1
|
Moreira X, Hervella P, Lago-Núñez B, Galmán A, de la Fuente M, Covelo F, Marquis RJ, Vázquez-González C, Abdala-Roberts L. Biotic and abiotic factors associated with genome size evolution in oaks. Ecology 2024; 105:e4417. [PMID: 39319753 DOI: 10.1002/ecy.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/16/2024] [Indexed: 09/26/2024]
Abstract
The evolutionary processes that underlie variation in plant genome size have been much debated. Abiotic factors are thought to have played an important role, with negative and positive correlations between genome size and seasonal or stressful climatic conditions being reported in several systems. In turn, variation in genome size may influence plant traits which affect interactions with other organisms, such as herbivores. The mechanisms underlying evolutionary linkages between plant genome size and biotic and abiotic factors nonetheless remain poorly understod. To address this gap, we conducted phylogenetically controlled analyses testing for associations between genome size, climatic variables, plant traits (defenses and nutrients), and herbivory across 29 oak (Quercus) species. Genome size is significantly associated with both temperature and precipitation seasonality, whereby oak species growing in climates with lower and less variable temperatures but more variable rainfall had larger genomes. In addition, we found a negative association between genome size and leaf nutrient concentration (found to be the main predictor of herbivory), which in turn led to an indirect effect on herbivory. A follow-up test suggested that the association between genome size and leaf nutrients influencing herbivory was mediated by variation in plant growth, whereby species with larger genomes have slower growth rates, which in turn are correlated with lower nutrients. Collectively, these findings reveal novel associations between plant genome size and biotic and abiotic factors that may influence life history evolution and ecological dynamics in this widespread tree genus.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Andrea Galmán
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | | | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | | | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Wang C, Liu L, Yin M, Eller F, Brix H, Wang T, Salojärvi J, Guo W. Genome-wide analysis tracks the emergence of intraspecific polyploids in Phragmites australis. NPJ BIODIVERSITY 2024; 3:29. [PMID: 39354055 PMCID: PMC11445247 DOI: 10.1038/s44185-024-00060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024]
Abstract
Polyploidization plays an important role in plant speciation and adaptation. To address the role of polyploidization in grass diversification, we studied Phragmites australis, an invasive species with intraspecific variation in chromosome numbers ranging from 2n = 36 to 144. We utilized a combined analysis of ploidy estimation, phylogeny, population genetics and model simulations to investigate the evolution of P. australis. Using restriction site-associated DNA sequencing (RAD-seq), we conducted a genome-wide analysis of 88 individuals sourced from diverse populations worldwide, revealing the presence of six distinct intraspecific lineages with extensive genetic admixture. Each lineage was characterized by a specific ploidy level, predominantly tetraploid or octoploid, indicative of multiple independent polyploidization events. The population size of each lineage has declined moderately in history while remaining large, except for the North American native and the US Land types, which experienced constant population size contraction throughout their history. Our investigation did not identify direct association between polyploidization events and grass invasions. Nonetheless, we observed octoploid and hexaploid lineages at contact zones in Romania, Hungary, and South Africa, suggestively due to genomic conflicts arising from allotetraploid parental lineages.
Collapse
Affiliation(s)
- Cui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, Biocentre 3, Helsinki, Finland
| | - Lele Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - Meiqi Yin
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | | | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, Biocentre 3, Helsinki, Finland.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Weihua Guo
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China.
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China.
| |
Collapse
|
3
|
Hrabovský M, Kubalová S, Mičieta K, Ščevková J. Environmental impacts on intraspecific variation in Ambrosia artemisiifolia genome size in Slovakia, Central Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33960-33974. [PMID: 38693457 PMCID: PMC11136817 DOI: 10.1007/s11356-024-33410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
The quantity of DNA in angiosperms exhibits variation attributed to many external influences, such as environmental factors, geographical features, or stress factors, which exert constant selection pressure on organisms. Since invasive species possess adaptive capabilities to acclimate to novel environmental conditions, ragweed (Ambrosia artemisiifolia L.) was chosen as a subject for investigating their influence on genome size variation. Slovakia has diverse climatic conditions, suitable for testing the hypothesis that air temperature and precipitation, the main limiting factors of ragweed occurrence, would also have an impact on its genome size. Our results using flow cytometry confirmed this hypothesis and also found a significant association with geographical features such as latitude, altitude, and longitude. We can conclude that plants growing in colder environments farther from oceanic influences exhibit smaller DNA amounts, while optimal growth conditions result in a greater variability in genome size, reflecting the diminished effect of selection pressure.
