1
|
He J, Castilla-Alcantara JC, Ortega-Calvo JJ, Harms H, Wick LY. DC Electric Fields Promote Biodegradation of Waterborne Naphthalene in Biofilter Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18234-18243. [PMID: 39353102 PMCID: PMC11483754 DOI: 10.1021/acs.est.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Biofiltration is a simple and low-cost method for the cleanup of contaminated water. However, the reduced availability of dissolved chemicals to surface-attached degrader bacteria may limit its efficient use at certain hydraulic loadings. When a direct current (DC) electric field is applied to an immersed packed bed, it invokes electrokinetic processes, such as electroosmotic water flow (EOF). EOF is a surface-charge-induced plug-flow-shaped movement of pore fluids. It acts at a nanometer distance above surfaces and allows the change of microscale pressure-driven flow profiles and, hence, the availability of dissolved contaminants to microbial degraders. In laboratory percolation columns, we assessed the effects of a weak DC electric field (E = 0.5 V·cm-1) on the biodegradation of waterborne naphthalene (NAH) by surface-attached Pseudomonas fluorescens LP6a. To vary NAH bioavailability, we used different NAH concentrations (C0 = 2.7, 5.1, or 7.8 × 10-5 mol·L-1) and Darcy velocities typical for biofiltration (U ¯ = 0.2-1.2 × 10-4 m·s-1). In DC-free controls, we observed higher specific degradation rates (qc) at higher NAH concentrations. The qc depended on U ¯ , suggesting bioavailability restrictions depending on the hydraulic residence times. DC fields consistently increased qc and resulted in linearly increasing benefits up to 55% with rising hydraulic loadings relative to controls. We explain these biodegradation benefits by EOF-altered microscale flow profiles allowing for better NAH provision to bacteria attached to the collectors even though the EOF was calculated to be 100-800 times smaller than bulk water flow. Our data suggest that electrokinetic approaches may give rise to future technical applications that allow regulating biodegradation, for example, in response to fluctuating hydraulic loadings.
Collapse
Affiliation(s)
- Jinyao He
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| | - Jose Carlos Castilla-Alcantara
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
- Instituto
de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avda. Reina Mercedes 10, Seville E-41012, Spain
| | - Jose Julio Ortega-Calvo
- Instituto
de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avda. Reina Mercedes 10, Seville E-41012, Spain
| | - Hauke Harms
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| | - Lukas Y. Wick
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| |
Collapse
|
2
|
Usman M, Jellali S, Anastopoulos I, Charabi Y, Hameed BH, Hanna K. Fenton oxidation for soil remediation: A critical review of observations in historically contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127670. [PMID: 34772554 DOI: 10.1016/j.jhazmat.2021.127670] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Fenton-based treatments have received tremendous attention in recent decades as viable strategies for soil decontamination. Historically contaminated soils are characterized by particular contamination types, pollution composition patterns, soil constituents, and complex soil-pollutant interactions arising due to long-term pollutant aging. These major pitfalls dictate the remediation efficiency in a significantly different way in soils with a history of contamination than that in a spiked soil. It becomes, therefore, highly challenging to treat historically contaminated soils. Despite the immense amount of collected research data in these soils, to our knowledge, no comprehensive review of this topic has been published. This article is intended to provide a critical review of the applications, limitations, and implications of various Fenton-based processes exclusively in these soils. These processes are differentiated on the basis of experimental conditions, reaction chemistry, efficiency, and impacts on soil biota. These processes are critically evaluated to illustrate the promising techniques with a brief description of related challenges and their potential solutions. Moreover, coupling Fenton oxidation with other remediation techniques such as bioremediation, chemical reduction, and soil washing has also been discussed. The last part of this review describes the effects of these processes onto soil quality and native biota, and how they can be addressed. It is also highly demanding to identify the processes which are not likely to evolve in practice either due to their poor efficiency, treatment cost, or environmental impacts. Future critical research directions have been identified to promote research for the upscaling of this technique for real field application.
