1
|
Shi L, Wang Z, Chen JH, Qiu H, Liu WD, Zhang XY, Martin FM, Zhao MW. LbSakA-mediated phosphorylation of the scaffolding protein LbNoxR in the ectomycorrhizal basidiomycete Laccaria bicolor regulates NADPH oxidase activity, ROS accumulation and symbiosis development. THE NEW PHYTOLOGIST 2024; 243:381-397. [PMID: 38741469 DOI: 10.1111/nph.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ju Hong Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Dong Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao Yan Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Ming Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
2
|
Demissie MS, Legesse NH, Tesema AA. Isolation and characterization of cellulase producing bacteria from forest, cow dung, Dashen brewery and agro-industrial waste. PLoS One 2024; 19:e0301607. [PMID: 38598514 PMCID: PMC11006139 DOI: 10.1371/journal.pone.0301607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
The continuous accumulation of waste, particularly from industries, often ends up in landfills. However, this waste can be transformed into a valuable resource through innovative methods. This process not only reduces environmental pollution but also generates additional useful products. This study aims to screen novel high-efficiency cellulose-degrading bacteria from cow dung, forest soil, brewery waste, and agro-industrial waste in the Debre Berhan area for the treatment of cellulose-rich agricultural waste. The serial dilution and pour plate method was used to screen for cellulolytic bacteria and further characterized using morphological and biochemical methods. From eleven isolates cow dung 1 (CD1), cow dung 6 (CD6) and cow dung (CD3) which produced the largest cellulolytic index (3.1, 2.9 and 2.87) were selected. Samples from forest soil, and spent grain didn't form a zone of clearance, and effluent treatment and industrial waste (IW9) shows the smallest cellulolytic index. Three potential isolates were then tested for cellulolytic activity, with cow dung 1 (CD1) displaying promising cellulase activity. These bacterial isolates were then identified as Bacillus species, which were isolated from cow dung 1 (CD1) with maximum cellulase production. Cow dung waste is a rich source of cellulase-producing bacteria, which can be valuable and innovative enzymes for converting lignocellulosic waste.
Collapse
Affiliation(s)
- Mulugeta Samuel Demissie
- Department of Biology, College of Natural and Computational Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Negash Hailu Legesse
- Department of Biology, College of Natural and Computational Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Aderajew Adgo Tesema
- Department of Biotechnology, College of Natural and Computational Science, Woldia University, Weldiya, Ethiopia
| |
Collapse
|
3
|
Ma X, Li S, Tong X, Liu K. An overview on the current status and future prospects in Aspergillus cellulase production. ENVIRONMENTAL RESEARCH 2024; 244:117866. [PMID: 38061590 DOI: 10.1016/j.envres.2023.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Cellulase is a new research point besides glucoamylase, amylase, and protease in the enzyme industry. Cellulase can decompose lignocellulosic biomass into small-molecule sugars, which facilitates microbial utilization; thus, it has a vast market potential in the field of feed, food, energy, and chemistry. The Aspergillus was the first strain used in cellulase preparation because of its safety and non-toxicity, strong growth ability, and high enzyme yield. This review provides the latest research and advances on preparing cellulase from Aspergillus. The metabolic mechanisms of cellulase secretion by Aspergillus, the selection of fermentation substrates, the comparison of the fermentation modes, and the effect of fermentation conditions have been discussed in this review. Also, the subsequent separation and purification techniques of Aspergillus cellulase, including salting out, organic solvent precipitation, ultrafiltration, and chromatography, have been declared. Further, bottlenecks in Aspergillus cellulase preparation and corresponding feasible approaches, such as genetic engineering, mixed culture, and cellulase immobilization, have also been proposed in this review. This paper provides theoretical support for the efficient production and application of Aspergillus cellulase.
