1
|
Xu L, Zhang Y, Zivkovic V, Zheng M. Deacidification of high-acid rice bran oil by the tandem continuous-flow enzymatic reactors. Food Chem 2022; 393:133440. [PMID: 35701271 DOI: 10.1016/j.foodchem.2022.133440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Rice bran oil (RBO) contains a variety of nutrients, but the high acid values largely hinder its processing into edible oil. Thus, the tandem continuous-flow reactors are proposed and developed for the enzymatic deacidification of RBO and simultaneous production of functional oils. The results indicate that the Candida antarctica lipase B (CALB) immobilized on the hydrophobic ordered mesoporous silicon (OMS-C18) increased 6.6 times of the catalytic activity and improved at least 20 ℃ of temperature tolerance compared to the commercial Novozym 435. The tandem continuous-flow enzymatic reactors removed 91.4% of free fatty acid and increased 9 and 12 times of phytosterol ester and diacylglycerol in RBO, respectively. Moreover, the retention rate of γ-oryzanol was at least 40% higher than that obtained by traditional alkali refining. This study provides an effective and sustainable method to continuously convert the low-value RBO into value-added products, which brings huge potential to cleaner industrial production.
Collapse
Affiliation(s)
- Liujia Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Vladimir Zivkovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
2
|
Gao R, Sun S, Zhou Y, Chen X, Zhang H, Yao N. Low-cost liquid lipase selective deacidification of corn oil with high triglyceride yield. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Chen W, He L, Song W, Huang J, Zhong N. Encapsulation of lipases by nucleotide/metal ion coordination polymers: enzymatic properties and their applications in glycerolysis and esterification studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4012-4024. [PMID: 34997576 DOI: 10.1002/jsfa.11749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the present study, lipases of TLL (lipase from Thermomyces lanuginosus), AOL (lipase from Aspergillus oryzae), RML (lipase from Rhizomucor miehei), BCL (lipase from Burkholderia cepacia), CALA (Candida antarctica lipase A) and LU (Lecitase® Ultra) were encapsulated into nucleotide-hybrid metal coordination polymers (CPs). Enzyme concentration was optimized for encapsulation and the enzymatic properties of the obtained lipases were investigated. In addition, their performance in glycerolysis and esterification was evaluated, and glycerolysis conditions (water content, temperature and time) were optimized. RESULTS Hydrolysis activity over 10 000 U g-1 and activity recovery over 90% were observed from AOL@GMP/Tb, TLL@GMP/Tb and RML@GMP/Tb. GMP/Tb encapsulation (of AOL, TLL, RML and LU) improved their thermostability when incubated in air. The encapsulated lipases exhibited moderate [triacylglycerols (TAG) conversion 30-50%] and considerable glycerolysis activity (TAG conversion over 60%). TAG conversions from 69.37% to 82.35% and diacylglycerols (DAG) contents from 58.62% to 64.88% were obtained from CALA@GMP/metal samples (except for CALA@GMP/Cu). Interestingly, none of the encapsulated lipases initiated the esterification reaction. AOL@GMP/Tb, TLL@GMP/Tb, RML@GMP/Tb and CALA@GMP/Tb showed good reusability in glycerolysis, with 88.80%, 94.67%, 89.85% and 78.16% of their initial glycerolysis activity, respectively, remaining after five cycles of reuse. The relationships between temperature and TAG conversion were LnV0 = 6.5364-3.7943/T and LnV0 = 13.8820-6.4684/T for AOL@GMP/Tb and CALA@GMP/Tb, respectively; in addition, their activation energies were 31.55 and 53.78 kJ mol-1 , respectively. CONCLUSION Most of the present encapsulated lipases exhibited moderate and considerable glycerolysis activity. In addition, AOL@GMP/Tb, TLL@GMP/Tb, RML@GMP/Tb and CALA@GMP/Tb exhibited good reusability in glycerolysis reactions and potential in practical applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyi Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Lihong He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Wenzhu Song