Collapse
Affiliation(s)
- Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Salah Jellali
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47040 Arta, Greece
| | - Yassine Charabi
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Bassim H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Khalil Hanna
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, 35708 Rennes, France
| |
Collapse
|
3
|
Nie H, Nie M, Diwu Z, Wang L, Qiao Q, Zhang B, Yang X. Homogeneously catalytic oxidation of phenanthrene by the reaction of extracellular secretions of pyocyanin and Nicotinamide Adenine Dinucleotide. ENVIRONMENTAL RESEARCH 2020; 191:110159. [PMID: 32898564 DOI: 10.1016/j.envres.2020.110159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Application of biological methods on polycyclic aromatic hydrocarbons (PAHs) treatment is always limited by its low degradation efficiency. In this work, a catalytic oxidation pathway of phenanthrene resulted by extracellular secretions of P. aeruginosa NY3 was proposed. Results of the in vitro experiments showed that, the extracellular secretions of Pyocyanin (Pyo) and Nicotinamide Adenine Dinucleotide (NADH) acted as homogeneous catalysts because which produced H2O2, hydroxyl free radical and superoxide anion radical continuously under aerobic conditions. These produced reactive oxygen species oxidized the phenanthrene in aqueous solution, leading to the cleavage of the phenanthrene ring and the formation of phthalates products and low molecular weight metabolites (such as alkanoic acids). The ratio of BOD5/COD of phenanthrene-containing wastewaters was greatly improved after treating with Pyo and NADH. Results of the in vivo experiments showed that, pre-degradation of phenanthrene by extracellular fluid simultaneously containing Pyo and NADH, promoted cell growth of P. aeruginosa NY3, which confirmed the improvement of bioavalability of phenanthrene-containing wastewaters by the catalytic oxidation of Pyo and NADH. Further details of the free radical detection indicated that, the increase in secretion of Pyo by a bacterium was favorable to the production of H2O2 in the extracellular fluid.
Collapse
Affiliation(s)
- Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China.
| | - Zhenjun Diwu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China.
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China
| | - Qi Qiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China
| | - Bo Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China
| | - Xuefu Yang
- School of Civil and Architecture Engineering, Xi'an Technological University, Xi'an, 710032, PR China
| |
Collapse
|
4
|
Mazarji M, Minkina T, Sushkova S, Antonenko E, Mandzhieva S, Dudnikova T. Impact of humic acid on degradation of benzo(a)pyrene polluted Haplic Chernozem triggered by modified Fenton-like process. ENVIRONMENTAL RESEARCH 2020; 190:109948. [PMID: 32750554 DOI: 10.1016/j.envres.2020.109948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
In this study, the applicability of a modified Fenton reaction for remediation of polycyclic aromatic hydrocarbons (PAHs) was demonstrated in chernozem soil. The main aim was to investigate the impact of variation of humic acid (HA) on the modified Fenton capabilities to degrade of benzo(a)pyrene (BaP). Experimental was designed with two independent variables, including hydrogen peroxide (H2O2) and hematite (α-Fe2O3), to determine the most effective BaP treatment conditions with exploring natural and an extra added amount of HA. For modified Fenton reaction at Haplic Chernozem, the best BaP degradation conditions resulted in an overall degradation of 68% with the following conditions: 0.95 M H2O2; 17.54 mg/g hematite; pH 7.8 without adjustment; 24 h; unsaturated (soil: water ratio 1:0.5). In the soil supplemented with 1% HA, Fenton-like reaction was found to perform better and resulted in 76% BaP degradation with less amount of hematite dosage (16.71 mg). The fact that HA, a significant class of naturally occurring compounds in soil, supports the Fenton reaction has strong relevance in the field of enhancing PAHs degradation field to obtain a more economical route.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don, Russian Federation.
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation.
