1
|
Díaz-Morales DM, Bommarito C, Knol J, Grabner DS, Noè S, Rilov G, Wahl M, Guy-Haim T, Sures B. Parasitism enhances gastropod feeding on invasive and native algae while altering essential energy reserves for organismal homeostasis upon warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160727. [PMID: 36502976 DOI: 10.1016/j.scitotenv.2022.160727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Marine bioinvasions are of increasing attention due to their potential of causing ecological and economic loss. The seaweed Gracilaria vermiculophylla has recently invaded the Baltic Sea, where, under certain conditions, it was found to outcompete the native alga Fucus vesiculosus. Parasites of grazers and temperature are among the potential factors which might indirectly modulate the interactions between these co-occurring algae through their single and combined effects on grazing rates. We tested the temperature and parasitism effects on the feeding of the gastropod Littorina littorea on F. vesiculosus vs. G. vermiculophylla. Uninfected and trematode-infected gastropods were exposed to 10, 16, 22, and 28 °C for 4 days while fed with either algae. Faeces production was determined as a proxy for grazing rate, and HSP70 expression, glycogen and lipid concentrations were used to assess the gastropod's biochemical condition. Gracilaria vermiculophylla was grazed more than F. vesiculosus. Trematode infection significantly enhanced faeces production, decreased glycogen concentrations, and increased lipid concentrations in the gastropod. Warming significantly affected glycogen and lipid concentrations, with glycogen peaking at 16 °C and lipids at 22 °C. Although not significant, warming and trematode infection increased HSP70 levels. Increased faeces production in infected snails and higher faeces production by L. littorea fed with G. vermiculophylla compared to those which fed on F. vesiculosus, suggest parasitism as an important indirect modulator of the interaction between these algae. The changes in the gastropod's biochemical condition indicate that thermal stress induced the mobilization of energy reserves, suggesting a possible onset of compensatory metabolism. Finally, glycogen decrease in infected snails compared to uninfected ones might make them more susceptible to thermal stress.
Collapse
Affiliation(s)
- Dakeishla M Díaz-Morales
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.
| | - Claudia Bommarito
- Benthic and Experimental Ecology Department, GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany.
| | - Jeffrey Knol
- Groningen Institute for Evolutionary Life Sciences - GELIFES, University of Groningen, Groningen, the Netherlands.
| | - Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.
| | - Simona Noè
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel; Stazione Zoologica Anton Dohrn, Marine Animal Conservation and Public Engagement, Naples, Italy.
| | - Gil Rilov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel; The Leon H. Charney School of Marine Sciences, Marine Biology Department, University of Haifa, Mt. Carmel, Haifa, 31905, Israel.
| | - Martin Wahl
- Benthic and Experimental Ecology Department, GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany.
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Düsedau L, Ren Y, Hou M, Wahl M, Hu ZM, Wang G, Weinberger F. Elevated Temperature-Induced Epimicrobiome Shifts in an Invasive Seaweed Gracilaria vermiculophylla. Microorganisms 2023; 11:599. [PMID: 36985173 PMCID: PMC10058608 DOI: 10.3390/microorganisms11030599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/02/2023] Open
Abstract
Epibacterial communities on seaweeds are affected by several abiotic factors such as temperature and acidification. Due to global warming, surface seawater temperatures are expected to increase by 0.5-5 °C in the next century. However, how epibacterial communities associated with seaweeds will respond to global warming remains unknown. In this study, we investigated the response of epibacterial communities associated with the invasive Gracilaria vermiculophylla exposed to 3 °C above ambient temperature for 4 months using a benthocosm system in Kiel, Germany, and 16S rRNA gene amplicon sequencing. The results showed that elevated temperature affected the beta-diversity of the epibacterial communities. Some potential seaweed pathogens such as Pseudoalteromonas, Vibrio, Thalassotalea, and Acinetobacter were identified as indicator genera at the elevated temperature level. Thirteen core raw amplicon sequence variants in the elevated temperature group were the same as the populations distributed over a wide geographical range, indicating that these core ASVs may play an important role in the invasive G. vermicullophylla. Overall, this study not only contributes to a better understanding of how epibacterial communities associated with G. vermiculophylla may adapt to ocean warming, but also lays the foundation for further exploration of the interactions between G. vermiculophylla and its epimicrobiota.