Collapse
Affiliation(s)
- Michal Hrabovský
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia.
| | - Silvia Kubalová
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Karol Mičieta
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| |
Collapse
|
4
|
Xian L, Yang J, Muthui SW, Ochieng WA, Linda EL, Yu J. Which Has a Greater Impact on Plant Functional Traits: Plant Source or Environment? PLANTS (BASEL, SWITZERLAND) 2024; 13:903. [PMID: 38592931 PMCID: PMC10975183 DOI: 10.3390/plants13060903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The deterioration of water quality caused by human activities has triggered significant impacts on aquatic ecosystems. Submerged macrophytes play an important role in freshwater ecosystem restoration. Understanding the relative contributions of the sources and environment to the adaptive strategies of submerged macrophytes is crucial for freshwater restoration and protection. In this study, the perennial submerged macrophyte Myriophyllum spicatum was chosen as the experimental material due to its high adaptability to a variable environment. Through conducting reciprocal transplant experiments in two different artificial environments (oligotrophic and eutrophic), combined with trait network and redundancy analysis, the characteristics of the plant functional traits were examined. Furthermore, the adaptive strategies of M. spicatum to the environment were analyzed. The results revealed that the plant source mainly influenced the operational pattern among the traits, and the phenotypic traits were significantly affected by environmental factors. The plants cultured in high-nutrient water exhibited a higher plant height, longer leaves, and more branches and leaves. However, their physiological functions were not significantly affected by the environment. Therefore, the adaptation strategy of M. spicatum to the environment mainly relies on its phenotypic plasticity to ensure the moderate acquisition of resources in the environment, thereby ensuring the stable and efficient operation of plant physiological traits. The results not only offered compelling evidence on the adaptation strategies of M. spicatum in variable environments but also provided theoretical support for the conservation of biodiversity and sustainable development.
Collapse
Affiliation(s)
- Ling Xian
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
| | - Jiao Yang
- School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Samuel Wamburu Muthui
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Wyckliffe Ayoma Ochieng
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.X.); (S.W.M.); (W.A.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Elive Limunga Linda
- School of Resources and Environmental Science, Hubei University, Wuhan 430062, China;
| | - Junshuang Yu
- Changjiang Water Resources and Hydropower Development Group Co., Ltd., Wuhan 430010, China
| |
Collapse
|
5
|
Pyšek P, Lučanová M, Dawson W, Essl F, Kreft H, Leitch IJ, Lenzner B, Meyerson LA, Pergl J, van Kleunen M, Weigelt P, Winter M, Guo WY. Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their invasive spread. THE NEW PHYTOLOGIST 2023; 239:2389-2403. [PMID: 37438886 DOI: 10.1111/nph.19135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.
Collapse
Affiliation(s)
- Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic
| | - Magdalena Lučanová
- Department of Evolutionary Biology of Plants, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Franz Essl
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Bernd Lenzner
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Laura A Meyerson
- University of Rhode Island, Natural Resources Science, 9 East Alumni Avenue, Kingston, 02881, RI, USA
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, D-78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Wen-Yong Guo
- Research Centre for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
6
|
Salgado AL, Glassmire AE, Sedio BE, Diaz R, Stout MJ, Čuda J, Pyšek P, Meyerson LA, Cronin JT. Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass. J Chem Ecol 2023; 49:437-450. [PMID: 37099216 DOI: 10.1007/s10886-023-01425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.
Collapse
Affiliation(s)
- Ana L Salgado
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Andrea E Glassmire
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado, 0843-03092, Republic of Panama
| | - Rodrigo Diaz
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michael J Stout
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jan Čuda
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, CZ -128 44, Czech Republic
| | - Laura A Meyerson
- Department of Natural Resource Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|
7
|
Lindsay DL, Guan X, Harms NE, Cronin JT, Meyerson LA, Lance RF. DNA assays for genetic discrimination of three Phragmites australis subspecies in the United States. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11512. [PMID: 37051584 PMCID: PMC10083467 DOI: 10.1002/aps3.11512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Premise To genetically discriminate subspecies of the common reed (Phragmites australis), we developed real-time quantitative (qPCR) assays for identifying P. australis subsp. americanus, P. australis subsp. australis, and P. australis subsp. berlandieri. Methods and Results Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, Arundo donax and Phalaris arundinacea. One assay amplifies only P. australis subsp. americanus, one amplifies P. australis subsp. australis and/or P. australis subsp. berlandieri, and one amplifies P. australis subsp. americanus and/or P. australis subsp. australis. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies. Conclusions The newly developed assays were validated using P. australis samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.
