1
|
Géron C, Lembrechts JJ, Fameree M, Taddei V, Nijs I, Monty A. Phenotypic plasticity as the main driver of alien plant trait variation in urban versus rural microclimate for the model species Veronica persica. Oecologia 2024; 205:643-654. [PMID: 39073568 DOI: 10.1007/s00442-024-05597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Urban environments are warmer than the rural surroundings, impacting plant phenotypic traits. When plants are present over areas with contrasted conditions such as along urbanization gradients, their phenotypes may differ, and these differences depend on different processes, including phenotypic plasticity, maternal environmental effects and genetic differentiation (local adaptation and/or genetic drift). Successful establishment of alien species along environmental gradients has been linked to high phenotypic plasticity and rapid evolutionary responses, which are easier to track for species with a known residence time. The mechanisms explaining trait variation in plants in urban versus rural microclimatic conditions have received little attention. Using the alien Veronica persica as model species, we measured leaf traits in urban and rural populations and performed a reciprocal common-garden experiment to study how germination, leaf, growth, and flowering traits varied in response to experimental microclimate (rural or urban) and population origin environment (rural or urban). Veronica persica displayed phenotypic plasticity in all measured traits, with reduced germination, development, and flowering under urban microclimate which suggests more stressful growing conditions in the urban than in the rural microclimate. No significant effect of the rural or urban origin environment was detected, providing no evidence for local adaptation to urban or rural environments. Additionally, we found limited signs of maternal environmental effects. We noted the importance of the mother plant and the population identities suggesting genetically based differences. Our results indicate that urban environments are more hostile than rural ones, and that V. persica does not show any adaptation to urban environments despite genetic differences between populations.
Collapse
Affiliation(s)
- Charly Géron
- UMR 6553, University of Rennes, CNRS, ECOBIO (Écosystèmes, Biodiversité, Évolution), 263, Avenue du Général Leclerc, 35042, Rennes, France.
- Biodiversity and Landscape, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium.
- PLEACO (Plants and Ecosystems), University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium.
| | - Jonas J Lembrechts
- PLEACO (Plants and Ecosystems), University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Mathilde Fameree
- Biodiversity and Landscape, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Vanille Taddei
- Biodiversity and Landscape, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
- Faculté des Sciences et Technologies, Université de Lorraine et AgroParisTech de Nancy, Boulevard des Aiguillettes, 54506, Vandoeuvre Les Nancy, France
| | - Ivan Nijs
- PLEACO (Plants and Ecosystems), University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Arnaud Monty
- Biodiversity and Landscape, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
| |
Collapse
|
2
|
Kaur A, Kaur S, Singh HP, Batish DR. Is intraspecific trait differentiation in Parthenium hysterophorus a consequence of hereditary factors and/or phenotypic plasticity? PLANT DIVERSITY 2023; 45:611-620. [PMID: 37936811 PMCID: PMC10625975 DOI: 10.1016/j.pld.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/03/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2023]
Abstract
Of the various strategies adopted by an invasive plant species for expanding its niche breadth, phenotypic differentiation (either due to plasticity and/or adaptive evolution) is proven to be the most successful. Lately, we studied the persistence of substantial morpho-functional variations within the individuals of alien invasive plant, Parthenium hysterophorus in Chandigarh, India, through field surveys. Based on observed differences, the individuals were categorized into two morphotypes, PA and PB. PA had higher leaf area, leaf biomass, and chlorophyll content as compared with PB. However, PB had a higher stem circumference, stem specific density, twig dry matter content, profuse branching, bigger canopy, and better reproductive output than PA. To substantiate the persistence of intraspecific variations in P. hysterophorus and to deduce the possible genesis of these variations, we propagated both the morphotypes under experimental conditions in winter and summer. Apart from the key morpho-functional differences observed during the field studies, protein and carbohydrate metabolism were studied in leaves and roots of the propagated plants. Differences in plant metabolism were observed only during the early growth period, whereas the morpho-functional traits varied in the mature flowering plants. The effect of growth season was highly significant on all the studied morpho-functional and biochemical parameters (p ≤ 0.05). Parent morphotypes (P) and interactions between morphotypes and seasons significantly affected several growth parameters (p ≤ 0.05). The analyses revealed that the contrasting growth conditions at the time of transplantation and early growth may regulate the phenotype of P. hysterophorus. The pattern of intraspecific variations observed during the study is justified to consider morphotype PA as winter biotype and morphotype PB as summer biotype of P. hysterophorus. The study points towards the role of plasticity or a combination of genetic and environmental (G × E) factors in producing the phenotypic variability observed in the population of P. hysterophorus.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Daizy R. Batish