Collapse
Affiliation(s)
- Luisa Düsedau
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Yifei Ren
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Minglei Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Martin Wahl
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Zi-Min Hu
- Ocean School, Yantai University, Yantai 264005, China
| | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| |
Collapse
|
3
|
Xiang JX, Saha M, Zhong KL, Zhang QS, Zhang D, Jueterbock A, Krueger-Hadfield SA, Wang GG, Weinberger F, Hu ZM. Genome-scale signatures of adaptive gene expression changes in an invasive seaweed Gracilaria vermiculophylla. Mol Ecol 2023; 32:613-627. [PMID: 36355347 DOI: 10.1111/mec.16776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Invasive species can successfully and rapidly colonize new niches and expand ranges via founder effects and enhanced tolerance towards environmental stresses. However, the underpinning molecular mechanisms (i.e., gene expression changes) facilitating rapid adaptation to harsh environments are still poorly understood. The red seaweed Gracilaria vermiculophylla, which is native to the northwest Pacific but invaded North American and European coastal habitats over the last 100 years, provides an excellent model to examine whether enhanced tolerance at the level of gene expression contributed to its invasion success. We collected G. vermiculophylla from its native range in Japan and from two non-native regions along the Delmarva Peninsula (Eastern United States) and in Germany. Thalli were reared in a common garden for 4 months at which time we performed comparative transcriptome (mRNA) and microRNA (miRNA) sequencing. MRNA-expression profiling identified 59 genes that were differently expressed between native and non-native thalli. Of these genes, most were involved in metabolic pathways, including photosynthesis, abiotic stress, and biosynthesis of products and hormones in all four non-native sites. MiRNA-based target-gene correlation analysis in native/non-native pairs revealed that some target genes are positively or negatively regulated via epigenetic mechanisms. Importantly, these genes are mostly associated with metabolism and defence capability (e.g., metal transporter Nramp5, senescence-associated protein, cell wall-associated hydrolase, ycf68 protein and cytochrome P450-like TBP). Thus, our gene expression results indicate that resource reallocation to metabolic processes is most likely a predominant mechanism contributing to the range-wide persistence and adaptation of G. vermiculophylla in the invaded range. This study, therefore, provides molecular insight into the speed and nature of invasion-mediated rapid adaption.
Collapse
Affiliation(s)
| | - Mahasweta Saha
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, UK
| | - Kai-Le Zhong
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Di Zhang
- Ocean School, YanTai University, Yantai, China
| | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Gao-Ge Wang
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
| | - Zi-Min Hu
- Ocean School, YanTai University, Yantai, China
| |
Collapse
|
4
|
Berke SK. A Review of Diopatra Ecology: Current Knowledge, Open Questions, and Future Threats for an Ecosystem Engineering Polychaete. BIOLOGY 2022; 11:biology11101485. [PMID: 36290391 PMCID: PMC9598674 DOI: 10.3390/biology11101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
A well-known example of marine ecosystem engineering is the annelid genus Diopatra, which builds large tubes in coastal sediments worldwide. Early studies of Diopatra were among the first to recognize the importance of facilitation in ecology, and Diopatra has become a key marine soft-sediment application of the ecosystem engineering concept. Here, I review our current knowledge of Diopatra ecology, including its natural history, ecosystem engineering effects, and trophic relationships. I particularly explore how human activities are influencing Diopatra in terms of climate change, bait fishing, and species invasions. Most of what we know about Diopatra ecology comes from focal studies of a few species in a few well-known regions. Further evaluating how our current understanding applies to other species and/or other regions will help to refine and deepen our understanding of structure and function in marine systems.