Collapse
Affiliation(s)
- Xiaoyu Ma
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Shengpin Li
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Xiaoxia Tong
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Kun Liu
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China.
| |
Collapse
|
4
|
Salazar-Cerezo S, de Vries RP, Garrigues S. Strategies for the Development of Industrial Fungal Producing Strains. J Fungi (Basel) 2023; 9:834. [PMID: 37623605 PMCID: PMC10455633 DOI: 10.3390/jof9080834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The use of microorganisms in industry has enabled the (over)production of various compounds (e.g., primary and secondary metabolites, proteins and enzymes) that are relevant for the production of antibiotics, food, beverages, cosmetics, chemicals and biofuels, among others. Industrial strains are commonly obtained by conventional (non-GMO) strain improvement strategies and random screening and selection. However, recombinant DNA technology has made it possible to improve microbial strains by adding, deleting or modifying specific genes. Techniques such as genetic engineering and genome editing are contributing to the development of industrial production strains. Nevertheless, there is still significant room for further strain improvement. In this review, we will focus on classical and recent methods, tools and technologies used for the development of fungal production strains with the potential to be applied at an industrial scale. Additionally, the use of functional genomics, transcriptomics, proteomics and metabolomics together with the implementation of genetic manipulation techniques and expression tools will be discussed.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, VLC, Spain
| |
Collapse
|
5
|
Jia YL, Li J, Nong FT, Yan CX, Ma W, Zhu XF, Zhang LH, Sun XM. Application of Adaptive Laboratory Evolution in Lipid and Terpenoid Production in Yeast and Microalgae. ACS Synth Biol 2023; 12:1396-1407. [PMID: 37084707 DOI: 10.1021/acssynbio.3c00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Due to the complexity of metabolic and regulatory networks in microorganisms, it is difficult to obtain robust phenotypes through artificial rational design and genetic perturbation. Adaptive laboratory evolution (ALE) engineering plays an important role in the construction of stable microbial cell factories by simulating the natural evolution process and rapidly obtaining strains with stable traits through screening. This review summarizes the application of ALE technology in microbial breeding, describes the commonly used methods for ALE, and highlights the important applications of ALE technology in the production of lipids and terpenoids in yeast and microalgae. Overall, ALE technology provides a powerful tool for the construction of microbial cell factories, and it has been widely used in improving the level of target product synthesis, expanding the range of substrate utilization, and enhancing the tolerance of chassis cells. In addition, in order to improve the production of target compounds, ALE also employs environmental or nutritional stress strategies corresponding to the characteristics of different terpenoids, lipids, and strains.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Feng Zhu
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Hui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
6
|
Ding Q, Ye C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb Cell Fact 2023; 22:20. [PMID: 36717860 PMCID: PMC9885587 DOI: 10.1186/s12934-023-02025-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. RESULTS As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. CONCLUSIONS In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.
Collapse
Affiliation(s)
- Qiang Ding
- grid.252245.60000 0001 0085 4987School of Life Sciences, Anhui University, Hefei, 230601 China ,grid.252245.60000 0001 0085 4987Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601 Anhui China ,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
| | - Chao Ye
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
7
|
Romain B, Delvigne F, Rémond C, Rakotoarivonina H. Control of phenotypic diversification based on serial cultivations on different carbon sources leads to improved bacterial xylanase production. Bioprocess Biosyst Eng 2022; 45:1359-1370. [PMID: 35881245 DOI: 10.1007/s00449-022-02751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium of interest for the production of thermostable hemicellulases. Enzymes' production by this bacterium is challenging, because the proliferation of a cheating subpopulation of cells during exponential growth impairs the production of xylanase after serial cultivations. Accordingly, a strategy of successive cultivations with cells transfers in stationary phase and the use of wheat bran and wheat straw as carbon sources were tested. The ratio between subpopulations and their corresponding metabolic activities were studied by flow cytometry and the resulting hemicellulases production (xylanase, acetyl esterase and β-xylosidase) followed. During serial cultivations, the results pointed out an increase of the enzymatic activities. On xylan, compared to the first cultivation, the xylanase activity increases by 7.15-fold after only four cultivations. On the other hand, the debranching activities were increased by 5.88-fold and 57.2-fold on wheat straw and by 2.77-fold and 3.34-fold on wheat bran for β-xylosidase and acetyl esterase, respectively. The different enzymatic activities then stabilized, reached a plateau and further decreased. Study of the stability and reversibility of the enzyme production revealed cell-to-cell heterogeneities in metabolic activities which could be linked to the reversibility of enzymatic activity changes. Thus, the strategy of successive transfers during the stationary phase of growth, combined with the use of complex lignocellulosic substrates as carbon sources, is an efficient strategy to optimize the hemicellulases production by T. xylanilyticus, by preventing the selection of cheaters.