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Jianrong Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| |
Collapse
|
4
|
Fatty Acid Solvent Extraction from Palm Oil using Liquid-Liquid Film Contactor: Mathematical model Including Mass Transfer Effects. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Wang X, Wang X, Xie D. A novel method for oil deacidification: Chemical amidation with ethanolamine catalyzed by calcium oxide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Shin JA, Sun M, Jeong JM. Borage Oil Treated with Immobilized Lipase Inhibits Melanogenesis. Lipids 2020; 55:649-659. [PMID: 33128473 DOI: 10.1002/lipd.12266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 11/12/2022]
Abstract
In the present study, we demonstrated that borage (Borago officinalis L.) seed oil subjected to immobilized lipase pretreatment are enriched with linoleic acid (LNA, 18:2n-6), γ-linolenic acid (GLA, 18:3n-6), and oleic acid (OLA, 18:1n-9). We further showed that lipase-treated borage oil (LT-BOL) regulates the activity and degradation of tyrosinase, an important enzyme implicated in the synthesis of melanin in murine melanocytes, B16F10. LT-BOL and its free fatty acid components reduced the levels of melanin and tyrosinase in melanocytes with GLA exerting similar or stronger effects compared with LNA and OLA. The brightening efficacy of LT-BOL on melanin metabolism in humans was tested by an 8-week, double-blind, randomized clinical trial, which enrolled 21 Korean female adults (mean age 48.57 ± 3.28). Visual evaluation showed that cream containing 1% LT-BOL significantly decreased (p < 0.05) melasma on the treated skin area after 6 and 8 weeks. The analysis of the skin brightness using Chromameter CR-400 confirmed that the brightness of the treated area was significantly increased (p < 0.01) after 4, 6, and 8 weeks. Together, our results suggest that LT-BOL may be suitable as a natural skin whitening cosmeceutical product.
Collapse
Affiliation(s)
- Jin A Shin
- Biotechnology Research Center, Ben's Lab., Co., Ltd., 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| | - Meixiang Sun
- Biotechnology Research Center, Ben's Lab., Co., Ltd., 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| | - Jong-Moon Jeong
- Department of Bioscience, College of Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Effects of enzymatic free fatty acid reduction process on the composition and phytochemicals of rice bran oil. Food Chem 2020; 337:127757. [PMID: 32791430 DOI: 10.1016/j.foodchem.2020.127757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/29/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022]
Abstract
The effects of enzymatic free fatty acid reduction process (EFFARP) on the composition and phytochemicals of dewaxed and degummed rice bran oil (DDRBO) were investigated and compared with the effects observed using internal acyl acceptors. The acid value of DDRBO was effectively decreased from 16.99 mg KOH/g to approximately 0.36 mg KOH/g by EFFARP. EFFARP significantly decreased the moisture content and peroxide value of DDRBO and increased the induction period. The Sn-2 fatty acid comoposition of DDRBO after EFFARP was very reaching the total fatty acid composition. EFFARP significantly increased the triacylglycerol content compared to the control, while the oryzanol content was not obviously affected. The contents of free sterol, and total tocopherol and tocotrienol were increased slightly by EFFARP compared to the control. When conducted under vacuum with added nitrogen, EFFARP shows great application potential in the edible oil industry.
