1
|
Adnan M, Liu G. Promoters and Synthetic Promoters in Trichoderma reesei. Methods Mol Biol 2024; 2844:47-68. [PMID: 39068331 DOI: 10.1007/978-1-0716-4063-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Trichoderma reesei holds immense promise for large-scale protein production, rendering it an excellent subject for deeper exploration using genetic engineering methods to achieve a comprehensive grasp of its cellular physiology. Understanding the genetic factors governing its intrinsic regulatory network is crucial, as lacking this knowledge could impede the expression of target genes. Prior and ongoing studies have concentrated on advancing new expression systems grounded in synthetic biology principles. These methodologies involve utilizing established potent promoters or engineered variations. Genomic and transcriptomic analyses have played a pivotal role in identifying robust promoters and expression systems, including light-responsive, copper-inducible, L-methionine-inducible, and Tet-On systems, among others. This chapter seeks to highlight various research endeavors focusing on tunable and constitutive promoters, the impact of different promoters on both native and foreign protein expression, the discovery of fresh promoters, and strategies conducive to future research aimed at refining and enhancing protein expression in T. reesei. Characterizing new promoters and adopting innovative expression systems hold the potential to significantly expand the molecular toolkit accessible for genetically engineering T. reesei strains. For instance, modifying potent inducible promoters such as Pcbh1 by replacing transcriptional repressors (cre1, ace1) with activators (xyr1, ace2, ace3, hap2/3/5) and integrating synthetic expression systems can result in increased production of crucial enzymes such as endoglucanases (EGLs), β-glucosidases (BGLs), and cellobiohydrolases (CBHs). Similarly, robust constitutive promoters such as Pcdna1 can be converted into synthetic hybrid promoters by incorporating activation elements from potent inducible promoters, facilitating cellulase induction and expression even under repressive conditions. Nevertheless, further efforts are necessary to uncover innovative promoters and devise novel expression strategies to enhance the production of desired proteins on an industrial scale.
Collapse
Affiliation(s)
- Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Yang J, Yue HR, Pan LY, Feng JX, Zhao S, Suwannarangsee S, Chempreda V, Liu CG, Zhao XQ. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023:129449. [PMID: 37406833 DOI: 10.1016/j.biortech.2023.129449] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ya Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Surisa Suwannarangsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Chempreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Arai T, Wada M, Nishiguchi H, Takimura Y, Ishii J. Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source. Microb Cell Fact 2023; 22:103. [PMID: 37208691 DOI: 10.1186/s12934-023-02109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T. reesei; however, glucose represses this transcriptional induction. Therefore, cellulose is commonly used as a carbon source for providing its degraded sugars such as cellobiose, which act as inducers to activate the strong promoters of the major cellulase (cellobiohydrolase 1 and 2 (cbh1 and cbh2) genes. However, replacement of cbh1 and/or cbh2 with a gene encoding the protein of interest (POI) for high productivity and occupancy of recombinant proteins remarkably impairs the ability to release soluble inducers from cellulose, consequently reducing the production of POI. To overcome this challenge, we first used an inducer-free biomass-degrading enzyme expression system, previously developed to produce cellulases and hemicellulases using glucose as the sole carbon source, for recombinant protein production using T. reesei. RESULTS We chose endogenous secretory enzymes and heterologous camelid small antibodies (nanobody) as model proteins. By using the inducer-free strain as a parent, replacement of cbh1 with genes encoding two intrinsic enzymes (aspartic protease and glucoamylase) and three different nanobodies (1ZVH, caplacizumab, and ozoralizumab) resulted in their high secretory productions using glucose medium without inducers such as cellulose. Based on signal sequences (carrier polypeptides) and protease inhibitors, additional replacement of cbh2 with the nanobody gene increased the percentage of POI to about 20% of total secreted proteins in T. reesei. This allowed the production of caplacizumab, a bivalent nanobody, to be increased to 9.49-fold (508 mg/L) compared to the initial inducer-free strain. CONCLUSIONS In general, whereas the replacement of major cellulase genes leads to extreme decrease in the degradation capacity of cellulose, our inducer-free system enabled it and achieved high secretory production of POI with increased occupancy in glucose medium. This system would be a novel platform for heterologous recombinant protein production in T. reesei.