- Department of Botany, Panjab University, Chandigarh 160014, India
| |
Collapse
|
3
|
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MC, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora‐Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, Richardson DM, Renault D. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. OIKOS 2023. [DOI: 10.1111/oik.09645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ella Z. Daly
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Olivier Chabrerie
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Benoit Facon
- CBGP, INRAE, CIRAD, IRD, Montpellier Institut Agro, Univ. Montpellier Montpellier France
| | - Manon C.M. Hess
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
- Inst. de Recherche pour la Conservation des zones Humides Méditerranéennes Tour du Valat, Le Sambuc Arles France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Frédéric Grandjean
- Univ. de Poitiers, UMR CNRS 7267 EBI‐Ecologie et Biologie des Interactions, équipe EES Poitiers Cedex 09 France
| | | | | | - Estelle Forey
- Normandie Univ., UNIROUEN, INRAE, USC ECODIV Rouen France
| | - Laurent Folcher
- ANSES – Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de la Santé des Végétaux – Unité de Nématologie Le Rheu France
| | - Elise Buisson
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
| | - Thomas Boivin
- INRAE, UR629 Écologie des Forêts Méditerranéennes, Centre de Recherche Provence‐Alpes‐Côte d'Azur Avignon France
| | | | - Romain Ulmer
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Patricia Gibert
- UMR 5558 CNRS – Univ. Claude Bernard Lyon 1, Biométrie et Biologie Evolutive, Bât. Gregor Mendel Villeurbanne Cedex France
| | - Gabrielle Thiébaut
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Jelena H. Pantel
- Ecological Modelling, Faculty of Biology, Univ. of Duisburg‐Essen Essen Germany
| | - Tina Heger
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Technical Univ. of Munich, Restoration Ecology Freising Germany
| | - David M. Richardson
- Centre for Invasion Biology, Dept. Botany & Zoology, Stellenbosch University Stellenbosch South Africa
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - David Renault
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
- Inst. Universitaire de France Paris Cedex 05 France
| |
Collapse
|
4
|
Zettlemoyer MA, Ellis SL, Hale CW, Horne EC, Thoen RD, DeMarche ML. Limited evidence for phenological differences between non-native and native species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although many species shift their phenology with climate change, species vary significantly in the direction and magnitude of these responses (i.e., phenological sensitivity). Studies increasingly detect early phenology or high phenological sensitivity to climate in non-native species, which may favor non-native species over natives in warming climates. Yet relatively few studies explicitly compare phenological responses to climate between native vs. non-native species or between non-native populations in the native vs. introduced range, limiting our ability to quantify the role of phenology in invasion success. Here, we review the empirical evidence for and against differences in phenology and phenological sensitivity to climate in both native vs. non-native species and native and introduced populations of non-native species. Contrary to common assumptions, native and non-native plant species did not consistently differ in mean phenology or phenological sensitivity. However, non-native plant species were often either just as or more sensitive, but rarely less sensitive, to climate as natives. Introduced populations of non-native plant species often show earlier reproduction than native populations of the same species, but there was mixed evidence for differences in phenological sensitivity between introduced and native plant populations. We found very few studies comparing native vs. invasive animal phenology. Future work should characterize phenological sensitivity to climate in native vs. non-native plant and animal species, in native vs. introduced populations of non-native species, and across different stages of invasion, and should carefully consider how differences in phenology might promote invasion success or disadvantage native species under climate change.