Collapse
Affiliation(s)
- Denise L. Lindsay
- United States Army Engineer Research and Development Center Environmental LaboratoryVicksburgMississippi39180USA
| | - Xin Guan
- Bennett AerospaceVicksburgMississippi39180USA
- Present address:
ModernaTX, Moderna Technology CenterNorwoodMarylandUSA
| | - Nathan E. Harms
- United States Army Engineer Research and Development Center Environmental LaboratoryVicksburgMississippi39180USA
| | | | | | - Richard F. Lance
- United States Army Engineer Research and Development Center Environmental LaboratoryVicksburgMississippi39180USA
| |
Collapse
|
8
|
Zhang HY, Lü XT, Wei CZ, Powell JR, Wang XB, Xing DL, Xu ZW, Li HL, Han XG. β-diversity in temperate grasslands is driven by stronger environmental filtering of plant species with large genomes. Ecology 2023; 104:e3941. [PMID: 36469035 DOI: 10.1002/ecy.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS) has long been hypothesized to potentially affect species' capacity to tolerate environmental stress and might therefore help drive community assembly. However, its role in driving β-diversity (i.e., spatial variability in species composition) remains unclear. We measured GS for 161 plant species and community composition across 52 sites spanning a 3200-km transect in the temperate grasslands of China. By correlating the turnover of species composition with environmental dissimilarity, we found that resource filtering (i.e., environmental dissimilarity that includes precipitation, and soil nitrogen and phosphorus concentrations) affected β-diversity patterns of large-GS species more than small-GS species. By contrast, geographical distance explained more variation of β-diversity for small-GS than for large-GS species. In a 10-year experiment manipulating levels of water, nitrogen, and phosphorus, adding resources increased plant biomass in species with large GS, suggesting that large-GS species are more sensitive to the changes in resource availability. These findings highlight the role of GS in driving community assembly and predicting species responses to global change.
Collapse
Affiliation(s)
- Hai-Yang Zhang
- College of Life Sciences, Hebei University, Baoding, China.,Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Cun-Zheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Xiao-Bo Wang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,Center for Grassland Microbiome, State Key Laboratory of Grassland Agroecosystems, and College of Pastoral, Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ding-Liang Xing
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhu-Wen Xu
- Department of Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Huan-Long Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xing-Guo Han
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Boardman L, Lockwood JL, Angilletta MJ, Krause JS, Lau JA, Loik ME, Simberloff D, Thawley CJ, Meyerson LA. The Future of Invasion Science Needs Physiology. Bioscience 2022. [DOI: 10.1093/biosci/biac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Incorporating physiology into models of population dynamics will improve our understanding of how and why invasions succeed and cause ecological impacts, whereas others fail or remain innocuous. Targeting both organismal physiologists and invasion scientists, we detail how physiological processes affect every invasion stage, for both plants and animals, and how physiological data can be better used for studying the spatial dynamics and ecological effects of invasive species. We suggest six steps to quantify the physiological functions related to demography of nonnative species: justifying physiological traits of interest, determining ecologically appropriate time frames, identifying relevant abiotic variables, designing experimental treatments that capture covariation between abiotic variables, measuring physiological responses to these abiotic variables, and fitting statistical models to the data. We also provide brief guidance on approaches to modeling invasions. Finally, we emphasize the benefits of integrating research between communities of physiologists and invasion scientists.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences and with the Center for Biodiversity Research, University of Memphis , Memphis, Tennessee, United States
| | - Julie L Lockwood
- Department of Ecology, Evolution, and Natural Resources at Rutgers University , New Brunswick, New Jersey, United States
| | - Michael J Angilletta
- School of Life Sciences and with the Center for Learning Innovation in Science, Arizona State University , Tempe, Arizona, United States
| | - Jesse S Krause
- Department of Biology, University of Nevada , Reno, Nevada, United States
| | - Jennifer A Lau
- Department of Biology, Indiana University , Bloomington, Indian, United States
| | - Michael E Loik
- Environmental Studies Department, University of California , Santa Cruz, Santa Cruz, California, United States
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee , Knoxville, Tennessee, United States
| | - Christopher J Thawley
- Department of Biological Sciences, University of Rhode Island , Kingston, Rhode Island, United States
| | - Laura A Meyerson
- Department of Natural Resources Science, University of Rhode Island , Kingston, Rhode Island, United States
| |
Collapse
|
10
|
Chen Z, Guan Y, Han M, Guo Y, Zhang J, Guo Z, Sun G, Yan X. Altitudinal Patterns in Adaptive Evolution of Genome Size and Inter-Genome Hybridization Between Three Elymus Species From the Qinghai–Tibetan Plateau. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.923967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome size variation and hybridization occur frequently within or between plant species under diverse environmental conditions, which enrich species diversification and drive the evolutionary process. Elymus L. is the largest genus in Triticeae with five recognized basic genomes (St, H, P, W, and Y). However, the data on population cytogenetics of Elymus species are sparse, especially whether genome hybridization and chromosomal structure can be affected by altitude are still unknown. In order to explore the relationship between genome sizes, we studied interspecific hybridization and altitude of Elymus species at population genetic and cytological levels. Twenty-seven populations at nine different altitudes (2,800–4,300 m) of three Elymus species, namely, hexaploid E. nutans (StHY, 2n = 6x = 42), tetraploid E. burchan-buddae (StY, 2n = 4x = 28), and E. sibiricus (StH, 2n = 4x = 28), were sampled from the Qinghai–Tibetan Plateau (QTP) to estimate whether intraspecific variation could affect the genomic relationships by genomic in situ hybridization (GISH), and quantify the genome size of Elymus among different altitude ecological groups by flow cytometry. The genome size of E. nutans, E. burchan-buddae, and E. sibiricus varied from 12.38 to 22.33, 8.81 to 18.93, and 11.46 to 20.96 pg/2C with the averages of 19.59, 12.39, and 16.85 pg/2C, respectively. The curve regression analysis revealed a strong correlation between altitude and nuclear DNA content in three Elymus species. In addition, the chromosomes of the St and Y genomes demonstrated higher polymorphism than that of the H genome. Larger genome size variations occurred in the mid-altitude populations (3,900–4,300 m) compared with other-altitude populations, suggesting a notable altitudinal pattern in genome size variation, which shaped genome evolution by altitude. This result supports our former hypothesis that genetic richness center at medium altitude is useful and valuable for species adaptation to highland environmental conditions, germplasm utilization, and conservation.