Collapse
Affiliation(s)
- Bouchat Romain
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France.,Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Caroline Rémond
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
| | | |
Collapse
|
8
|
Cheng M, Wijayawardene NN, Promputtha I, de Vries RP, Lan Y, Luo G, Wang M, Li Q, Guo X, Wang F, Liu Y, Kang Y. Potential Fungi Isolated From Anti-biodegradable Chinese Medicine Residue to Degrade Lignocellulose. Front Microbiol 2022; 13:877884. [PMID: 35620098 PMCID: PMC9127797 DOI: 10.3389/fmicb.2022.877884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Traditional Chinese medicine is one of the ancient medicines which is popular in Asian countries, among which the residue produced by the use of anti-biodegradables is endless, and causes significant adverse impacts on the environment. However, the high acidity of anti-biodegradable residues and some special biological activities make it difficult for microorganisms to survive, resulting in a very low degradation rate of lignocellulose in naturally stacked residues, which directly impedes the degradation of residues. We aimed to identify the fungal strains that efficiently biodegrade anti-biodegradable residue and see the possibility to improve the biodegradation of it and other agricultural wastes by co-cultivating these fungi. We isolated 302 fungal strains from anti-biodegradable residue to test hydrolysis ability. Finally, we found Coniochaeta sp., Fomitopsis sp., Nemania sp., Talaromyces sp., Phaeophlebiopsis sp. which inhabit the anti-biodegradable residues are capable of producing higher concentrations of extracellular enzymes. Synergistic fungal combinations (viz., Fomitopsis sp. + Phaeophlebiopsis sp.; Talaromyces sp. + Coniochaeta sp. + Fomitopsis sp.; Talaromyces sp. + Fomitopsis sp. + Piloderma sp. and Talaromyces sp. + Nemania sp. + Piloderma sp.) have better overall degradation effect on lignocellulose. Therefore, these fungi and their combinations have strong potential to be further developed for bioremediation and biological enzyme industrial production.
Collapse
Affiliation(s)
- Min Cheng
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Nalin N Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China.,Section of Genetics, Institute for Research and Development in Health and Social Care, Battaramulla, Sri Lanka
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Science, Environmental Science Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Yongzhe Lan
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Gang Luo
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Meizhu Wang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Qirui Li
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xinyao Guo
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Feng Wang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yanxia Liu
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yingqian Kang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
9
|
Chatterjee S, Venkata Mohan S. Fungal biorefinery for sustainable resource recovery from waste. BIORESOURCE TECHNOLOGY 2022; 345:126443. [PMID: 34852279 DOI: 10.1016/j.biortech.2021.126443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Depletion of natural resources and negative impact of fossil fuels on environment are becoming a global concern. The concept of biorefinery is one of the alternative platforms for the production of biofuels and chemicals. Valorisation of biological resources through complete utilization of waste, reusing secondary products and generating energy to power the process are the key principles of biorefinery. Agricultural residues and biogenic municipal solid wastes are getting importance as a potential feedstock for the generation of bioproducts. This communication reviews and highlights the scope of yeast and fungi as a potent candidate for the synthesis of gamut of bioproducts in an integrated approach addressing sustainability and circular bioeconomy. It also provides a close view on importance of microbes in biorefinery, feedstock pretreatment strategies for renewable sugar production, cultivation systems and yeast and fungi based products. Integrated closed loop approach towards multiple product generation with zero waste discharge is also discussed.