| | | | - Elena Antonenko
- Southern Federal University, Rostov-on-Don, Russian Federation
| | | | | |
Collapse
|
5
|
Chan CK, Tung KK, Pavlović NM, Chan W. Remediation of aristolochic acid-contaminated soil by an effective advanced oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137528. [PMID: 32143041 DOI: 10.1016/j.scitotenv.2020.137528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Aristolochic acids (AAs) are persistent soil pollutants in the agricultural fields of the Balkan Peninsula that are endemic for Aristolochia clematitis L. This class of carcinogenic and nephrotoxic phytotoxins is taken up by crops through root absorption and contaminates staple foods across the peninsula. Human exposure to AAs via dietary intake has recently been recognized as a cause of Balkan endemic nephropathy. For the sake of public health, human exposure to AAs from all sources should be minimized in a timely manner. However, currently, there is no available remediation method to remove AAs from soil. In this study, we developed the first soil remediation method for AAs using Fenton's reagent (FR), a combination of ferrous ion and hydrogen peroxide, and optimized factors, including pH, temperature, time, and dose of FR, to achieve the best degradation performance. The maximum AA degradation efficiency was found to be >97% in soil with 500 μg kg-1 of AAs. We anticipate that this developed method, mediated via Fenton reaction, will be useful to effectively eliminate AAs from the Balkan farmlands.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Tung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Liao X, Wu Z, Li Y, Cao H, Su C. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs. CHEMOSPHERE 2019; 226:483-491. [PMID: 30951943 PMCID: PMC6756151 DOI: 10.1016/j.chemosphere.2019.03.126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
Chemical oxidation is a promising pretreatment step coupled with bioremediation for removal of polycyclic aromatic hydrocarbons (PAHs). The effectiveness of Fenton, modified Fenton, potassium permanganate and activated persulfate oxidation treatments on the real contaminated soils collected from a coal gas plant (263.6 ± 73.3 mg kg-1 of the Σ16 PAHs) and a coking plant (385.2 ± 39.6 mg kg-1 of the Σ16 PAHs) were evaluated. Microbial analyses showed only a slight impact on indigenous microbial diversity by Fenton treatment, but showed the inhibition of microbial diversity and delayed population recovery by potassium permanganate reagent. After potassium permanganate treatment, the microorganism mainly existed in the soil was Pseudomonas or Pseudomonadaceae. The results showed that total organic carbon (TOC) content in soil was significantly increased by adding modified Fenton reagent (1.4%-2.3%), while decreased by adding potassium permanganate (0.2%-1%), owing to the nonspecific and different oxidative properties of chemical oxidant. The results also demonstrated that the removal efficiency of total PAHs was ordered: permanganate (90.0%-92.4%) > activated persulfate (81.5%-86.54%) > modified Fenton (81.5%-85.4%) > Fenton (54.1%-60.0%). Furthermore, the PAHs removal efficiency was slightly increased on the 7th day after Fenton and modified Fenton treatments, about 14.6%, and 14.4% respectively, and the PAHs removal efficiency only enhanced 4.1% and 1.3% respectively from 1st to 15th day after potassium permanganate and activated persulfate treatments. The oxidants greatly affect the growth of soil indigenous microbes, which cause further influence for PAHs degradation by bioremediation.
Collapse
Affiliation(s)
- Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science (CAS), Beijing, 100101, China.
| | - Zeying Wu
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science (CAS), Beijing, 100101, China
| | - You Li
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science (CAS), Beijing, 100101, China
| | - Hongying Cao
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science (CAS), Beijing, 100101, China
| | - Chunming Su
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, Ada, OK, United States
| |
Collapse
|
7
|
Haavisto JM, Lakaniemi AM, Puhakka JA. Storing of exoelectrogenic anolyte for efficient microbial fuel cell recovery. ENVIRONMENTAL TECHNOLOGY 2019; 40:1467-1475. [PMID: 29293411 DOI: 10.1080/09593330.2017.1423395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Starting up a microbial fuel cell (MFC) requires often a long-term culture enrichment period, which is a challenge after process upsets. The purpose of this study was to develop low-cost storage for MFC enrichment culture to enable prompt process recovery after upsets. Anolyte of an operating xylose-fed MFC was stored at different temperatures and for different time periods. Storing the anolyte for 1 week or 1 month at +4°C did not significantly affect power production, but the lag time for power production was increased from 2 days to 3 or 5 days, respectively. One month storing at -20°C increased the lag time to 7 days. The average power density in these MFCs varied between 1.2 and 1.7 W/m3. The share of dead cells (measured by live/dead staining) increased with storing time. After 6-month storage, the power production was insignificant. However, xylose removal remained similar in all cultures (99-100%) while volatile fatty acids production varied. The results indicate that fermentative organisms tolerated the long storage better than the exoelectrogens. As storing at +4°C is less energy intensive compared to freezing, anolyte storage at +4°C for a maximum of 1 month is recommended as start-up seed for MFC after process failure to enable efficient process recovery.