Collapse
Affiliation(s)
- Sarah K Berke
- Siena College, Department of Biological Sciences, Loudonville, NY 12211, USA
| |
Collapse
|
5
|
Wang G, Ren Y, Wang S, Hou M, Weinberger F. Shifting chemical defence or novel weapons? A review of defence traits in Agarophyton vermiculophyllum and other invasive seaweeds. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:138-149. [PMID: 37073358 PMCID: PMC10077278 DOI: 10.1007/s42995-021-00109-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/27/2021] [Indexed: 05/03/2023]
Abstract
Seaweed bioinvasions increasingly affect coastal environments around the world, which increases the need for predictive models and mitigation strategies. The biotic interactions between seaweed invaders and invaded communities are often considered a key determinant of invasion success and failure and we here revise the current evidence that the capacity of seaweed invaders to deter enemies in newly reached environments correlates with their invasion success. Particularly efficient chemical defences have been described for several of the more problematic seaweed invaders during the last decades. However, confirmed cases in which seaweed invaders confronted un-adapted enemies in newly gained environments with deterrents that were absent from these environments prior to the invasion (so-called "novel weapons") are scarce, although an increasing number of invasive and non-invasive seaweeds are screened for defence compounds. More evidence exists that seaweeds may adapt defence intensities to changing pressure by biological enemies in newly invaded habitats. However, most of this evidence of shifting defence was gathered with only one particular model seaweed, the Asia-endemic red alga Agarophyton vermiculophyllum, which is particularly accessible for direct comparisons of native and non-native populations in common garden experiments. A. vermiculophyllum interacts with consumers, epibionts and bacterial pathogens and in most of these interactions, non-native populations have rather gained than lost defensive capacity relative to native conspecifics. The increases in the few examined cases were due to an increased production of broad-spectrum deterrents and the relative scarcity of specialized deterrents perhaps reflects the circumstance that seaweed consumers and epibionts are overwhelmingly generalists.
Collapse
Affiliation(s)
- Gaoge Wang
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Yifei Ren
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Shasha Wang
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Minglei Hou
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
6
|
García-Gómez JC, Florido M, Olaya-Ponzone L, Sempere-Valverde J, Megina C. The Invasive Macroalga Rugulopteryx okamurae: Substrata Plasticity and Spatial Colonization Pressure on Resident Macroalgae. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.631754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The present study constitutes the first evaluation of the space colonization strategies performed by Rugulopteryx okamurae when co-occurring with the resident macroalgal community in the introduced areas. Since the first apparition of the nonindigenous macroalga in the Strait of Gibraltar, its high propagation capacity together with its colonization ability has enhanced the establishment success of the species in detriment of the resident biota. In this study, we carried out observational surveys during 2017–2020 in order to assess the coverage levels of R. okamurae on different lighting conditions, surface orientations, and substrata types (artificial and natural). Results revealed that, beyond the high percent coverages already reported at illuminated and semi-illuminated natural rocky habitats, R. okamurae is able to settle on a wide variety of artificial substrata. The settlement performance of the species was also investigated and different mechanisms underlying the space colonization were proposed. Thus, R. okamurae was observed interacting with 43 resident macroalgal species at generally illuminated rocky habitats of the northern Strait coasts. Six colonization mechanisms were proposed for spatial growth scenarios. Overall, results pointed out that, in most of the cases where the invasive species co-occur with the resident community, R. okamurae would be favored as regards spatial growth success. Competitive interactions and environmental factors which influence results obtained must be addressed in order to fully predict impacts on resident communities. Moreover, together with previous scientific works, overall data provided in this study highlight the need to urgent implement management measures focused on habitats susceptible to be invaded, as well as studies on the ecology and dispersal vectors of R. okamurae in the Strait of Gibraltar and adjacent areas.
Collapse
|
7
|
Huanel OR, Nelson WA, Robitzch V, Mauger S, Faugeron S, Preuss M, Zuccarello GC, Guillemin ML. Comparative phylogeography of two Agarophyton species in the New Zealand archipelago. JOURNAL OF PHYCOLOGY 2020; 56:1575-1590. [PMID: 32609871 DOI: 10.1111/jpy.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Molecular studies have reported the coexistence of two species of Agarophyton in New Zealand: the newly described A.transtasmanicum with an apparently restricted distribution to some sites in the North Island, and the more widespread A.chilense. Here, we compared the distribution, genetic diversity, and structure of both Agarophyton species throughout the archipelago using sequences of the nuclear Internal Transcribed Spacer 2 (ITS2) marker. Agarophyton chilense's distribution was continuous and extensive along the North and South Islands, Stewart Island, and Chatham Island, and the genetic clusters were mostly concordant with boundaries between biogeographic regions. In contrast, specimens of A.transtasmanicum were collected in four sites broadly distributed in both the North and South Islands, with no clear spatial structure of the genetic diversity. Populations, where the species co-occurred, tended to display similar levels in genetic diversity for the two species. Demographic inferences supported a postglacial demographic expansion for two A.chilense genetic clusters, one present in the South Island and the eastern coast of the North Island, and the other present in northern South Island. A third genetic cluster located on the western coast of the North Island had a signature of long-term demographic stability. For A.transtasmanicum, the skyline plot also suggested a postglacial demographic expansion. Last, we developed a new molecular tool to quickly and easily distinguish between the two Agarophyton species, which could be used to ease future fine-scale population studies, especially in areas where the two species coexist.