Collapse
|
11
|
What Drives Caterpillar Guilds on a Tree: Enemy Pressure, Leaf or Tree Growth, Genetic Traits, or Phylogenetic Neighbourhood? INSECTS 2022; 13:insects13040367. [PMID: 35447809 PMCID: PMC9029432 DOI: 10.3390/insects13040367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Communities of herbivorous insects on individual host trees may be driven by processes ranging from ongoing development via recent microevolution to ancient phylogeny, but the relative importance of these processes and whether they operate via trophic interactions or herbivore movement remains unknown. We determined the leaf phenology, trunk diameter, genotype, and neighbourhood of sessile oak trees (Quercus petraea), and sampled their caterpillar communities. We found that leaf development across a time period of days related to free-living caterpillars, which disappeared with leaf age. Tree growth across decades is related to increased parasitism rate and diversity of herbivores. The microevolution of oak trees across millennia is related to the abundance of leaf-mining casebearers, which is higher on more homozygous oaks. However, oak genome size was not important for any guild. In contrast to most previous studies, the phylogenetic distance of oaks from their neighbours measured in millions of years was associated with higher abundances of entire caterpillar guilds. Furthermore, on trees surrounded by only distantly related tree species, parasitism tended to be lower. Lower parasitism, in turn, was associated with higher abundances of codominant caterpillar species. Neighbourhoods and traits of trees were also related to community composition and diversity, but not to the average wingspans or specialization of species, consistent with the assembly of herbivore communities being driven by leaf traits and parasitism pressure on trees rather than by insect movement among trees. However, movement in rarer species may be responsible for concentration effects in more phylogenetically distant neighbourhoods. Overall, we suggest that the assembly of insects on a tree is mostly driven by trophic interactions controlled by a mosaic of processes playing out over very different time scales. Comparisons with the literature further suggest that, for oak trees, the consequences of growing amongst distantly related tree species may depend on factors such as geographic region and tree age.
Collapse
|
12
|
Harms NE, Cronin JT, Gaskin JF. Increased ploidy of Butomus umbellatus in introduced populations is not associated with higher phenotypic plasticity to N and P. AOB PLANTS 2021; 13:plab045. [PMID: 34394906 PMCID: PMC8356175 DOI: 10.1093/aobpla/plab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Separate introductions or post-introduction evolution may lead to multiple invader genotypes or cytotypes that differ in growth rates, biomass or chemical profile responses (phenotype) to a range of environments. If the invader has high trait plasticity to a range of resource levels, then sediment N or P enrichment may enhance invasiveness. However, the ways in which ploidy, plasticity, and available N or P interact are unknown for most species despite the potential to explain spread and impacts by invaders with multiple introduced lineages. We conducted a common garden experiment with four triploid and six diploid populations of Butomus umbellatus, collected from across its invasive range in the USA. Plants were grown under different N or P nutrient levels (4, 40, 200, 400 mg L-1 N; 0.4, 4, 40 mg L-1 P) and we measured reaction norms for biomass, clonal reproduction and tissue chemistry. Contrary to our expectation, triploid B. umbellatus plants were less plastic to variation in N or P than diploid B. umbellatus in most measured traits. Diploid plants produced 172 % more reproductive biomass and 57 % more total biomass across levels of N, and 158 % more reproductive biomass and 33 % more total biomass across P than triploid plants. Triploid plants had lower shoot:root ratios and produced 30 % and 150 % more root biomass than diploid plants in response to increases in N and P, respectively. Tissue chemistry differed between cytotypes but plasticity was similar; N was 8 % higher and C:N ratio was 30 % lower in triploid than diploid plants across levels of N and plant parts, and N was 22 % higher and C:N ratio 27 % lower across levels of P and plant parts. Our results highlight differences in nutrient response between cytotypes of a widespread invader, and we call for additional field studies to better understand the interaction of nutrients and ploidy during invasion.