Collapse
Affiliation(s)
- Toshiharu Arai
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, 640‑8580, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Mayumi Wada
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, 640‑8580, Japan
| | - Hiroki Nishiguchi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, 640‑8580, Japan
| | - Yasushi Takimura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, 640‑8580, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
4
|
Arai T, Ichinose S, Shibata N, Kakeshita H, Kodama H, Igarashi K, Takimura Y. Inducer-free cellulase production system based on the constitutive expression of mutated XYR1 and ACE3 in the industrial fungus Trichoderma reesei. Sci Rep 2022; 12:19445. [PMID: 36376415 PMCID: PMC9663580 DOI: 10.1038/s41598-022-23815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Trichoderma reesei is a widely used host for producing cellulase and hemicellulase cocktails for lignocellulosic biomass degradation. Here, we report a genetic modification strategy for industrial T. reesei that enables enzyme production using simple glucose without inducers, such as cellulose, lactose and sophorose. Previously, the mutated XYR1V821F or XYR1A824V was known to induce xylanase and cellulase using only glucose as a carbon source, but its enzyme composition was biased toward xylanases, and its performance was insufficient to degrade lignocellulose efficiently. Therefore, we examined combinations of mutated XYR1V821F and constitutively expressed CRT1, BGLR, VIB1, ACE2, or ACE3, known as cellulase regulators and essential factors for cellulase expression to the T. reesei E1AB1 strain that has been highly mutagenized for improving enzyme productivity and expressing a ß-glucosidase for high enzyme performance. The results showed that expression of ACE3 to the mutated XYR1V821F expressing strain promoted cellulase expression. Furthermore, co-expression of these two transcription factors also resulted in increased productivity, with enzyme productivity 1.5-fold higher than with the conventional single expression of mutated XYR1V821F. Additionally, that productivity was 5.5-fold higher compared to productivity with an enhanced single expression of ACE3. Moreover, although the DNA-binding domain of ACE3 had been considered essential for inducer-free cellulase production, we found that ACE3 with a partially truncated DNA-binding domain was more effective in cellulase production when co-expressed with a mutated XYR1V821F. This study demonstrates that co-expression of the two transcription factors, the mutated XYR1V821F or XYR1A824V and ACE3, resulted in optimized enzyme composition and increased productivity.
Collapse
Affiliation(s)
- Toshiharu Arai
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Sakurako Ichinose
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Nozomu Shibata
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Hiroshi Kakeshita
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan.
| | - Hiroshi Kodama
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Kazuaki Igarashi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| | - Yasushi Takimura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640‑8580, Japan
| |
Collapse
|
5
|
Roles of PKAc1 and CRE1 in cellulose degradation, conidiation, and yellow pigment synthesis in Trichoderma reesei QM6a. Biotechnol Lett 2022; 44:1465-1475. [PMID: 36269496 DOI: 10.1007/s10529-022-03312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE This study aimed to reveal the roles of the protein kinase A catalytic subunit 1 (pkac1) and carbon catabolite repressor cre1 genes in cellulase production by Trichoderma reesei wild-type strain QM6a. Our strategy might be useful to construct a high-yielding cellulase strain for its wide application. METHODS This paper describes cellulase activity, plate conidiation, and yellow pigment synthesis assays of QM6a with the disruption of pkac1 and cre1. RESULTS Deletion of pkac1 (Δpkac1) had no effect on cellulase production or transcript levels of major cellulase genes in the presence of cellulose. Disruption of cre1 (Δcre1) resulted in a remarkable increase in cellulase production and expression of the four major cellulase genes. Double disruption of pkac1 and cre1 significantly improved enzyme activity and protein production. The double disruption also resulted in a significant reduction in yellow pigment production and abrogated conidial production. CONCLUSION Double deletion of pkac1 and cre1 led to increased hydrolytic enzyme production in T. reesei using cellulose as a carbon source.
Collapse
|
6
|
Wang L, Liu J, Li X, Lyu X, Liu Z, Zhao H, Jiao X, Zhang W, Xie J, Liu W. A histone H3K9 methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in Trichoderma reesei. Microb Biotechnol 2022; 15:2533-2546. [PMID: 35921310 PMCID: PMC9518983 DOI: 10.1111/1751-7915.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022] Open
Abstract
Sorbicillinoids (also termed yellow pigment) are derived from either marine or terrestrial fungi, exhibit various biological activities and therefore show potential as commercial products for human or animal health. The cellulolytic filamentous fungus Trichoderma reesei is capable to biosynthesize sorbicillinoids, but the underlying regulatory mechanism is not yet completely clear. Herein, we identified a histone H3 lysine 9 (H3K9) methyltransferase, Dim5, in T. reesei. TrDIM5 deletion caused an impaired vegetative growth as well as conidiation, whereas the ∆Trdim5 strain displayed a remarkable increase in sorbicillinoid production. Post TrDIM5 deletion, the transcription of sorbicillinoid biosynthesis‐related (SOR) genes was significantly upregulated with a more open chromatin structure. Intriguingly, hardly any expression changes occurred amongst those genes located on both flanks of the SOR gene cluster. In addition, the assays provided evidence that H3K9 triple methylation (H3K9me3) modification acted as a repressive marker at the SOR gene cluster and thus directly mediated the repression of sorbicillinoid biosynthesis. Transcription factor Ypr1 activated the SOR gene cluster by antagonizing TrDim5‐mediated repression and therefore contributed to forming a relatively more open local chromatin environment, which further facilitated its binding and SOR gene expression. The results of this study will contribute to understanding the intricate regulatory network in sorbicillinoid biosynthesis and facilitate the endowment of T. reesei with preferred features for sorbicillinoid production by genetic engineering.