Collapse
|
8
|
Feng K, Huang Z, Peng B, Dai W, Li Y, Zhu X, Chen Y, Tong X, Lan Y, Cao Y. Immobilization of Aspergillus niger lipase onto a novel macroporous acrylic resin: Stable and recyclable biocatalysis for deacidification of high-acid soy sauce residue oil. BIORESOURCE TECHNOLOGY 2020; 298:122553. [PMID: 31846852 DOI: 10.1016/j.biortech.2019.122553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Deacidification of high-acid soy sauce residue (SSR) oil is crucial to utilization of SSR oil. Aspergillus niger lipase (ANL) has been widely applied for such purpose while its immobilization still has large room for improvement. ANL was immobilized onto six different macroporous acrylic resins, accounting the effect of the different textural properties of resins on stability and their potential for application in enzymatic deacidification. The resin MARE with lower porosity, higher bulk density, and medium hydrophobicity, was chosen as the best carrier for the best thermostability and reusability. ANL-MARE is a promising catalyst than Novozym 40086, which not only exhibited higher deacidification activity and good thermostability, but also was continuously reused for 15 cycles and efficiently catalyzed from high-acid SSR oil into diacylglycerol-enriched oil. Therefore, immobilized ANL was a novel, low-cost and recyclable biocatalyst that could be used as a good alternative to higher-cost commercial lipases in industrial applications.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zaocheng Huang
- Guangdong Huiertai Biotechnology Co., Ltd., Guangzhou 510730, China
| | - Bo Peng
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
| | - Weijie Dai
- Guangdong Huiertai Biotechnology Co., Ltd., Guangzhou 510730, China
| | - Yunqi Li
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xing Tong
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
9
|
Das K, Ghosh M. Comparative qualitative assessment of DAG production from medium chain fatty acids mediated by enzymatic and chemical catalysts under individually optimized conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Abstract
Most Combi-lipases (CL) are based on mixtures of different lipases immobilized on different supports. The increased CL efficiency has been attributed solely to the complementary selectivity of lipases. However, the role of the immobilization support in CL or in co-immobilized systems (coCL) and the application of kinetic models to account CL composition effects, have not been assessed. In this work, commercial lipases from Thermomyces lunuginosus (TLL), Candida antarctica (CALB) and Rhizomocur miehei (RML) and supports as Lewatit®VPOC1600 (LW) and Purolite®ECR1604 (PU), were combined to produce new CL systems for the production of fatty acid ethyl esters (EE) which are the main component of ethylic biodiesel: Co-immobilization slightly altered palm olein EE yields with regard to that of equivalent CL systems, e.g., the best coCL of TLL and CALB in LW (89.5%) and the respective CL (81.8%). The support did affect CL behavior: (i) The best coCL of TLL and RML on LW produced 80.0% EE while on PU 76.4%; (ii) CL based on mixtures of the same enzyme, but immobilized on different supports (semiCL) show complementarity: The best TLL semiCL produced 86.1% EE while its constituents (LW) and (PU) produced individually 78.2 and 70.3%, respectively. The proposed model accounts adequately the EE production properties for CL systems based on TLL, CALB and LW. This work expands the tools to obtain new CL systems for EE production.
Collapse
|
11
|
Enhanced Ricinoleic Acid Preparation Using Lipozyme TLIM as a Novel Biocatalyst: Optimized by Response Surface Methodology. Catalysts 2018. [DOI: 10.3390/catal8110486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ricinoleic acid (RA) is an important raw material for plasticizers, emulsifiers, and nanomaterials. In this work, a green and efficient method was developed for RA production. Results showed that Lipozyme TLIM can be used as a novel biocatalyst to catalyze the hydrolysis of castor oil (CO) for RA preparation. Response surface methodology (RSM) was used to evaluate and optimize the effects of reaction variables on the hydrolysis of CO. Reaction conditions were optimized as follows: 41.3 °C, enzyme load 8.9%, 39.2 h, and 40:1 molar ratio of water to oil. Under these optimized reaction variables, the maximum hydrolysis ratio of CO (96.2 ± 1.5%) was obtained. The effect of hydrolysis variables on the reaction was as follows: enzyme load > hydrolysis time > temperature. In conclusion, this is a green, simple, and efficient method for RA preparation and can provide a good alternative method for RA industrial production.
Collapse
|
12
|
Wang X, Chen Y, Zheng L, Jin Q, Wang X. Synthesis of 1,3-distearoyl-2-oleoylglycerol by enzymatic acidolysis in a solvent-free system. Food Chem 2017; 228:420-426. [DOI: 10.1016/j.foodchem.2017.01.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/02/2017] [Accepted: 01/30/2017] [Indexed: 11/26/2022]
|
13
|
Wang X, Wang X, Wang T. An effective method for reducing free fatty acid content of high-acid rice bran oil by enzymatic amidation. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.12.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wang X, Lu J, Liu H, Jin Q, Wang X. Improved deacidification of high-acid rice bran oil by enzymatic esterification with phytosterol. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
von der Haar D, Stäbler A, Wichmann R, Schweiggert-Weisz U. Enzyme-assisted process for DAG synthesis in edible oils. Food Chem 2015; 176:263-70. [DOI: 10.1016/j.foodchem.2014.12.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/22/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022]
|