Collapse
Affiliation(s)
- Nathan E Harms
- U.S. Army Engineer Research and Development Center, Aquatic Ecology and Invasive Species Branch, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - John F Gaskin
- U.S. Department of Agriculture, Agricultural Research Service, 1500 N. Central Avenue, Sidney, MT 59270, USA
| |
Collapse
|
13
|
Affiliation(s)
- Gonasageran Naidoo
- School of Life Sciences University of KwaZulu‐Natal Westville South Africa
| |
Collapse
|
14
|
Genome size variation in Cactaceae and its relationship with invasiveness and seed traits. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Wang C, Wang T, Yin M, Eller F, Liu L, Brix H, Guo W. Transcriptome Analysis of Tetraploid and Octoploid Common Reed ( Phragmites australis). FRONTIERS IN PLANT SCIENCE 2021; 12:653183. [PMID: 34025698 PMCID: PMC8132968 DOI: 10.3389/fpls.2021.653183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Polyploidization in plants is thought to have occurred as coping mechanism with environmental stresses. Polyploidization-driven adaptation is often achieved through interplay of gene networks involved in differentially expressed genes, which triggers the plant to evolve special phenotypic traits for survival. Phragmites australis is a cosmopolitan species with highly variable phenotypic traits and high adaptation capacity to various habitats. The species' ploidy level varies from 3x to 12x, thus it is an ideal organism to investigate the molecular evolution of polyploidy and gene regulation mediated by different numbers of chromosome copies. In this study, we used high-throughput RNAseq data as a tool, to analyze the gene expression profiles in tetraploid and octoploid P. australis. The estimated divergence time between tetraploid and octoploid P. australis was dated to the border between Pliocene and Pleistocene. This study identified 439 up- and 956 down-regulated transcripts in tetraploids compared to octoploids. Gene ontology and pathway analysis revealed that tetraploids tended to express genes responsible for reproduction and seed germination to complete the reproduction cycle early, and expressed genes related to defense against UV-B light and fungi, whereas octoploids expressed mainly genes related to thermotolerance. Most differentially expressed genes were enriched in chaperones, folding catalysts and protein processing in endoplasmic reticulum pathways. Multiple biased isoform usage of the same gene was detected in differentially expressed genes, and the ones upregulated in octoploids were related to reduced DNA methylation. Our study provides new insights into the role of polyploidization on environmental responses and potential stress tolerance in grass species.
Collapse
Affiliation(s)
- Cui Wang
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao, China
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Meiqi Yin
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao, China
| | | | - Lele Liu
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Weihua Guo
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Gaynor ML, Lim-Hing S, Mason CM. Impact of genome duplication on secondary metabolite composition in non-cultivated species: a systematic meta-analysis. ANNALS OF BOTANY 2020; 126:363-376. [PMID: 32504537 PMCID: PMC7424755 DOI: 10.1093/aob/mcaa107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Whole-genome duplication is known to influence ecological interactions and plant physiology; however, despite abundant case studies, much is still unknown about the typical impact of genome duplication on plant secondary metabolites (PSMs). In this study, we assessed the impact of polyploidy events on PSM characteristics in non-cultivated plants. METHODS We conducted a systematic review and meta-analysis to compare composition and concentration of PSMs among closely related plant species or species complexes differing in ploidy level. KEY RESULTS We assessed 53 studies that focus on PSMs among multiple cytotypes, of which only 14 studies compared concentration quantitatively among cytotypes. We found that whole-genome duplication can have a significant effect on PSM concentration; however, these effects are highly inconsistent. CONCLUSION Overall, there was no consistent effect of whole-genome duplication on PSM concentrations or profiles.
Collapse
Affiliation(s)
- Michelle L Gaynor
- Department of Biology, University of Central Florida, Orlando, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Simone Lim-Hing
- Department of Biology, University of Central Florida, Orlando, FL, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
- For correspondence. E-mail
| |
Collapse
|
17
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Croy JR, Meyerson LA, Allen WJ, Bhattarai GP, Cronin JT. Lineage and latitudinal variation inPhragmites australistolerance to herbivory: implications for invasion success. OIKOS 2020. [DOI: 10.1111/oik.07260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jordan R. Croy
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA 92697 USA
| | - Laura A. Meyerson
- Dept of Natural Resource Sciences, Univ. of Rhode Island Kingston RI USA
| | - Warwick J. Allen
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- The Bio‐Protection Research Centre, School of Biological Sciences, Univ. of Canterbury Christchurch New Zealand
| | - Ganesh P. Bhattarai
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- Dept of Entomology, Kansas State Univ. Manhattan KS USA
| | - James T. Cronin
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
| |
Collapse
|
19
|
Meyerson LA, Pyšek P, Lučanová M, Wigginton S, Tran C, Cronin JT. Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 2020. [DOI: 10.1002/ecs2.3145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Laura A. Meyerson
- Department of Natural Resources Science The University of Rhode Island Kingston Rhode Island 02881 USA
| | - Petr Pyšek
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences CZ‐252 43 Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Viničná 7 CZ‐128 44 Prague Czech Republic
| | - Magdalena Lučanová
- Department of Evolutionary Biology of Plants Institute of Botany Czech Academy of Sciences CZ‐252 43 Průhonice Czech Republic
- Department of Botany Faculty of Science University of South Bohemia CZ‐370 05 České Budějovice Czech Republic
| | - Sara Wigginton
- Department of Natural Resources Science The University of Rhode Island Kingston Rhode Island 02881 USA
| | - Cao‐Tri Tran
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803 USA
| | - James T. Cronin
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803 USA
| |
Collapse
|
20
|
Geographic and genetic variation in susceptibility of Butomus umbellatus to foliar fungal pathogens. Biol Invasions 2020. [DOI: 10.1007/s10530-019-02109-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Pyšek P, Čuda J, Šmilauer P, Skálová H, Chumová Z, Lambertini C, Lučanová M, Ryšavá H, Trávníček P, Šemberová K, Meyerson LA. Competition among native and invasive Phragmites australis populations: An experimental test of the effects of invasion status, genome size, and ploidy level. Ecol Evol 2020; 10:1106-1118. [PMID: 32076501 PMCID: PMC7029062 DOI: 10.1002/ece3.5907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 01/29/2023] Open
Abstract
Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.