Collapse
Affiliation(s)
- Johanna M Haavisto
- a Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Tampere , Finland
| | - Aino-Maija Lakaniemi
- a Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Tampere , Finland
| | - Jaakko A Puhakka
- a Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Tampere , Finland
| |
Collapse
|
8
|
Liu Y, Lang J, Wang T, Jawad A, Wang H, Khan A, Chen Z, Chen Z. Enhanced degradation of isoproturon in soil through persulfate activation by Fe-based layered double hydroxide: different reactive species comparing with activation by homogenous Fe(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26394-26404. [PMID: 29982942 DOI: 10.1007/s11356-018-2637-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Phenylurea herbicide residuals in soil may continuously contaminate surface water and groundwater due to unregulated and improper use. Herein, we reported a stable and active oxidation system including heterogeneous Fe-based layered double hydroxide materials as persulfate (PS) activators. Under mild conditions, 1% LDH in weight and 70 mM PS can completely degrade 500 mg/kg isoproturon in soil within 10 h, during which less than 0.1 ppm heavy metal leaching was detected. This remarkable performance was consistent in a broad pH range (3~11) and was resistant to various inorganic anions (Cl-, Br-, NO3-, HCO3-) and humic acid. Mechanism studies from scavenging tests, EPR, and fluorescence spectra collectively proved that besides •OH and •SO4-, singlet oxygen (1O2) and superoxide (•O2-) were also generated and were accounted for the oxidative degradation. This unique mechanism of generating diverse radicals was clearly distinguished from classic Fe(II)/PS system, significantly reduced the influence of varying parameters in water and soil matrix, and was suggestive to chemical oxidation system in soil remediation to avoid scavenging effects by background electrolytes or other components in water/soil matrix. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yong Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jie Lang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Ting Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Ali Jawad
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Haibin Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Aimal Khan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhulei Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
9
|
Usman M, Hanna K, Faure P. Remediation of oil-contaminated harbor sediments by chemical oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1100-1107. [PMID: 29660866 DOI: 10.1016/j.scitotenv.2018.04.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Oil hydrocarbons are widespread pollutants in sub-surface sediments with serious threats to terrestrial and aquatic environment. However, very limited data is available about remediation of historically contaminated sediments. This study reports the use of magnetite-catalyzed chemical oxidation (H2O2 and Na2S2O8) to degrade oil hydrocarbons in aged contaminated sediments. For this purpose, oil contaminated sediments were sampled from three different locations in France including two harbors and one petroleum industrial channel. These sediments were characterized by different hydrocarbon index (HI) values (3.7-9.0gkg-1), total organic carbon contents (1.9%-8.4%) and textures (sand, slit loam and silt). Chemical oxidation was performed in batch system for one week at circumneutral pH by: H2O2 alone, H2O2/Fe(II), H2O2/magnetite, Na2S2O8 alone, Na2S2O8/Fe(II), and Na2S2O8/magnetite. Results obtained by GC-FID indicated substantial hydrocarbon degradation (40-70%) by H2O2/magnetite and Na2S2O8/magnetite. However, oxidants alone or with soluble Fe(II) caused small degradation (<5%). In the presence of H2O2/magnetite, degradation of extractable organic matter and that of HI were highly correlated. However, no such correlation was observed for Na2S2O8/magnetite which resulted in higher removal of HI indicating its selective oxidation behavior. Treatment efficiency was negatively influenced by organic carbon and carbonate contents. For being the first study to report chemical oxidation of oil hydrocarbons in real contaminated sediments, it may have practical implications to design a remediation strategy for target contaminants.