Collapse
Affiliation(s)
- Sulogna Chatterjee
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnol Adv 2021; 50:107770. [PMID: 33989704 DOI: 10.1016/j.biotechadv.2021.107770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
In this review, we argue that there is much to be learned by transferring knowledge from research on lignocellulose degradation to that on plastic. Plastic waste accumulates in the environment to hazardous levels, because it is inherently recalcitrant to biological degradation. Plants evolved lignocellulose to be resistant to degradation, but with time, fungi became capable of utilising it for their nutrition. Examples of how fungal strategies to degrade lignocellulose could be insightful for plastic degradation include how fungi overcome the hydrophobicity of lignin (e.g. production of hydrophobins) and crystallinity of cellulose (e.g. oxidative approaches). In parallel, knowledge of the methods for understanding lignocellulose degradation could be insightful such as advanced microscopy, genomic and post-genomic approaches (e.g. gene expression analysis). The known limitations of biological lignocellulose degradation, such as the necessity for physiochemical pretreatments for biofuel production, can be predictive of potential restrictions of biological plastic degradation. Taking lessons from lignocellulose degradation for plastic degradation is also important for biosafety as engineered plastic-degrading fungi could also have increased plant biomass degrading capabilities. Even though plastics are significantly different from lignocellulose because they lack hydrolysable C-C or C-O bonds and therefore have higher recalcitrance, there are apparent similarities, e.g. both types of compounds are mixtures of hydrophobic polymers with amorphous and crystalline regions, and both require hydrolases and oxidoreductases for their degradation. Thus, many lessons could be learned from fungal lignocellulose degradation.
Collapse
|
11
|
Chroumpi T, Peng M, Markillie LM, Mitchell HD, Nicora CD, Hutchinson CM, Paurus V, Tolic N, Clendinen CS, Orr G, Baker SE, Mäkelä MR, de Vries RP. Re-routing of Sugar Catabolism Provides a Better Insight Into Fungal Flexibility in Using Plant Biomass-Derived Monomers as Substrates. Front Bioeng Biotechnol 2021; 9:644216. [PMID: 33763411 PMCID: PMC7982397 DOI: 10.3389/fbioe.2021.644216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
The filamentous ascomycete Aspergillus niger has received increasing interest as a cell factory, being able to efficiently degrade plant cell wall polysaccharides as well as having an extensive metabolism to convert the released monosaccharides into value added compounds. The pentoses D-xylose and L-arabinose are the most abundant monosaccharides in plant biomass after the hexose D-glucose, being major constituents of xylan, pectin and xyloglucan. In this study, the influence of selected pentose catabolic pathway (PCP) deletion strains on growth on plant biomass and re-routing of sugar catabolism was addressed to gain a better understanding of the flexibility of this fungus in using plant biomass-derived monomers. The transcriptome, metabolome and proteome response of three PCP mutant strains, ΔlarAΔxyrAΔxyrB, ΔladAΔxdhAΔsdhA and ΔxkiA, grown on wheat bran (WB) and sugar beet pulp (SBP), was evaluated. Our results showed that despite the absolute impact of these PCP mutations on pure pentose sugars, they are not as critical for growth of A. niger on more complex biomass substrates, such as WB and SBP. However, significant phenotypic variation was observed between the two biomass substrates, but also between the different PCP mutants. This shows that the high sugar heterogeneity of these substrates in combination with the high complexity and adaptability of the fungal sugar metabolism allow for activation of alternative strategies to support growth.