Collapse
Affiliation(s)
- Petr Pyšek
- Department of Invasion EcologyInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
- Department of EcologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jan Čuda
- Department of Invasion EcologyInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Petr Šmilauer
- Department of Ecosystem BiologyFaculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Hana Skálová
- Department of Invasion EcologyInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Zuzana Chumová
- Department of Evolutionary Biology of PlantsInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
- Department of BotanyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Carla Lambertini
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Magdalena Lučanová
- Department of Evolutionary Biology of PlantsInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
- Department of BotanyFaculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Hana Ryšavá
- Department of BotanyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Pavel Trávníček
- Department of Evolutionary Biology of PlantsInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Kristýna Šemberová
- Department of Evolutionary Biology of PlantsInstitute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
- Department of BotanyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Laura A. Meyerson
- Department of Natural Resources ScienceThe University of Rhode IslandKingstonRIUSA
| |
Collapse
|
22
|
Shuryak I. Review of resistance to chronic ionizing radiation exposure under environmental conditions in multicellular organisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 212:106128. [PMID: 31818732 DOI: 10.1016/j.jenvrad.2019.106128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation resistance occurs among many phylogenetic groups and its mechanisms remain incompletely understood. Tolerances to acute and chronic irradiation do not always correlate because different mechanisms may be involved. The radioresistance phenomenon becomes even more complex in the field than in the laboratory because the effects of radioactive contamination on natural populations are intertwined with those of other factors, such as bioaccumulation of radionuclides, interspecific competition, seasonal variations in environmental conditions, and land use changes due to evacuation of humans from contaminated areas. Previous reviews of studies performed in radioactive sites like the Kyshtym, Chernobyl, and Fukushima accident regions, and of protracted irradiation experiments, often focused on detecting radiation effects at low doses in radiosensitive organisms. Here we review the literature with a different purpose: to identify organisms with high tolerance to chronic irradiation under environmental conditions, which maintained abundant populations and/or outcompeted more radiosensitive species at high dose rates. Taxa for which consistent evidence for radioresistance came from multiple studies conducted in different locations and at different times were found among plants (e.g. willow and birch trees, sedges), invertebrate and vertebrate animals (e.g. rotifers, some insects, crustaceans and freshwater fish). These organisms are not specialized "extremophiles", but tend to tolerate broad ranges of environmental conditions and stresses, have small genomes, reproduce quickly and/or disperse effectively over long distances. Based on these findings, resistance to radioactive contamination can be examined in a more broad context of chronic stress responses.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, USA.
| |
Collapse
|
23
|
Pyšek P, Skálová H, Čuda J, Guo WY, Suda J, Doležal J, Kauzál O, Lambertini C, Lučanová M, Mandáková T, Moravcová L, Pyšková K, Brix H, Meyerson LA. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 2019; 99:79-90. [PMID: 29313970 DOI: 10.1002/ecy.2068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/08/2017] [Accepted: 10/16/2017] [Indexed: 01/24/2023]
Abstract
The literature suggests that small genomes promote invasion in plants, but little is known about the interaction of genome size with other traits or about the role of genome size during different phases of the invasion process. By intercontinental comparison of native and invasive populations of the common reed Phragmites australis, we revealed a distinct relationship between genome size and invasiveness at the intraspecific level. Monoploid genome size was the only significant variable that clearly separated the North American native plants from those of European origin. The mean Cx value (the amount of DNA in one chromosome set) for source European native populations was 0.490 ± 0.007 (mean ± SD), for North American invasive 0.506 ± 0.020, and for North American native 0.543 ± 0.021. Relative to native populations, the European populations that successfully invaded North America had a smaller genome that was associated with plant traits favoring invasiveness (long rhizomes, early emerging abundant shoots, resistance to aphid attack, and low C:N ratio). The knowledge that invasive populations within species can be identified based on genome size can be applied to screen potentially invasive populations of Phragmites in other parts of the world where they could grow in mixed stands with native plants, as well as to other plant species with intraspecific variation in invasion potential. Moreover, as small genomes are better equipped to respond to extreme environmental conditions such as drought, the mechanism reported here may represent an emerging driver for future invasions and range expansions.