Collapse
|
5
|
McEvoy SL, Sezen UU, Trouern‐Trend A, McMahon SM, Schaberg PG, Yang J, Wegrzyn JL, Swenson NG. Strategies of tolerance reflected in two North American maple genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1591-1613. [PMID: 34967059 PMCID: PMC9304320 DOI: 10.1111/tpj.15657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
The first chromosome‐scale assemblies for North American members of the Acer genus, sugar maple (Acer saccharum) and boxelder (Acer negundo), as well as transcriptomic evaluation of the abiotic stress response in A. saccharum are reported. This integrated study describes in‐depth aspects contributing to each species' approach to tolerance and applies current knowledge in many areas of plant genome biology with Acer physiology to help convey the genomic complexities underlying tolerance in broadleaf tree species.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - U. Uzay Sezen
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Alexander Trouern‐Trend
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sean M. McMahon
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Paul G. Schaberg
- Forest ServiceU.S. Department of Agriculture, Northern Research StationBurlingtonVermont05405USA
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303YunnanChina
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Nathan G. Swenson
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana46556USA
| |
Collapse
|
6
|
Eyster HN, Wolkovich EM. Comparisons in the native and introduced ranges reveal little evidence of climatic adaptation in germination traits. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Bouteiller XP, Moret F, Ségura R, Klisz M, Martinik A, Monty A, Pino J, van Loo M, Wojda T, Porté AJ, Mariette S. The seeds of invasion: enhanced germination in invasive European populations of black locust (Robinia pseudoacacia L.) compared to native American populations. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1006-1017. [PMID: 34546636 DOI: 10.1111/plb.13332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Local adaptation and the evolution of phenotypic plasticity may facilitate biological invasions. Both processes can enhance germination and seedling recruitment, which are crucial life-history traits for plants. The rate, timing and speed of germination have recently been documented as playing a major role during the invasion process. Black locust (Robinia pseudoacacia L.) is a North American tree, which has spread widely throughout Europe. A recent study demonstrated that a few populations are the source of European black locust. Thus, invasive populations can be compared to native ones in order to identify genetic-based phenotypic differentiation and the role of phenotypic plasticity can thereby be assessed. A quantitative genetics experiment was performed to evaluate 13 juvenile traits of both native and invasive black locust populations (3000 seeds, 20 populations) subjected to three different thermal treatments (18 °C, 22 °C and 31 °C). The results revealed European populations to have a higher germination rate than the native American populations (88% versus 60%), and even when genetic distance between populations was considered. Moreover, this trait showed lower plasticity to temperature in the invasive range than in the native one. Conversely, other studied traits showed high plasticity to temperature, but they responded in a similar way to temperature increase: the warmer the temperature, the higher the growth rate or germination traits values. The demonstrated genetic differentiation between native and invasive populations testifies to a shift between ranges for the maximum germination percentage. This pattern could be due to human-mediated introduction of black locust.
Collapse
Affiliation(s)
| | - F Moret
- BIOGECO, INRAE, Univ. Bordeaux, Cestas, France
| | - R Ségura
- BIOGECO, INRAE, Univ. Bordeaux, Cestas, France
| | - M Klisz
- Department of Silviculture and Genetics, Forest Research Institute, Raszyn, Poland
| | - A Martinik
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - A Monty
- Gembloux Agro-Bio Tech, Biodiversity and Landscape Unit, University of Liège, Gembloux, Belgium
| | - J Pino
- Centre for Ecological Research and Forestry Applications (CREAF), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - M van Loo
- Department of Forest Growth, Silviculture and Genetics, Research Centre for Forests (BFW), Vienna, Austria
| | - T Wojda
- Department of Silviculture and Genetics, Forest Research Institute, Raszyn, Poland
| | - A J Porté
- BIOGECO, INRAE, Univ. Bordeaux, Cestas, France
| | - S Mariette
- BIOGECO, INRAE, Univ. Bordeaux, Cestas, France
| |
Collapse
|
8
|