Collapse
Affiliation(s)
- Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Lye Meng Markillie
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Hugh D Mitchell
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carrie D Nicora
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Chelsea M Hutchinson
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Vanessa Paurus
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Nikola Tolic
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Chaevien S Clendinen
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Galya Orr
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Scott E Baker
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands.,Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Govil T, Saxena P, Samanta D, Singh SS, Kumar S, Salem DR, Sani RK. Adaptive Enrichment of a Thermophilic Bacterial Isolate for Enhanced Enzymatic Activity. Microorganisms 2020; 8:E871. [PMID: 32526936 PMCID: PMC7355623 DOI: 10.3390/microorganisms8060871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
The mimicking of evolution on a laboratory timescale to enhance biocatalyst specificity, substrate utilization activity, and/or product formation, is an effective and well-established approach that does not involve genetic engineering or regulatory details of the microorganism. The present work employed an evolutionary adaptive approach to improve the lignocellulose deconstruction capabilities of the strain by inducing the expression of laccase, a multicopper oxidase, in Geobacillus sp. strain WSUCF1. This bacterium is highly efficient in depolymerizing unprocessed lignocellulose, needing no preprocessing/pretreatment of the biomasses. However, it natively produces low levels of laccase. After 15 rounds of serially adapting this thermophilic strain in the presence of unprocessed corn stover as the selective pressure, we recorded a 20-fold increase in catalytic laccase activity, at 9.23 ± 0.6 U/mL, in an adapted yet stable strain of Geobacillus sp. WSUCF1, compared with the initial laccase production (0.46 ± 0.04 U/mL) obtained with the unadapted strain grown on unprocessed corn stover before optimization. Chemical composition analysis demonstrated that lignin removal by the adapted strain was 22 wt.% compared with 6 wt.% removal by the unadapted strain. These results signify a favorable prospect for fast, cost competitive bulk production of this thermostable enzyme. Also, this work has practical importance, as this fast adaptation of the Geobacillus sp. strain WSUCF1 suggests the possibility of growing industrial quantities of Geobacillus sp. strain WSUCF1 cells as biocatalysts on reasonably inexpensive carbon sources for commercial use. This work is the first application of the adaptive laboratory evolution approach for developing the desired phenotype of enhanced ligninolytic capability in any microbial strain.
Collapse
Affiliation(s)
- Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173215, India; (P.S.); (S.K.)
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
| | - Sindhu Suresh Singh
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Sudhir Kumar
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173215, India; (P.S.); (S.K.)
| | - David R. Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
- BuG ReMeDEE consortium, Rapid City, SD 57701, USA
| |
Collapse
|
13
|
Lubbers RJM, Liwanag AJ, Peng M, Dilokpimol A, Benoit-Gelber I, de Vries RP. Evolutionary adaptation of Aspergillus niger for increased ferulic acid tolerance. J Appl Microbiol 2019; 128:735-746. [PMID: 31674709 PMCID: PMC7027748 DOI: 10.1111/jam.14505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023]
Abstract
AIMS To create an Aspergillus niger mutant with increased tolerance against ferulic acid using evolutionary adaptation. METHODS AND RESULTS Evolutionary adaptation of A. niger N402 was performed by consecutive growth on increasing concentrations of ferulic acid in the presence of 25 mmol l-1 d-fructose, starting from 0·5 mmol l-1 and ending with 5 mmol l-1 ferulic acid. The A. niger mutant obtained after six months, named Fa6, showed increased ferulic acid tolerance compared to the parent. In addition, Fa6 has increased ferulic acid consumption and a higher conversion rate, suggesting that the mutation affects aromatic metabolism of this species. Transcriptome analysis of the evolutionary mutant on ferulic acid revealed a distinct gene expression profile compared to the wild type. Further analysis of this mutant and the parent strain provided the first experimental confirmation that A. niger converts coniferyl alcohol to ferulic acid. CONCLUSIONS The evolutionary adaptive A. niger mutant Fa6 has beneficial mutations that increase the tolerance, conversion rate and uptake of ferulic acid. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that evolutionary adaptation is a powerful tool to modify micro-organisms towards increased tolerance to harsh conditions, which is beneficial for various industrial applications.