Collapse
Affiliation(s)
- Petr Pyšek
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Hana Skálová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jan Čuda
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Wen-Yong Guo
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | | | - Jan Doležal
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Museum and Gallery of the Orlické hory Mts, Jiráskova 2, CZ-516 01, Rychnov nad Kněžnou, Czech Republic
| | - Ondřej Kauzál
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Carla Lambertini
- Department of Bioscience, Faculty of Science, Aarhus University, Ole Worms Alle 1, DK-8000, Aarhus C, Denmark
| | - Magdalena Lučanová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00, Prague, Czech Republic
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC - Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Lenka Moravcová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Klára Pyšková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Hans Brix
- Department of Bioscience, Faculty of Science, Aarhus University, Ole Worms Alle 1, DK-8000, Aarhus C, Denmark
| | - Laura A Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, Rhode Island, 02881, USA
| |
Collapse
|
24
|
Evidence does not support the targeting of cryptic invaders at the subspecies level using classical biological control: the example of Phragmites. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02014-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Guignard MS, Crawley MJ, Kovalenko D, Nichols RA, Trimmer M, Leitch AR, Leitch IJ. Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. Proc Biol Sci 2019; 286:20182619. [PMID: 30890100 PMCID: PMC6452068 DOI: 10.1098/rspb.2018.2619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Angiosperm genome sizes (GS) vary ca 2400-fold. Recent research has shown that GS influences plant abundance, and plant competition. There are also tantalizing reports that herbivores may select plants as food dependent on their GS. To test the hypothesis that GS plays a role in shaping plant communities under herbivore pressure, we exploit a grassland experiment that has experimentally excluded herbivores and applied nutrient over 8 years. Using phylogenetically informed statistical models and path analyses, we show that under rabbit grazing, plant species with small GS generated the most biomass. By contrast, on mollusc and insect-grazed plots, it was the plant species with larger GS that increased in biomass. GS was also shown to influence plant community properties (e.g. competitive strategy, total biomass) although the impact varied between different herbivore guilds (i.e. rabbits versus invertebrates) and nutrient inputs. Overall, we demonstrate that GS plays a role in influencing plant-herbivore interactions, and suggest potential reasons for this response, which include the impact of GS on a plant's response to different herbivore guilds, and on a plant's nutrient quality. The inclusion of GS in ecological models has the potential to expand our understanding of plant productivity and community ecology under nutrient and herbivore stress.
Collapse
Affiliation(s)
- Maïté S. Guignard
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Michael J. Crawley
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berks SL5 7PY, UK
| | - Dasha Kovalenko
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Richard A. Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mark Trimmer
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
26
|
Martinez MA, Baack EJ, Hovick SM, Whitney KD. A reassessment of the genome size-invasiveness relationship in reed canarygrass (Phalaris arundinacea). ANNALS OF BOTANY 2018; 121:1309-1318. [PMID: 29534147 PMCID: PMC6007324 DOI: 10.1093/aob/mcy028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/16/2018] [Indexed: 06/13/2023]
Abstract
Background and Aims Genome size is hypothesized to affect invasiveness in plants. Key evidence comes from a previous study of invasive eastern North American populations of the grass Phalaris arundinacea: invasive genotypes with smaller genomes had higher growth rates, and genome sizes were smaller in the invasive vs. native range. This study aimed to re-investigate those patterns by examining a broader range of North American populations and by employing the modern best-practice protocol for plant genome size estimation in addition to the previously used protocol. Methods Genome sizes were measured using both internal and pseudo-internal standardization protocols for 20 invasive and nine native range accessions of P. arundinacea. After a round of vegetative propagation to reduce maternal environmental effects, growth (stem elongation) rates of these accessions were measured in the greenhouse. Key Results Using the best-practice protocol, there was no evidence of a correlation between genome size and growth rates (P = 0.704), and no evidence for differences in genome sizes of invasive and native range accessions (P > 0.353). However, using the older genome size estimation protocol, both relationships were significant (reproducing the results of the previous study). Conclusions Genome size reduction has not driven increased invasiveness in a broad sample of North American P. arundinacea. Further, inappropriate genome size estimation techniques can create spurious correlations between genome size and plant traits such as growth rate. Valid estimation is vital to progress in understanding the potentially widespread effects of genome size on biological processes and patterns.
Collapse
Affiliation(s)
- Megan A Martinez
- Department of Biology, University of New Mexico, Albuquerque, NM USA
| | - Eric J Baack
- Department of Biology, Luther College, Decorah, IA USA
| | - Stephen M Hovick
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM USA
| |
Collapse
|
27
|
Castillo JM, Gallego-Tévar B, Figueroa E, Grewell BJ, Vallet D, Rousseau H, Keller J, Lima O, Dréano S, Salmon A, Aïnouche M. Low genetic diversity contrasts with high phenotypic variability in heptaploid Spartina densiflora populations invading the Pacific coast of North America. Ecol Evol 2018; 8:4992-5007. [PMID: 29876076 PMCID: PMC5980529 DOI: 10.1002/ece3.4063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.