Stuble KL, Bennion LD, Kuebbing SE. Plant phenological responses to experimental warming-A synthesis. GLOBAL CHANGE BIOLOGY 2021; 27:4110-4124. [PMID: 33993588 DOI: 10.1111/gcb.15685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Although there is abundant evidence that plant phenology is shifting with climatic warming, the magnitude and direction of these shifts can depend on the environmental context, plant species, and even the specific phenophase of study. These disparities have resulted in difficulties predicting future phenological shifts, detecting phenological mismatches and identifying other ecological consequences. Experimental warming studies are uniquely poised to help us understand how climate warming will impact plant phenology, and meta-analyses allow us to expose broader trends from individual studies. Here, we review 70 studies comprised 1226 observations of plant phenology under experimental warming. We find that plants are advancing their early-season phenophases (bud break, leaf-out, and flowering) in response to warming while marginally delaying their late-season phenophases (leaf coloration, leaf fall, and senescence). We find consistency in the magnitude of phenological shifts across latitude, elevation, and habitat types, whereas the effect of warming on nonnative annual plants is two times larger than the effect of warming on native perennial plants. Encouragingly for researchers, plant phenological responses were generally consistent across a variety of experimental warming methods. However, we found numerous gaps in the experimental warming literature, limiting our ability to predict the effects of warming on phenological shifts. In particular, studies outside of temperate ecosystems in the Northern Hemisphere, or those that focused on late-season phenophases, annual plants, nonnative plants, or woody plants and grasses, were underrepresented in our data set. Future experimental warming studies could further refine our understanding of phenological responses to warming by setting up experiments outside of traditionally studied biogeographic zones and measuring multiple plant phenophases (especially late-season phenophases) across species of varying origin, growth form, and life cycle.
Collapse
Affiliation(s)
| | - Leland D Bennion
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Sara E Kuebbing
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
|
10
|
Helsen K, Matsushima H, Somers B, Honnay O. A trait‐based approach across the native and invaded range to understand plant invasiveness and community impact. OIKOS 2021. [DOI: 10.1111/oik.08034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kenny Helsen
- Plant Conservation and Population Biology, Biology Dept, KU Leuven Leuven Belgium
- Inst. of Ecology and Evolutionary Biology, National Taiwan Univ., Da'an District Taipei Taiwan
| | - Hajime Matsushima
- Research Faculty of Agriculture, Hokkaido Univ. Kita‐ku Sapporo Japan
| | - Ben Somers
- Division of Forest, Nature and Landscape, KU Leuven Leuven Belgium
| | - Olivier Honnay
- Inst. of Ecology and Evolutionary Biology, National Taiwan Univ., Da'an District Taipei Taiwan
| |
Collapse
|
11
|
Hock M, Hofmann R, Essl F, Pyšek P, Bruelheide H, Erfmeier A. Native distribution characteristics rather than functional traits explain preadaptation of invasive species to high‐UV‐B environments. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Maria Hock
- Institute for Ecosystem Research/Geobotany Kiel University Kiel Germany
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
| | - Rainer Hofmann
- Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand
| | - Franz Essl
- Department of Botany and Biodiversity Research University Vienna Vienna Austria
| | - Petr Pyšek
- Institute of Botany Department of Invasion Ecology Czech Academy of Sciences Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Prague Czech Republic
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Alexandra Erfmeier
- Institute for Ecosystem Research/Geobotany Kiel University Kiel Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| |
Collapse
|
12
|
Hughes PW. The means of reproduction: Book Review of Fusco, G. and A.Minelli. 2019. The Biology of Reproduction. Cambridge University Press, Cambridge, UK. xviii + 472 pp. ISBN: 978‐1‐10‐8758970. $47 USD. Evolution 2020. [DOI: 10.1111/evo.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. William Hughes
- Department of Ecology, Environment, and Plant Sciences Stockholm University Stockholm Sweden
- SciLifeLab Stockholm Sweden
| |
Collapse
|
13
|
Martinez KA, Fridley JD, Oguchi R, Aiba M, Hikosaka K. Functional shifts in leaves of woody invaders of deciduous forests between their home and away ranges. TREE PHYSIOLOGY 2019; 39:1551-1560. [PMID: 31209471 DOI: 10.1093/treephys/tpz065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/25/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Temperate forests are widely invaded by shade-tolerant shrubs and trees, including those of Eastern North America (ENA). However, it remains unknown whether these invaders are 'preadapted' for success in their new ranges due to unique aspects of their evolutionary history or whether selection due to enemy release or other postintroduction processes have driven rapid evolution in the invaded range. We sampled leaf traits of populations of woody understory invaders across light gradients in their native range in Japan and in their invaded ENA range to examine potential phenotypic shifts related to carbon gain and nitrogen use between ranges. We also measured leaf traits in three co-occurring ENA native shrub species. In their invaded range, invaders invested significantly less in leaf chlorophyll content (both per unit leaf mass and area) compared with native range populations of the same species, yet maintained similar rates of photosynthesis in low light. In addition, compared with ENA natives, ENA invaders displayed greater trait variation in response to increasing light availability (forest edges, gaps), giving them a potential advantage over ENA natives in a variety of light conditions. We conclude that, for this group of species, newly evolved phenotypes in the invaded range are more important than preadaptation for their success as shade-tolerant forest invaders.
