrophilicity of poly (ε-caprolactone) (PCL) toward selective differentiation of MSCs into neural cells. Random and aligned PCL nanofibers scaffolds were fabricated by electrospinning method and their physicochemical and mechanical properties were carried out by scanning electron microscope (SEM), contact angle, and tensile measurements. Contact angle studies of PCL and plasma treated PCL (p-PCL) nanofibers revealed significant change on the surface properties PCL nanofibers from the view point of hydrophilicity. Physiochemical studies revealed that p-PCL nanofibers were extremely hydrophilic compared with untreated PCL nanofibers which were highly hydrophobic and nonabsorbent to water. Differentiation of MSCs were carried out by inducing growth factors including basic fibroblast growth factor, nerve growth factor, and brain derived growth factor, NT3, 3-isobutyl-1-methylxanthine (IBMX) in Dulbecco's modified Eagle's medium/F12 media. Differentiated MSCs on nanofibrous scaffold were examined by immunofluorescence assay and was found to express the neuronal proteins; β-tubulin III and Map2, on day 15 after cell culture. The real-time polymerase chain reaction (RT-PCR) analysis showed that p-PCL nanofibrous scaffold could upregulate expression of Map-2 and downregulate expression of Nestin genes in nerve cells differentiated from MSCs. This study indicates that mesenchymal stem cell cultured on nanofibrous scaffold have potential differentiation to neuronal cells on and could apply in nerve tissue repair.
Collapse
Affiliation(s)
- Hoda Jahani
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | | | | | | | | | | | | |
Collapse
|