Collapse
Affiliation(s)
- R J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A J Liwanag
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - M Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - I Benoit-Gelber
- Centre for Structural and Functional Genomics, Concordia University, Montréal, Canada
| | - R P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnol Adv 2019; 37:107361. [PMID: 30825514 DOI: 10.1016/j.biotechadv.2019.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 12/26/2022]
Abstract
Fungal strain engineering is commonly used in many areas of biotechnology, including the production of plant biomass degrading enzymes. Its aim varies from the production of specific enzymes to overall increased enzyme production levels and modification of the composition of the enzyme set that is produced by the fungus. Strain engineering involves a diverse range of methodologies, including classical mutagenesis, genetic engineering and genome editing. In this review, the main approaches for strain engineering of filamentous fungi in the field of plant biomass degradation will be discussed, including recent and not yet implemented methods, such as CRISPR/Cas9 genome editing and adaptive evolution.
Collapse
|
15
|
Leynaud-Kieffer LMC, Curran SC, Kim I, Magnuson JK, Gladden JM, Baker SE, Simmons BA. A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable. PLoS One 2019; 14:e0210243. [PMID: 30653574 PMCID: PMC6336261 DOI: 10.1371/journal.pone.0210243] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Aspergillus niger and other filamentous fungi are widely used in industry, but efficient genetic engineering of these hosts remains nascent. For example, while molecular genetic tools have been developed, including CRISPR/Cas9, facile genome engineering of A. niger remains challenging. To address these challenges, we have developed a simple Cas9-based gene targeting method that provides selectable, iterative, and ultimately marker-free generation of genomic deletions and insertions. This method leverages locus-specific “pop-out” recombination to suppress off-target integrations. We demonstrated the effectiveness of this method by targeting the phenotypic marker albA and validated it by targeting the glaA and mstC loci. After two selection steps, we observed 100% gene editing efficiency across all three loci. This method greatly reduces the effort required to engineer the A. niger genome and overcomes low Cas9 transformations efficiency by eliminating the need for extensive screening. This method represents a significant addition to the A. niger genome engineering toolbox and could be adapted for use in other organisms. It is expected that this method will impact several areas of industrial biotechnology, such as the development of new strains for the secretion of heterologous enzymes and the discovery and optimization of metabolic pathways.
Collapse
Affiliation(s)
- Laure M. C. Leynaud-Kieffer
- Swiss Federal Institute of Technology Lausanne, Lausanne, Vaud, Switzerland
- Joint Bioenergy Institute, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Samuel C. Curran
- Joint Bioenergy Institute, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Comparative Biochemistry Graduate Group, University of California Berkeley, Berkeley, CA, United States of America
| | - Irene Kim
- Department of Chemistry, University of California, Berkeley, CA, United States of America
| | - Jon K. Magnuson
- Joint Bioenergy Institute, Emeryville, CA, United States of America
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - John M. Gladden
- Joint Bioenergy Institute, Emeryville, CA, United States of America
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA, United States of America
| | - Scott E. Baker
- Joint Bioenergy Institute, Emeryville, CA, United States of America
- Biosystems Design and Simulation Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Blake A. Simmons
- Joint Bioenergy Institute, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
16
|
de Vries RP, Lubbers R, Patyshakuliyeva A, Wiebenga A, Benoit-Gelber I. Evolutionary Adaptation to Generate Mutants. Methods Mol Biol 2018; 1775:133-137. [PMID: 29876815 DOI: 10.1007/978-1-4939-7804-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this chapter we describe a method to generate mutants of filamentous fungi using their genomic plasticity and rapid adaptability to their environment. This method is based on spontaneous mutations occurring in relation to improved growth of fungi on media by repeated inoculation resulting in adaptation of the strain to the condition. The critical aspect of this method is the design of the selective media, which will depend strongly on the phenomenon that will be studied. This method is advantageous over UV or chemical random mutagenesis as it results in a lower frequency of undesired mutations and can result in strains that combined with (post)genomic approaches can enhance our understanding of the mechanisms driving various biological processes. In addition, it can be used to obtain better strains for various industrial applications. The method described here is specific for sporulating fungi and has so far not yet been tested for nonsporulating fungi.