Collapse
Affiliation(s)
| | - Jason D Fridley
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Riichi Oguchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Aiba
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
14
|
Zettlemoyer MA, Schultheis EH, Lau JA. Phenology in a warming world: differences between native and non-native plant species. Ecol Lett 2019; 22:1253-1263. [PMID: 31134712 DOI: 10.1111/ele.13290] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/20/2019] [Accepted: 05/08/2019] [Indexed: 01/27/2023]
Abstract
Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non-native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non-native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non-native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non-native species, implicating phenology as a potential trait associated with the successful establishment of non-native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non-natives are hypothesised to promote invasion success and population persistence, potentially benefiting non-native over native species under climate change.
Collapse
Affiliation(s)
- Meredith A Zettlemoyer
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-6406, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA
| | - Elizabeth H Schultheis
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-6406, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA
| | - Jennifer A Lau
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-6406, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA.,Department of Biology and the Environmental Resilience Institute, Indiana University, Bloomington, IN, 47405-7005, USA
| |
Collapse
|
15
|
Bakker MR, Udo N, Atlan A, Gire C, Gonzalez M, Graham D, Leckie A, Milin S, Niollet S, Xue J, Delerue F. Explaining the larger seed bank of an invasive shrub in non-native versus native environments by differences in seed predation and plant size. ANNALS OF BOTANY 2019; 123:917-927. [PMID: 30590379 PMCID: PMC6526314 DOI: 10.1093/aob/mcy229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Large, persistent seed banks contribute to the invasiveness of non-native plants, and maternal plant size is an important contributory factor. We explored the relationships between plant vegetative size (V) and soil seed bank size (S) for the invasive shrub Ulex europaeus in its native range and in non-native populations, and identified which other factors may contribute to seed bank variation between native and invaded regions. METHODS We compared the native region (France) with two regions where Ulex is invasive, one with seed predators introduced for biological control (New Zealand) and another where seed predators are absent (La Réunion). We quantified seed bank size, plant dimensions, seed predation and soil fertility for six stands in each of the three regions. KEY RESULTS Seed banks were 9-14 times larger in the two invaded regions compared to native France. We found a positive relationship between current seed bank size and actual plant size, and that any deviation from this relationship was probably due to large differences in seed predation and/or soil fertility. We further identified three possible factors explaining larger seed banks in non-native environments: larger maternal plant size, lower activity of seed predators and higher soil fertility. CONCLUSIONS In highlighting a positive relationship between maternal plant size and seed bank size, and identifying additional factors that regulate soil seed bank dynamics in non-native ranges, our data offer a number of opportunities for invasive weed control. For non-native Ulex populations specifically, management focusing on 'S' (i.e. the reduction of the seed bank by stimulating germination, or the introduction of seed predators as biological control agents) and/or on 'V' (i.e. by cutting mature stands to reduce maternal plant biomass) offers the most probable combination of effective control options.