Collapse
Affiliation(s)
- Lei Wang
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jialong Liu
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaotong Li
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinxing Lyu
- Institute of Basic Medicine, Shandong First Medical University&Shandong Academy of Medical Sciences, Jinan, China
| | - Zhizhen Liu
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hong Zhao
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Xie
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Promoter regulation and genetic engineering strategies for enhanced cellulase expression in Trichoderma reesei. Microbiol Res 2022; 259:127011. [DOI: 10.1016/j.micres.2022.127011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/18/2023]
|
8
|
Chai S, Zhu Z, Tian E, Xiao M, Wang Y, Zou G, Zhou Z. Building a Versatile Protein Production Platform Using Engineered Trichoderma reesei. ACS Synth Biol 2022; 11:486-496. [PMID: 34928572 DOI: 10.1021/acssynbio.1c00570] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trichoderma reesei has an extremely high capacity for synthesizing and secreting proteins, thus exhibiting promise as an expression platform for heterologous proteins. However, T. reesei secretes large amounts of native proteins, which hinders its widespread application for heterologous protein production. Here, we designed and built a series of T. reesei chassis using an iterative gene deletion approach based on an efficient genome editing system. Donor DNAs with specially designed construct facilitated screening of positive deletion strains without ectopic insertion. Finally, marker-free T. reesei chassis with lower rates of native protein secretion and low levels of extracellular protease activity were constructed after 11 consecutive rounds of gene deletion. Higher production levels of three heterologous proteins─a bacterial xylanase XYL7, a fungal immunomodulatory protein LZ8, and the human serum albumin HSA─were achieved with these chassis using the cbh1 promoter. It is possible that diverse high-value proteins might be produced at a high yield using this engineered platform.
Collapse
Affiliation(s)
- Shunxing Chai
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Rd, Beijing 100049, China
| | - Zhihua Zhu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Rd, Beijing 100049, China
| | - Ernuo Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Meili Xiao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Rd, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Gen Zou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd, Shanghai 201403, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| |
Collapse
|
9
|
Wei H, Wu M, Fan A, Su H. Recombinant protein production in the filamentous fungus Trichoderma. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
MIST: a Multilocus Identification System for Trichoderma. Appl Environ Microbiol 2020; 86:AEM.01532-20. [PMID: 32680870 DOI: 10.1128/aem.01532-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Due to the rapid expansion in microbial taxonomy, precise identification of common industrially and agriculturally relevant fungi such as Trichoderma species is challenging. In this study, we introduce the online multilocus identification system (MIST) for automated detection of 349 Trichoderma species based on a set of three DNA barcodes. MIST is based on the reference databases of validated sequences of three commonly used phylogenetic markers collected from public databases. The databases consist of 414 complete sequences of the nuclear rRNA internal transcribed spacers (ITS) 1 and 2, 583 sequence fragments of the gene encoding translation elongation factor 1-alpha (tef1), and 534 sequence fragments of the gene encoding RNA polymerase subunit 2 (rpb2). Through MIST, information from different DNA barcodes can be combined and the identification of Trichoderma species can be achieved based on the integrated parametric sequence similarity search (blastn) performed in the manner of a decision tree classifier. In the verification process, MIST provided correct identification for 44 Trichoderma species based on DNA barcodes consisting of tef1 and rpb2 markers. Thus, MIST can be used to obtain an automated species identification as well as to retrieve sequences required for manual identification by means of phylogenetic analysis.IMPORTANCE The genus Trichoderma is important to humankind, with a wide range of applications in industry, agriculture, and bioremediation. Thus, quick and accurate identification of Trichoderma species is paramount, since it is usually the first step in Trichoderma-based research. However, it frequently becomes a limitation, especially for researchers who lack taxonomic knowledge of fungi. Moreover, as the number of Trichoderma-based studies has increased, a growing number of unidentified sequences have been stored in public databases, which has made the species identification more ambiguous. In this study, we provide an easy-to-use tool, MIST, for automated species identification, a list of Trichoderma species, and corresponding sequences of reference DNA barcodes. Therefore, this study will facilitate the research on the biodiversity and applications of the genus Trichoderma.