Collapse
Affiliation(s)
- M Usman
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France; Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
| | - K Hanna
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - P Faure
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| |
Collapse
|
10
|
Bioremediation of benzene from groundwater by calcium peroxide (CaO2) nanoparticles encapsulated in sodium alginate. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Megharaj M, Naidu R. Soil and brownfield bioremediation. Microb Biotechnol 2017; 10:1244-1249. [PMID: 28834380 PMCID: PMC5609233 DOI: 10.1111/1751-7915.12840] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 11/26/2022] Open
Abstract
Soil contamination with petroleum hydrocarbons, persistent organic pollutants, halogenated organic chemicals and toxic metal(loid)s is a serious global problem affecting the human and ecological health. Over the past half‐century, the technological and industrial advancements have led to the creation of a large number of brownfields, most of these located in the centre of dense cities all over the world. Restoring these sites and regeneration of urban areas in a sustainable way for beneficial uses is a key priority for all industrialized nations. Bioremediation is considered a safe economical, efficient and sustainable technology for restoring the contaminated sites. This brief review presents an overview of bioremediation technologies in the context of sustainability, their applications and limitations in the reclamation of contaminated sites with an emphasis on brownfields. Also, the use of integrated approaches using the combination of chemical oxidation and bioremediation for persistent organic pollutants is discussed.
Collapse
Affiliation(s)
- Mallavarapu Megharaj
- Global Centre for Environmental Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
12
|
Errors in alkylated polycyclic aromatic hydrocarbon and sulfur heterocycle concentrations caused by currently employed standardized methods. Anal Chim Acta 2017; 977:20-27. [DOI: 10.1016/j.aca.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
|
13
|
Simpanen S, Dahl M, Gerlach M, Mikkonen A, Malk V, Mikola J, Romantschuk M. Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25024-25038. [PMID: 27677992 PMCID: PMC5124059 DOI: 10.1007/s11356-016-7606-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/05/2016] [Indexed: 05/04/2023]
Abstract
The use of in situ techniques in soil remediation is still rare in Finland and most other European countries due to the uncertainty of the effectiveness of the techniques especially in cold regions and also due to their potential side effects on the environment. In this study, we compared the biostimulation, chemical oxidation, and natural attenuation treatments in natural conditions and pilot scale during a 16-month experiment. A real fuel spill accident was used as a model for experiment setup and soil contamination. We found that biostimulation significantly decreased the contaminant leachate into the water, including also the non-aqueous phase liquid (NAPL). The total NAPL leachate was 19 % lower in the biostimulation treatment that in the untreated soil and 34 % lower in the biostimulation than oxidation treatment. Soil bacterial growth and community changes were first observed due to the increased carbon content via oil amendment and later due to the enhanced nutrient content via biostimulation. Overall, the most effective treatment for fresh contaminated soil was biostimulation, which enhanced the biodegradation of easily available oil in the mobile phase and consequently reduced contaminant leakage through the soil. The chemical oxidation did not enhance soil cleanup and resulted in the mobilization of contaminants. Our results suggest that biostimulation can decrease or even prevent oil migration in recently contaminated areas and can thus be considered as a potentially safe in situ treatment also in groundwater areas.
Collapse
Affiliation(s)
- Suvi Simpanen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| | - Mari Dahl
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Magdalena Gerlach
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Anu Mikkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, 40014, Jyväskylä, Finland
| | - Vuokko Malk
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Mikkeli University of Applied Sciences, Patteristonkatu 3, 50100, Mikkeli, Finland
| | - Juha Mikola
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Martin Romantschuk
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| |
Collapse
|
14
|
Usman M, Hanna K, Haderlein S. Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:179-190. [PMID: 27341118 DOI: 10.1016/j.scitotenv.2016.06.135] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/01/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
Fenton oxidation constitutes a viable remediation strategy to remove polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. This review is intended to illustrate major limitations associated with this process like acidification, PAH unavailability, and deterioration of soil quality along with associated factors, followed by a critical description of various developments to overcome these constraints. Considering the limitation that its optimal pH is around 3, traditional Fenton treatment could be costly, impractical in soil due to the high buffering capacity of soils and associated hazardous effects. Use of various chelating agents (organic or inorganic) allowed oxidation at circumneutral pH but factors like higher oxidant demand, cost and toxicity should be considered. Another alternative is the use of iron minerals that can catalyze Fenton-like oxidation over a wide range of pH, but mobility of these particles in soils (i.e. saturated and unsaturated zones) should be investigated prior to in-situ applications. The PAH-unavailability is the crucial limitation hindering their effective degradation. Research data is compiled describing various strategies to address this issue like the use of availability enhancement agents, extraction or thermal pretreatment. Last section of this review is devoted to describe the effects of various developments in Fenton treatment onto soil quality and native microbiota. Finally, research gaps are discussed to suggest future directions in context of applying Fenton oxidation to remediate contaminated soils.