Collapse
Affiliation(s)
- Mark R Bakker
- Bordeaux Sciences Agro, ISPA, Gradignan, France
- INRA, ISPA, Villenave d’Ornon, France
| | | | - Anne Atlan
- CNRS, Université de Rennes, Rennes, France
| | - Céline Gire
- Bordeaux Sciences Agro, ISPA, Gradignan, France
- INRA, ISPA, Villenave d’Ornon, France
| | - Maya Gonzalez
- Bordeaux Sciences Agro, ISPA, Gradignan, France
- INRA, ISPA, Villenave d’Ornon, France
| | | | | | - Sylvie Milin
- Bordeaux Sciences Agro, ISPA, Gradignan, France
- INRA, ISPA, Villenave d’Ornon, France
| | - Sylvie Niollet
- Bordeaux Sciences Agro, ISPA, Gradignan, France
- INRA, ISPA, Villenave d’Ornon, France
| | | | - Florian Delerue
- Bordeaux INP, G&E, Pessac, France
- Université Bordeaux Montaigne, G&E, Pessac, France
| |
Collapse
|
16
|
Hock M, Hofmann RW, Müller C, Erfmeier A. Exotic plant species are locally adapted but not to high ultraviolet-B radiation: a reciprocal multispecies experiment. Ecology 2019; 100:e02665. [PMID: 30770567 DOI: 10.1002/ecy.2665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
Ultraviolet (UV) radiation intensities differ among global regions, with significantly higher levels in the southern hemisphere. UV-B may act as an environmental filter during plant invasions, which might particularly apply to plant species from Europe introduced to New Zealand. Just like for any other abiotic or biotic filter, successful invaders can cope with novel environmental conditions via plastic responses and/or through rapid adaptation by natural selection in the exotic range. We conducted a multispecies experiment with herbaceous plants in two common gardens located in the species' native and exotic ranges, in Germany and New Zealand, respectively. We used plants of German and New Zealand origin of eight species to test for adaptation to higher UV-B radiation in their new range. In each common garden, all plants were exposed to three radiation treatments: (1) ambient sunlight, (2) exclusion of UV-B while transmitting ambient UV-A, and (3) combined exclusion of UV-B and UV-A. Linear mixed-effect models revealed significant effects of UV-B on growth and leaf traits and an indication for UV-B-induced biomass reduction in both common gardens pointing to an impact of natural, ambient UV radiation intensities experienced by plants in the northern and in the southern hemisphere. In both common gardens, the respective local plants (i.e., German origins in Germany, New Zealand origins in New Zealand) displayed enhanced productivity and aboveground biomass allocation, thus providing evidence for recent evolutionary processes in the exotic range. Genetic differentiation between different origins in consequence of divergent local selection pressures was found for specific leaf area. This differentiation particularly hints at different selective forces in both ranges while only little evidence was found for an immediate selective effect of high UV-B intensities in the exotic range. However, reaction norm slopes across ranges revealed higher plasticity of exotic individuals in functional leaf traits that might allow for a more sensitive regulation of photoprotection measures in response to UV-B. During the colonization, New Zealand populations might have been selected for the observed higher phenotypic plasticity and a consequently increased ability to successfully spread in the exotic range.
Collapse
Affiliation(s)
- Maria Hock
- Institute for Ecosystem Research/Geobotany, Kiel University, Olshausenstrasse 75, Kiel, 24118, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany
| | - Rainer W Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Ellesmere Junction Road/Springs Road, Lincoln, 7647, New Zealand
| | - Caroline Müller
- Faculty of Biology/Chemical Ecology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Alexandra Erfmeier
- Institute for Ecosystem Research/Geobotany, Kiel University, Olshausenstrasse 75, Kiel, 24118, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, Leipzig, 04103, Germany
| |
Collapse
|
17
|
Montesinos D, Callaway RM. Traits correlate with invasive success more than plasticity: A comparison of three Centaurea congeners. Ecol Evol 2018; 8:7378-7385. [PMID: 30151157 PMCID: PMC6106188 DOI: 10.1002/ece3.4080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/05/2018] [Accepted: 03/24/2018] [Indexed: 12/02/2022] Open
Abstract
The importance of phenotypic plasticity for successful invasion by exotic plant species has been well studied, but with contradictory and inconclusive results. However, many previous studies focused on comparisons of native and invasive species that co-occur in a single invaded region, and thus on species with potentially very different evolutionary histories. We took a different approach by comparing three closely related Centaurea species: the highly invasive C. solstitialis, and the noninvasive but exotic C. calcitrapa and C. sulphurea. These species have overlapping distributions both in their native range of Spain and in their non-native range of California. We collected seeds from 3 to 10 populations from each region and species and grew them in common garden greenhouse conditions to obtain an F1 generation in order to reduce maternal effects. Then, F1 seeds were grown subjected to simulated herbivory, variation in nutrient availability, and competition, to explore plasticity in the responses to these conditions. We found little variation in phenotypic plasticity among species and regions, but C. solstitialis plants from California produced more biomass in competition than their Spanish conspecifics. This species also had the highest relative growth rates when in competition and when grown under low nutrient availability. Noninvasive congeners produced intermediate or opposite patterns.