Collapse
Affiliation(s)
- Oscar R Huanel
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
- CNRS, Sorbonne Université, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Place G. Tessier, 296888, Roscoff, France
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research, Wellington, 6021, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Vanessa Robitzch
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Stéphane Mauger
- CNRS, Sorbonne Université, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Place G. Tessier, 296888, Roscoff, France
| | - Sylvain Faugeron
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
- CNRS, Sorbonne Université, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Place G. Tessier, 296888, Roscoff, France
| | - Maren Preuss
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Marie-Laure Guillemin
- CNRS, Sorbonne Université, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Place G. Tessier, 296888, Roscoff, France
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| |
Collapse
|
8
|
Pacheco D, Araújo GS, Cotas J, Gaspar R, Neto JM, Pereira L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar Drugs 2020; 18:E560. [PMID: 33207613 PMCID: PMC7697577 DOI: 10.3390/md18110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The introduction of exotic organisms in marine ecosystems can lead to economic and ecological losses. Globally, seaweeds represent a significant part of these non-indigenous species (NIS), with 407 introduced algal species. Furthermore, the presence of NIS seaweeds has been reported as a major concern worldwide since the patterns of their potential invasion mechanisms and vectors are not yet fully understood. Currently, in the Iberian Peninsula, around 50 NIS seaweeds have been recorded. Some of these are also considered invasive due to their overgrowth characteristic and competition with other species. However, invasive seaweeds are suitable for industrial applications due to their high feedstock. Hence, seaweeds' historical use in daily food diet, allied to research findings, showed that macroalgae are a source of nutrients and bioactive compounds with nutraceutical properties. The main goal of this review is to evaluate the records of NIS seaweeds in the Iberian Peninsula and critically analyze the potential of invasive seaweeds application in the food industry.
Collapse
Affiliation(s)
- Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Glacio Souza Araújo
- Federal Institute of Education, Science and Technology of Ceará–IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceará, Brazil;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Rui Gaspar
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - João M. Neto
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| |
Collapse
|
9
|
Rizzo L, Pusceddu A, Bianchelli S, Fraschetti S. Potentially combined effect of the invasive seaweed Caulerpa cylindracea (Sonder) and sediment deposition rates on organic matter and meiofaunal assemblages. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104966. [PMID: 32662427 DOI: 10.1016/j.marenvres.2020.104966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
The seaweed Caulerpa cylindracea (Sonder) is one of the most successful marine bioinvaders worldwide. Caulerpa cylindracea can influence the quantity and biochemical composition of sedimentary organic matter (OM). However, it is still unknown if the effects of C. cylindracea on both OM and small metazoans (i.e. meiofauna) can change according to different sediment deposition rates. To provide insights on this, we investigated the biochemical composition of sediments along with the abundance and composition of meiofaunal assemblages in sediments colonized and not-colonized by the seaweed C. cylindracea under different regimes of sediment deposition. Our results show that the presence of the invasive alga C. cylindracea could alter quantity, biochemical composition, and nutritional quality of organic detritus and influence the overall functioning of the benthic system, but also that the observed effects could be context-dependent. In particular, we show that the presence of C. cylindracea could have a positive effect on meiofaunal abundance wherever the sediment deposition rates are low, whereas the contextual presence of high to medium sedimentation rates can provoke an accumulation of sedimentary organic matter, less favourable bioavailability of food for the benthos, and consequent negative effects on meiofauna.