Collapse
Affiliation(s)
- M Usman
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
| | - K Hanna
- Ecole Nationale Supérieure de Chimie de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, 35708 Rennes Cedex 7, France
| | - S Haderlein
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
15
|
Martínez-Pascual E, Grotenhuis T, Solanas AM, Viñas M. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:135-143. [PMID: 26177489 DOI: 10.1016/j.jhazmat.2015.06.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Coupling chemical oxidation with bioremediation could be a cost-effective system to cope with soil and groundwater pollution. However, the effects of chemical oxidation on autochthonous microbial communities are scarcely known. A detailed analysis that considers both the efficiency of the two technologies and the response of the microbial communities was performed on a linear alkylbenzene-polluted soil and groundwater samples. The impacts of a modified Fenton's reaction (MFR) at various dosages and of permanganate on the microbiota over 4 weeks were assessed. The permanganate and MFR negatively affected microbial abundance and activity. However, the resilience of certain microbial populations was observed, with a final increase in potential hydrocarbon-degrading populations as determined by both the alkB gene abundance and the predominance of well-known hydrocarbon-degrading phylotypes such as Rhodococcus, Ochrobactrum, Acinetobacter and Cupriavidus genera as determined by 16S rRNA-based DGGE fingerprinting. The assessment of the chemical oxidant impact on autochthonous microbiota should be considered for the optimization of coupled field remediation technologies.
Collapse
Affiliation(s)
| | - Tim Grotenhuis
- Department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
| | - Anna M Solanas
- Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Marc Viñas
- GIRO Joint Research Unit IRTA-UPC, IRTA, Torre Marimon, E-08140 Caldes de Montbui, Spain.
| |
Collapse
|
16
|
Gill RT, Harbottle MJ, Smith JWN, Thornton SF. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. CHEMOSPHERE 2014; 107:31-42. [PMID: 24875868 DOI: 10.1016/j.chemosphere.2014.03.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.
Collapse
Affiliation(s)
- R T Gill
- Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK.
| | - M J Harbottle
- Institute of Environment and Sustainability, Cardiff University, School of Engineering, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK
| | - J W N Smith
- Shell Global Solutions, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands; Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - S F Thornton
- Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| |
Collapse
|
17
|
Mikkonen A, Hakala KP, Lappi K, Kondo E, Vaalama A, Suominen L. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 162:374-380. [PMID: 22243888 DOI: 10.1016/j.envpol.2011.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/25/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination.
Collapse
Affiliation(s)
- Anu Mikkonen
- Department of Food and Environmental Sciences, Division of Microbiology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
18
|
Laurent F, Cébron A, Schwartz C, Leyval C. Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. CHEMOSPHERE 2012; 86:659-664. [PMID: 22169710 DOI: 10.1016/j.chemosphere.2011.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
A batch experiment was conducted to assess the impact of chemical oxidation using modified Fenton reaction on PAH content and on physico-chemical and biological parameters of an industrial PAH contaminated soil in unsaturated condition. Two levels of oxidant (H(2)O(2), 6 and 65 g kg(-1)) and FeSO(4) were applied. Agronomic parameters, bacterial and fungal density, microbial activity, seed germination and ryegrass growth were assessed. Partial removal of PAHs (14% and 22%) was obtained with the addition of oxidant. The impact of chemical oxidation on PAH removal and soil physico-chemical and biological parameters differed depending on the level of reagent. The treatment with the highest concentration of oxidant decreased soil pH, cation exchange capacity and extractable phosphorus content. Bacterial, fungal, and PAH degrading bacteria densities were also lower in oxidized soil. However a rebound of microbial populations and an increased microbial activity in oxidized soil were measured after 5 weeks of incubation. Plant growth on soil treated by the highest level of oxidant was negatively affected.