Collapse
Affiliation(s)
- Daniel Montesinos
- Division of Biological Sciences and the Institute on EcosystemsThe University of MontanaMissoulaMontana
- Centro de Investigaciones sobre Desertificación – CIDE (CSIC, UV, GV)Carretera Moncada‐NáqueraMoncadaSpain
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCalçada Martim de FreitasCoimbraPortugal
| | - Ragan M. Callaway
- Division of Biological Sciences and the Institute on EcosystemsThe University of MontanaMissoulaMontana
| |
Collapse
|
18
|
Hughes PW. Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecol Evol 2017; 7:8232-8261. [PMID: 29075446 PMCID: PMC5648687 DOI: 10.1002/ece3.3341] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
The number of times an organism reproduces (i.e., its mode of parity) is a fundamental life-history character, and evolutionary and ecological models that compare the relative fitnesses of different modes of parity are common in life-history theory and theoretical biology. Despite the success of mathematical models designed to compare intrinsic rates of increase (i.e., density-independent growth rates) between annual-semelparous and perennial-iteroparous reproductive schedules, there is widespread evidence that variation in reproductive allocation among semelparous and iteroparous organisms alike is continuous. This study reviews the ecological and molecular evidence for the continuity and plasticity of modes of parity-that is, the idea that annual-semelparous and perennial-iteroparous life histories are better understood as endpoints along a continuum of possible strategies. I conclude that parity should be understood as a continuum of different modes of parity, which differ by the degree to which they disperse or concentrate reproductive effort in time. I further argue that there are three main implications of this conclusion: (1) that seasonality should not be conflated with parity; (2) that mathematical models purporting to explain the general evolution of semelparous life histories from iteroparous ones (or vice versa) should not assume that organisms can only display either an annual-semelparous life history or a perennial-iteroparous one; and (3) that evolutionary ecologists should base explanations of how different life-history strategies evolve on the physiological or molecular basis of traits underlying different modes of parity.
Collapse
Affiliation(s)
- Patrick William Hughes
- Department of Plant Breeding and GeneticsMax Planck Institute for Plant Breeding ResearchKölnGermany
| |
Collapse
|
19
|
Martín-Forés I, Avilés M, Acosta-Gallo B, Breed MF, Del Pozo A, de Miguel JM, Sánchez-Jardón L, Castro I, Ovalle C, Casado MA. Ecotypic differentiation and phenotypic plasticity combine to enhance the invasiveness of the most widespread daisy in Chile, Leontodon saxatilis. Sci Rep 2017; 7:1546. [PMID: 28484207 PMCID: PMC5431524 DOI: 10.1038/s41598-017-01457-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/21/2017] [Indexed: 11/09/2022] Open
Abstract
Dispersal and reproductive traits of successful plant invaders are expected to undergo strong selection during biological invasions. Numerous Asteraceae are invasive and display dimorphic fruits within a single flower head, resulting in differential dispersal pathways - wind-dispersed fruits vs. non-dispersing fruits. We explored ecotypic differentiation and phenotypic plasticity of seed output and fruit dimorphisms in exotic Chilean and native Spanish populations of Leontodon saxatilis subsp. rothii. We collected flower heads from populations in Spain and Chile along a rainfall gradient. Seeds from all populations were planted in reciprocal transplant trials in Spain and Chile to explore their performance in the native and invasive range. We scored plant biomass, reproductive investment and fruit dimorphism. We observed strong plasticity, where plants grown in the invasive range had much greater biomass, flower head size and seed output, with a higher proportion of wind-dispersed fruits, than those grown in the native range. We also observed a significant ecotype effect, where the exotic populations displayed higher proportions of wind-dispersed fruits than native populations. Together, these patterns reflect a combination of phenotypic plasticity and ecotypic differentiation, indicating that Leontodon saxatilis has probably increased propagule pressure and dispersal distances in its invasive range to enhance its invasiveness.