Collapse
Affiliation(s)
- Lucia Rizzo
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy; CoNISMa, Piazzale Flaminio, 9 Roma, Italy.
| | - Antonio Pusceddu
- CoNISMa, Piazzale Flaminio, 9 Roma, Italy; Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli 1, Cagliari, Italy
| | - Silvia Bianchelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Simonetta Fraschetti
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy; CoNISMa, Piazzale Flaminio, 9 Roma, Italy; Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
10
|
Bonthond G, Bayer T, Krueger-Hadfield SA, Barboza FR, Nakaoka M, Valero M, Wang G, Künzel S, Weinberger F. How do microbiota associated with an invasive seaweed vary across scales? Mol Ecol 2020; 29:2094-2108. [PMID: 32408381 DOI: 10.1111/mec.15470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 01/13/2023]
Abstract
Communities are shaped by scale dependent processes. To study the diversity and variation of microbial communities across scales, the invasive and widespread seaweed Agarophyton vermiculophyllum presents a unique opportunity. We characterized pro- and eukaryotic communities associated with this holobiont across its known distribution range, which stretches over the northern hemisphere. Our data reveal that community composition and diversity in the holobiont vary at local but also larger geographic scales. While processes acting at the local scale (i.e., within population) are the main structuring drivers of associated microbial communities, changes in community composition also depend on processes acting at larger geographic scales. Interestingly, the largest analysed scale (i.e., native and non-native ranges) explained variation in the prevalence of predicted functional groups, which could suggest a functional shift in microbiota occurred over the course of the invasion process. While high variability in microbiota at the local scale supports A. vermiculophyllum to be a generalist host, we also identified a number of core taxa. These geographically independent holobiont members imply that cointroduction of specific microbiota may have additionally promoted the invasion process.
Collapse
Affiliation(s)
- Guido Bonthond
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Till Bayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi, Japan
| | - Myriam Valero
- UMI EBEA 3614, CNRS, UCCh, UACH, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
11
|
Berke SK, Keller EL, Needham CN, Salerno CR. Grazer Interactions with Invasive Agarophyton vermiculophyllum (Rhodophyta): Comparisons to Related versus Unrelated Native Algae. THE BIOLOGICAL BULLETIN 2020; 238:145-153. [PMID: 32597719 DOI: 10.1086/709108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ecosystem responses to invasion are strongly influenced by interactions between invaders and native species. If native species provide biotic resistance by consuming or competing with an invader, the invasion may be slowed, and/or invasive populations may be limited. If local herbivores recognize an invasive plant as being similar to native species, they may graze it more readily. Biotic resistance is thus generally predicted to increase if the invader is phylogenetically related to natives. However, if the native species were unpalatable, then grazers may be predisposed to avoid the invader, thus reducing biotic resistance from consumption. In the marine realm, invertebrate grazers often avoid feeding on invasive algae. However, tests comparing macroalgal invaders to phylogenetically related natives have been rare. Here we present data for invertebrate grazing and habitat use of (i) invasive Agarophyton vermiculophyllum (Rhodophyta: Gracilariales: Gracilarieae), (ii) the native contribal species Gracilaria tikvahiae, and (iii) an unrelated native, Ulva sp., the most common native alga in the system. We find that grazers prefer Ulva over both Gracilarieae, both for feeding and for habitat use. These data suggest that biotic resistance from consumption is low and not enhanced by the presence of a closely related native alga.
Collapse
|
12
|
Solgaard Thomsen M. Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species. Nat Ecol Evol 2020; 4:312-314. [DOI: 10.1038/s41559-020-1117-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022]
|
13
|
Torres P, Santos JP, Chow F, dos Santos DY. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
|
15
|
Zhao J, Jiang P, Qiu R, Ma Y, Wu C, Fu H, Chen H, Li F. The Yellow Sea green tide: A risk of macroalgae invasion. HARMFUL ALGAE 2018; 77:11-17. [PMID: 30005798 DOI: 10.1016/j.hal.2018.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Large scale green tides have bloomed successively in the Yellow Sea since 2007. The floating ecotype of Ulva prolifera, which is responsible for the environmental disaster, drifted a long distance during the blooming time and was exotic to the coastal area. The Yellow Sea green tide can be a potential source to incur bio-invasion. In this study, the distribution pattern and propagule pressure of the floating ecotype was investigated along the Qingdao coastline, which was seriously impacted by the green tide. Two out of 661 attached Ulva specimens collected in different seasons were identified as the floating ecotype by molecular markers, indicating that a few individuals of the floating ecotype had settled down, and their attached population could have spontaneously established. In seawater and sediments, the proportion of the floating ecotype in Ulva propagules reached up to 32% and 69% respectively when the floating algae was accumulating on seashore, which was a great propagule pressure to the local ecosystem. Results of the field test indicated that the available resources and the competition between the floating ecotype and the local Ulva species might be the main restrictions for settlement. Though the current scale of the established population is still small, the risk of biological invasion by the floating ecotype exists and it deserves more attention.