Collapse
Affiliation(s)
- F Laurent
- LIMOS UMR7137 Nancy Université CNRS, BP 70239, F-54506 Vandœuvre-lès-Nancy cedex, France
| | | | | | | |
Collapse
|
19
|
Sazykin IS, Prokofiev VN, Chistyakov VA, Sazykina MA, Vnukov VV. Chemiluminescence analysis of oil oxidizing bacteria Actinetobacter calcoaceticus extracts: Effects of the extracts on pSoxS-lux biosensor. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811040156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Yap CL, Gan S, Ng HK. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. CHEMOSPHERE 2011; 83:1414-1430. [PMID: 21316731 DOI: 10.1016/j.chemosphere.2011.01.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 05/26/2023]
Abstract
This paper aims to review the applications of Fenton based treatments specifically for polycyclic aromatic hydrocarbons-contaminated soils. An overview of the background and principles of Fenton treatment catalysed by both homogenous (conventional and modified Fenton) and heterogeneous (Fenton-like) catalysts is firstly presented. Laboratory and field soil remediation studies are then discussed in terms of efficiency, kinetics and associated factors. Four main scopes of integrated Fenton treatments, i.e. physical-Fenton, biological-Fenton, electro-Fenton and photo-Fenton are also reviewed in this paper. For each of these integrated remediation technologies, the theoretical background and mechanisms are detailed alongside with achievable removal efficiencies for polycyclic aromatic hydrocarbons in contaminated soils compared to sole Fenton treatment. Finally, the environmental impacts of Fenton based soil treatments are documented and discussed.
Collapse
Affiliation(s)
- Chiew Lin Yap
- Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | | | | |
Collapse
|
21
|
Goi A, Viisimaa M, Trapido M, Munter R. Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. CHEMOSPHERE 2011; 82:1196-201. [PMID: 21146854 DOI: 10.1016/j.chemosphere.2010.11.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 05/24/2023]
Abstract
Calcium and magnesium peroxides were applied for the treatment of soil contaminated by polychlorinated biphenyls-containing electrical insulating oil (Aroclor 1016). The removal of PCB-containing electrical insulating oil was achieved with the addition of either calcium peroxide or magnesium peroxide alone and dependent on dosages of the chemical. A 21-d treatment of 60% watered soil with the moderate addition (chemical/oil weight ratio of 0.005/1) of either calcium peroxide or magnesium peroxide resulted in nearly complete (96 ± 2%) oil removal, unsubstantial increase in soil pH and almost no changes in oxygen consumption and dehydrogenase activity, making it suitable for the soil decontamination.
Collapse
Affiliation(s)
- Anna Goi
- Department of Chemical Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia.
| | | | | | | |
Collapse
|
22
|
Richardson SD, Lebron BL, Miller CT, Aitken MD. Recovery of phenanthrene-degrading bacteria after simulated in situ persulfate oxidation in contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:719-25. [PMID: 21162560 PMCID: PMC3021091 DOI: 10.1021/es102420r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A continuous-flow column study was conducted to investigate the long-term effects of persulfate oxidation on the abundance and activity of the indigenous microbial community and phenanthrene-degrading bacteria in contaminated soil from a former manufactured gas plant (MGP) site. Approximately six pore volumes of a 20 g/L persulfate solution were introduced into the column, followed by simulated groundwater for 500 days. Soil samples were collected from the surface of the soil bed and along the column length immediately before and after persulfate injection and up to 500 days following injection. Exposure to persulfate led to a 2- to 3-log reduction in total bacterial 16S rRNA genes, severe inhibition of (14)C-acetate mineralization (as a measure of general microbial activity), and a decrease in community diversity. However, relatively rapid recovery of both bacterial gene abundance and activity was observed within 30 days after persulfate exposure. Mineralization of (14)C-phenanthrene was also inhibited but did not recover until 100 days postoxidation. Known phenanthrene-degrading bacterial groups decreased to below detection limits throughout the column, with recovery times from 100 to 500 days after persulfate injection. These findings suggest that coupling biological processes with persulfate oxidation is possible, although recovery of specific contaminant degraders may occur much later than the general microbial community recovers. Furthermore, the use of total bacterial quantity or nonspecific measures of activity as a surrogate for the recovery of contaminant degraders may be inappropriate for evaluating the compatibility of chemical treatment with subsequent bioremediation.
Collapse
|
23
|
|