Collapse
Affiliation(s)
- Irene Martín-Forés
- Complutense University of Madrid, Department of Ecology, Madrid, Spain.
- King Juan Carlos University, Móstoles, Madrid, Spain.
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia.
| | - Marta Avilés
- Complutense University of Madrid, Department of Ecology, Madrid, Spain
| | | | - Martin F Breed
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | | | - José M de Miguel
- Complutense University of Madrid, Department of Ecology, Madrid, Spain
| | | | - Isabel Castro
- Autonomous University of Madrid, Department of Ecology, Madrid, Spain
| | - Carlos Ovalle
- Agricultural Research Institute INIA-La Cruz, La Cruz, Chile
| | - Miguel A Casado
- Complutense University of Madrid, Department of Ecology, Madrid, Spain
| |
Collapse
|
20
|
Camenen E, Porté AJ, Benito Garzón M. American trees shift their niches when invading Western Europe: evaluating invasion risks in a changing climate. Ecol Evol 2016; 6:7263-7275. [PMID: 28725396 PMCID: PMC5513278 DOI: 10.1002/ece3.2376] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
Four North American trees are becoming invasive species in Western Europe: Acer negundo, Prunus serotina, Quercus rubra, and Robinia pseudoacacia. However, their present and future potential risks of invasion have not been yet evaluated. Here, we assess niche shifts between the native and invasive ranges and the potential invasion risk of these four trees in Western Europe. We estimated niche conservatism in a multidimensional climate space using niche overlap Schoener's D, niche equivalence, and niche similarity tests. Niche unfilling and expansion were also estimated in analogous and nonanalogous climates. The capacity for predicting the opposite range between the native and invasive areas (transferability) was estimated by calibrating species distribution models (SDMs) on each range separately. Invasion risk was estimated using SDMs calibrated on both ranges and projected for 2050 climatic conditions. Our results showed that native and invasive niches were not equivalent with low niche overlap for all species. However, significant similarity was found between the invasive and native ranges of Q. rubra and R. pseudoacacia. Niche expansion was lower than 15% for all species, whereas unfilling ranged from 7 to 56% when it was measured using the entire climatic space and between 5 and 38% when it was measured using analogous climate only. Transferability was low for all species. SDMs calibrated over both ranges projected high habitat suitability in Western Europe under current and future climates. Thus, the North American and Western European ranges are not interchangeable irrespective of the studied species, suggesting that other environmental and/or biological characteristics are shaping their invasive niches. The current climatic risk of invasion is especially high for R. pseudoacacia and A. negundo. In the future, the highest risks of invasion for all species are located in Central and Northern Europe, whereas the risk is likely to decrease in the Mediterranean basin.
Collapse
|
21
|
Guo WY, Lambertini C, Guo X, Li XZ, Eller F, Brix H. Phenotypic traits of the Mediterranean Phragmites australis M1 lineage: differences between the native and introduced ranges. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1236-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Heberling JM, Kichey T, Decocq G, Fridley JD. Plant functional shifts in the invaded range: a test with reciprocal forest invaders of Europe and North America. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Mason Heberling
- Department of Biology Syracuse University 107 College Place Syracuse New York13244 USA
| | - Thomas Kichey
- Unité Ecologie et Dynamique des Systèmes Anthropisés Université de Picardie Jules Verne 1 rue des Louvels F‐80037 Amiens Cedex France
| | - Guillaume Decocq
- Unité Ecologie et Dynamique des Systèmes Anthropisés Université de Picardie Jules Verne 1 rue des Louvels F‐80037 Amiens Cedex France
| | - Jason D. Fridley
- Department of Biology Syracuse University 107 College Place Syracuse New York13244 USA
| |
Collapse
|