Collapse
Affiliation(s)
- Jesús M Castillo
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Blanca Gallego-Tévar
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Enrique Figueroa
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Brenda J Grewell
- Department of Plant Sciences MS-4 USDA-ARS Exotic & Invasive Weeds Research Unit University of California Davis California
| | | | | | - Jean Keller
- UMR CNRS 6553 ECOBIO Université Rennes 1 Rennes France
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO Université Rennes 1 Rennes France
| | - Stéphane Dréano
- Faculté de Médecine Institut de génétique et Développement de Rennes (IGDR) UMR6290, CNRS Université de Rennes1 Rennes France
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO Université Rennes 1 Rennes France
| | | |
Collapse
|
28
|
Eller F, Skálová H, Caplan JS, Bhattarai GP, Burger MK, Cronin JT, Guo WY, Guo X, Hazelton ELG, Kettenring KM, Lambertini C, McCormick MK, Meyerson LA, Mozdzer TJ, Pyšek P, Sorrell BK, Whigham DF, Brix H. Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis. FRONTIERS IN PLANT SCIENCE 2017; 8:1833. [PMID: 29250081 PMCID: PMC5715336 DOI: 10.3389/fpls.2017.01833] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/10/2017] [Indexed: 05/11/2023]
Abstract
Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1) P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO2; (2) each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4) genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5) responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses to global change and its consequences.
Collapse
Affiliation(s)
- Franziska Eller
- Aquatic Biology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hana Skálová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Joshua S. Caplan
- Department of Landscape Architecture and Horticulture, Temple University, Ambler, PA, United States
| | - Ganesh P. Bhattarai
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Melissa K. Burger
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States
| | - James T. Cronin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Wen-Yong Guo
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Jinan, China
| | - Eric L. G. Hazelton
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, United States
| | - Karin M. Kettenring
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, United States
| | - Carla Lambertini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | | | - Laura A. Meyerson
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States
| | - Thomas J. Mozdzer
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Petr Pyšek
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Brian K. Sorrell
- Aquatic Biology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Dennis F. Whigham
- Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Hans Brix
- Aquatic Biology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Segraves KA. The effects of genome duplications in a community context. THE NEW PHYTOLOGIST 2017; 215:57-69. [PMID: 28418074 DOI: 10.1111/nph.14564] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Contents 57 I. 57 II. 59 III. 59 IV. 63 V. 64 VI. 64 VII. 66 66 References 66 SUMMARY: Whole-genome duplication (WGD), or polyploidy, has important effects on the genotype and phenotype of plants, potentially altering ecological interactions with other organisms. Even though the connections between polyploidy and species interactions have been recognized for some time, we are only just beginning to test whether WGD affects community context. Here I review the sparse information on polyploidy and community context and then present a set of hypotheses for future work. Thus far, community-level studies of polyploids suggest an array of outcomes, from no changes in community context to shifts in the abundance and composition of interacting species. I propose a number of mechanisms for how WGD could alter community context and how the emergence of polyploids in populations could also alter the community context of parental diploids and other plant species. Resolving how and when these changes are expected to occur will require a deeper understanding of the connections among WGD, phenotypic changes, and the direct and indirect effects of species interactions.
Collapse
Affiliation(s)
- Kari A Segraves
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
- Archbold Biological Station, Venus, FL, 33960, USA
| |
Collapse
|
30
|
Ecology and genetics affect relative invasion success of two Echium species in southern Australia. Sci Rep 2017; 7:42792. [PMID: 28211478 PMCID: PMC5314367 DOI: 10.1038/srep42792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/05/2017] [Indexed: 12/29/2022] Open
Abstract
Echium plantagineum and E. vulgare are congeneric exotics first introduced to Australia in the early 1800 s. There, E. plantagineum is now highly invasive, whereas E. vulgare has a limited distribution. Studies were conducted to evaluate distribution, ecology, genetics and secondary chemistry to shed light on factors associated with their respective invasive success. When sampled across geographically diverse locales, E. plantagineum was widespread and exhibited a small genome size (1 C = 0.34 pg), an annual life cycle, and greater genetic diversity as assessed by DNA sequence analysis. It was found frequently in areas with temperature extremes and low rainfall. In contrast, E. vulgare exhibited a larger genome size (1 C = 0.43 pg), a perennial lifecycle, less chloroplast genetic diversity, and occurred in areas with lower temperatures and higher rainfall. Twelve chloroplast haplotypes of E. plantagineum were evident and incidence aligned well with reported historical introduction events. In contrast, E. vulgare exhibited two haplotypes and was found only sporadically at higher elevations. Echium plantagineum possessed significantly higher levels of numerous pyrrolizidine alkaloids involved in plant defence. We conclude that elevated genetic diversity, tolerance to environmental stress and capacity for producing defensive secondary metabolites have contributed to the successful invasion of E. plantagineum in Australia.
Collapse
|
31
|
|
32
|
|
33
|
Contrasting trait responses to latitudinal climate variation in two lineages of an invasive grass. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1218-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Saltonstall K, Lambert AM, Rice N. What happens in Vegas, better stay in Vegas: Phragmites australis hybrids in the Las Vegas Wash. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1167-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|