Collapse
Affiliation(s)
- Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
| | - Ronnie Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Isabelle Benoit-Gelber
- Centre for Structural and Functional Genomics, Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
17
|
Bachmann H, Molenaar D, Branco dos Santos F, Teusink B. Experimental evolution and the adjustment of metabolic strategies in lactic acid bacteria. FEMS Microbiol Rev 2017. [DOI: 10.1093/femsre/fux024] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Peciulyte A, Pisano M, de Vries RP, Olsson L. Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnol Lett 2017; 39:1403-1411. [PMID: 28573540 PMCID: PMC5544809 DOI: 10.1007/s10529-017-2371-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Objectives To evaluate the potential of enzyme cocktails produced by five filamentous fungi to supplement the industrial cellulase cocktail, Celluclast 1.5L, in order to improve the efficiency of saccharification. Results The fungi were cultivated on wheat bran and the resulting supernatants were combined with Celluclast in enzymatic hydrolysis experiments to test their ability to hydrolyze wheat bran and five cellulose-rich substrates. The supernatant showing the best performance was that from an Aspergillus niger cellulase mutant. The addition of β-glucosidase only to the Celluclast cocktail was not as beneficial. Conclusion Supplementing commercial cocktails with enzymes from carefully selected fungi may result in significantly more efficient saccharification of lignocellulosic materials. Furthermore, such an approach could lead to the identification of novel enzyme activities crucial for saccharification.
Collapse
Affiliation(s)
- Ausra Peciulyte
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Maria Pisano
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.,Department of Biotechnology and Biopharmaceutical Biosciences, University of Bari, 70125, Bari, Italy
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Center & Fungal Molecular Physiology, Utrecht University, Utrecht, 3584 CT, The Netherlands
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden. .,Wallenberg Wood Science Center, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
19
|
Yan J, Liu W, Li Y, Lai HL, Zheng Y, Huang JW, Chen CC, Chen Y, Jin J, Li H, Guo RT. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase. Biochem Biophys Res Commun 2016; 475:8-12. [PMID: 27154222 DOI: 10.1016/j.bbrc.2016.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Eukaryotic 1,4-β-endoglucanases (EC 3.2.1.4) have shown great potentials in many commercial applications because they effectively catalyze hydrolysis of cellulose, the main component of the plant cell wall. Here we expressed a glycoside hydrolase family (GH) 5 1,4-β-endoglucanase from Aspergillus niger (AnCel5A) in Pichia pastoris, which exhibits outstanding pH and heat stability. In order to further investigate the molecular mechanism of AnCel5A, apo-form and cellotetraose (CTT) complex enzyme crystal structures were solved to high resolution. AnCel5A folds into a typical (β/α)8-TIM barrel architecture, resembling other GH5 members. In the substrate binding cavity, CTT is found to bind to -4 - -1 subsites, and several polyethylene glycol molecules are found in positive subsites. In addition, several unique N-glycosylation motifs that may contribute to protein higher stability were observed from crystal structures. These results are of great importance for understanding the molecular mechanism of AnCel5A, and also provide guidance for further applications of the enzyme.
Collapse
Affiliation(s)
- Junjie Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Weidong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yujie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui-Lin Lai
- Genozyme Biotechnology Inc., Taipei 106, Taiwan; AsiaPac Biotechnology Co., Ltd., Dongguan, 523808, China
| | - Yingying Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian-Wen Huang
- Genozyme Biotechnology Inc., Taipei 106, Taiwan; AsiaPac Biotechnology Co., Ltd., Dongguan, 523808, China
| | - Chun-Chi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Huazhong Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Rey-Ting Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|