Collapse
Affiliation(s)
- Jin Zhao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Peng Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Ri Qiu
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, 266101, China
| | - Yingying Ma
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhui Wu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huihui Fu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huaxin Chen
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuchao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
16
|
Schwartz N, Rohde S, Dobretsov S, Hiromori S, Schupp PJ. The role of chemical antifouling defence in the invasion success of Sargassum muticum: A comparison of native and invasive brown algae. PLoS One 2017; 12:e0189761. [PMID: 29267326 PMCID: PMC5739409 DOI: 10.1371/journal.pone.0189761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/03/2017] [Indexed: 12/12/2022] Open
Abstract
Competition and fouling defence are important traits that may facilitate invasions by non-indigenous species. The 'novel weapons hypothesis' (NWH) predicts that the invasive success of exotic species is closely linked to the possession of chemical defence compounds that the recipient community in the new range is not adapted to. In order to assess whether chemical defence traits contribute to invasion success, anti-bacterial, anti-quorum sensing, anti-diatom, anti-larval and anti-algal properties were investigated for the following algae: a) the invasive brown alga Sargassum muticum from both, its native (Japan) and invasive (Germany) range, b) the two non- or weak invasive species Sargassum fusiforme and Sargassum horneri from Japan, and c) Fucus vesiculosus, a native brown alga from Germany. Crude and surface extracts and lipid fractions of active extracts were tested against common fouling organisms and zygotes of a dominant competing brown alga. Extracts of the native brown alga F. vesiculosus inhibited more bacterial strains (75%) than any of the Sargassum spp. (17 to 29%). However, Sargassum spp. from Japan exhibited the strongest settlement inhibition against the diatom Cylindrotheca closterium, larvae of the bryozoan Bugula neritina and zygotes of the brown alga F. vesiculosus. Overall, extracts of S. muticum from the invasive range were less active compared to those of the native range suggesting an adaptation to lower fouling pressure and competition in the new range resulting in a shift of resource allocation from costly chemical defence to reproduction and growth. Non-invasive Sargassum spp. from Japan was equally defended against fouling and competitors like S. muticum from Japan indicating a necessity to include these species in European monitoring programs. The variable antifouling activity of surface and crude extracts highlights the importance to use both for an initial screening for antifouling activity.
Collapse
Affiliation(s)
- Nicole Schwartz
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries and Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - Shimabukuro Hiromori
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hatsukaichi City, Hiroshima Prefecture, Japan
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| |
Collapse
|
17
|
Potential effects of an invasive seaweed (Caulerpa cylindracea, Sonder) on sedimentary organic matter and microbial metabolic activities. Sci Rep 2017; 7:12113. [PMID: 28935956 PMCID: PMC5608702 DOI: 10.1038/s41598-017-12556-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022] Open
Abstract
Caulerpa cylindracea (Sonder), among the most successful marine bio-invaders on a global scale, poses severe threats to biodiversity. However, the effects of this seaweed on the quantity and the biochemical composition of sedimentary organic matter are still poorly known. Since the whole set of sedimentary features affects the availability of substrates for benthic microbial communities, we: i) investigated the biochemical composition of sediments colonized and not-colonized by C. cylindracea, and ii) compared the metabolic patterns of the microbial communities associated with C. cylindracea and in the sediments colonized and not-colonized by the seaweed. Our results show that C. cylindracea can influence the quantity and biochemical composition of sedimentary organic matter (OM), and that microbial populations associated with colonized sediments do have specific metabolic patterns and degradation capacities. Caulerpa cylindracea can also influence the metabolic patterns of the microbial community specifically adapted to degrade compounds released by the seaweed itself, with possible consequences on C cycling.
Collapse
|