Collapse
|
11
|
Wu C, Chen Y, Qiu Y, Niu X, Zhu N, Chen J, Yao H, Wang W, Ma Y. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription. Biotechnol Lett 2020; 42:1203-1210. [PMID: 32300998 DOI: 10.1007/s10529-020-02887-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/09/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To simplify CRISPR/Cas9 genome editing in the industrial filamentous fungus Trichoderma reesei based on in vivo guide RNA (gRNA) transcription. RESULTS Two putative RNA polymerase III U6 snRNA genes were identified in the genome of T. reesei QM6a by BLASTN using Myceliophthora. thermophila U6 snRNA gene as the template. The regions approximately 500 bp upstream of two U6 genes were efficient promoters for the in vivo expression of gRNA. The CRISPR system consisting of Cas9 and in vivo synthesized gRNA under control of the T. reesei U6 snRNA promoters was sufficient to cause a frameshift mutation in the ura5 gene via non-homologous end-joining-mediated events. CONCLUSIONS We report a simple gene editing method using a CRISPR/Cas9-coupled in vivo gRNA transcription system in T. reesei.
Collapse
Affiliation(s)
- Chuan Wu
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yumeng Chen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yifei Qiu
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Xiao Niu
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Ningjian Zhu
- The First Affiliated Middle School of East China Normal University, Shanghai, 200086, China
| | - Jiehui Chen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Hong Yao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China.
| | - Yushu Ma
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China.
| |
Collapse
|
12
|
Kilaru S, Schuster M, Cannon S, Steinberg G. Optimised red- and green-fluorescent proteins for live cell imaging in the industrial enzyme-producing fungus Trichoderma reesei. Fungal Genet Biol 2020; 138:103366. [PMID: 32173466 DOI: 10.1016/j.fgb.2020.103366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/30/2022]
Abstract
The filamentous fungus Trichoderma reesei is a major source of cellulolytic enzymes in biofuel production. Despite its economic relevance, our understanding of its secretory pathways is fragmentary. A major challenge is to visualise the dynamic behaviour of secretory vesicles in living cells. To this end, we establish a location juxtaposing the succinate dehydrogenase locus as a "soft-landing" site for controlled expression of 4 green-fluorescent and 5 red-fluorescent protein-encoding genes (GFPs, RFPs). Quantitative and comparative analysis of their fluorescent signals in living cells demonstrates that codon-optimised monomeric superfolder GFP (TrmsGFP) and codon-optimised mCherry (TrmCherry) combine highest signal intensity with significantly improved signal-to-noise ratios. Finally, we show that integration of plasmid near the sdi1 locus does not affect secretion of cellulase activity in RUT-C30. The molecular and live cell imaging tools generated in this study will help our understanding the secretory pathway in the industrial fungus T. reesei.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Martin Schuster
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Stuart Cannon
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom.
| |
Collapse
|
13
|
Fitz E, Wanka F, Seiboth B. The Promoter Toolbox for Recombinant Gene Expression in Trichoderma reesei. Front Bioeng Biotechnol 2018; 6:135. [PMID: 30364340 PMCID: PMC6193071 DOI: 10.3389/fbioe.2018.00135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023] Open
Abstract
The ascomycete Trichoderma reesei is one of the main fungal producers of cellulases and xylanases based on its high production capacity. Its enzymes are applied in food, feed, and textile industry or in lignocellulose hydrolysis in biofuel and biorefinery industry. Over the last years, the demand to expand the molecular toolbox for T. reesei to facilitate genetic engineering and improve the production of heterologous proteins grew. An important instrument to modify the expression of key genes are promoters to initiate and control their transcription. To date, the most commonly used promoter for T. reesei is the strong inducible promoter of the main cellobiohydrolase cel7a. Beside this one, there is a number of alternative inducible promoters derived from other cellulase- and xylanase encoding genes and a few constitutive promoters. With the advances in genomics and transcriptomics the identification of new constitutive and tunable promoters with different expression strength was simplified. In this review, we will discuss new developments in the field of promoters and compare their advantages and disadvantages. Synthetic expression systems constitute a new option to control gene expression and build up complex gene circuits. Therefore, we will address common structural features of promoters and describe options for promoter engineering and synthetic design of promoters. The availability of well-characterized gene expression control tools is essential for the analysis of gene function, detection of bottlenecks in gene networks and yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Elisabeth Fitz
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Franziska Wanka
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|