1
|
Su H, Li J, Ye L, Su G. Establishment of compound database of emerging antioxidants and high-resolution mass spectrometry screening in lake sediment from Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28341-28352. [PMID: 38532220 DOI: 10.1007/s11356-024-32855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Antioxidants are ubiquitous in various environmental samples, leading to increasing concern regarding their potential risk to environments or humans. However, there is dearth of information regarding the environmental fate of antioxidants and unknown/unexpected antioxidants in the environment. Here, we established a compound database (CDB) containing 320 current-used antioxidants by collecting the chemicals from EPA's functional use database and published documents. Physical-chemical characteristics of these antioxidants were estimated, and 19 ones were considered as persistent and bioaccumulative (P&B) substances. This CDB was further coupled with high resolution mass spectrometry (HRMS) technique, which was employed for suspect screening of antioxidants in extracts of sediments (n = 88) collected from Taihu Lake basin. We screened 119 HRMS features that can match 135 chemical formulas in the CDB, and 20 out of them exhibited the detection frequencies ≥ 90%. The total concentrations of suspect antioxidants in sediments ranged from 6.41 to 830 ng/g dw. Statistical analysis demonstrated that concentrations of suspect antioxidants in Taihu Lake were statistically significantly lower than those in Shihu and Jiulihu Lake, but greater than those from other small lakes. Collectively, this study provided a CDB that could be helpful for further monitoring studies of antioxidant in the environments, and also provided the first evidence regarding the ubiquity of antioxidants in aquatic environment of Taihu Lake basin.
Collapse
Affiliation(s)
- Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
2
|
Witkowska D, Ginter-Kramarczyk D, Holderna-Odachowska A, Budnik I, Kaczorek E, Lukaszewski Z, Zembrzuska J. Biodegradation of Oxyethylated Fatty Alcohols by Bacterium Pseudomonas alcaligenes; AE Biodegradation by Pseudomonas alcaligenes. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Pseudomanas alcaligenes is a Gram-negative soil bacteria which has the potential to degrade hydrocarbons including aromatic compounds. The biodegradation of a representative oxyethylated fatty alcohol by the PA strain under static model conditions with a surfactant as a sole source of organic carbon was investigated. Polydispersal oxyethylated dodecanol C12E10 is biodegraded by the bacterial P. alcaligenes strain of following two alternative pathways: central fission with formation of poly(ethylene glycols) or ω-oxidation of an oxyethylene chain with the formation of carboxyl end group and intermediate aldehyde group. Shorter homologues of polydispersal mixture C12E10 are faster biodegraded and the mixture is enriched with longer homologues.
Collapse
|
3
|
Zembrzuska J, Budnik I, Lukaszewski Z. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:612-619. [PMID: 27037882 DOI: 10.1016/j.scitotenv.2016.03.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C12E9 having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C12E9 as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C12E9 and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C12E9, C12E8, C12E7 and C12E6. Apart from the substrate, the homologues C12E8, C12E7 and C12E6, being metabolites of C12E9 biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C12E8COOH, C12E7COOH, C12E6COOH and C12E5COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C12E9 and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a single unit.
Collapse
Affiliation(s)
- Joanna Zembrzuska
- Poznan University of Technology, Faculty of Chemical Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland; Poznan University of Technology, Faculty of Chemical Technology, ul. Berdychowo 4, 60-965 Poznan, Poland.
| | - Irena Budnik
- Poznan University of Technology, Faculty of Chemical Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland; Poznan University of Technology, Faculty of Chemical Technology, ul. Berdychowo 4, 60-965 Poznan, Poland.
| | - Zenon Lukaszewski
- Poznan University of Technology, Faculty of Chemical Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland; Poznan University of Technology, Faculty of Chemical Technology, ul. Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
4
|
Budnik I, Zembrzuska J, Lukaszewski Z. Bacterial strains isolated from river water having the ability to split alcohol ethoxylates by central fission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14231-14239. [PMID: 27053052 PMCID: PMC4943993 DOI: 10.1007/s11356-016-6566-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
Alcohol ethoxylates (AE) are a major component of the surfactant stream discharged into surface water. The "central fission" of AE with the formation of poly(ethylene glycols) (PEG) is considered to be the dominant biodegradation pathway. However, information as to which bacterial strains are able to perform this reaction is very limited. The aim of this work was to establish whether such an ability is unique or common, and which bacterial strains are able to split AE used as a sole source of organic carbon. Four bacterial strains were isolated from river water and were identified on the basis of phylogenetic trees as Enterobacter strain Z2, Enterobacter strain Z3, Citrobacter freundii strain Z4, and Stenotrophomonas strain Z5. Sterilized river water and "artificial sewage" were used for augmentation of the isolated bacteria. The test was performed in bottles filled with a mineral salt medium spiked with surfactant C12E10 (10 mg L(-1)) and an inoculating suspension of the investigated bacterial strain. Sequential extraction of the tested samples by ethyl acetate and chloroform was used for separation of PEG from the water matrix. LC-MS was used for PEG determination on the basis of single-ion chromatograms. All four selected and investigated bacterial strains exhibit the ability to split fatty alcohol ethoxylates with the production of PEG, which is evidence that this property is a common one rather than specific to certain bacterial strains. However, this ability increases in the sequence: Stenotrophomonas strain Z5 < Enterobacter strain Z2 < Enterobacter strain Z3 = Citrobacter freundii strain Z4. Graphical Abstract Biodegradation by central fission of alcohol ethoxylates by bacterial strains isolated from river water.
Collapse
Affiliation(s)
- Irena Budnik
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland.
- Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965, Poznan, Poland.
| | - Zenon Lukaszewski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland
| |
Collapse
|
5
|
Zembrzuska J, Budnik I, Lukaszewski Z. Monitoring of selected non-ionic surfactants in river water by liquid chromatography-tandem mass spectrometry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 169:247-252. [PMID: 26773428 DOI: 10.1016/j.jenvman.2015.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/14/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Alcohol ethoxylates (AEs) are a significant component of the non-ionic surfactant (NS) flux discharged into surface water. Due to the polydispersity of the majority of NS, they are easily recognizable by their 'fingerprints', i.e. a series of mass peaks which differ by m/z = 44, namely the m/z of a single oxyethylene subunit. Dodecanol ethoxylates (C12EOx) represent AEs from both renewable and petrochemical sources. Therefore, C12Ex are suitable fingerprints of NS in the aquatic environment. The aim of this work was to develop an LC-MS/MS method suitable for AE monitoring in river water. River water samples taken from the River Warta in Poznan (Poland) were extracted with ethyl acetate, evaporated, reconstituted in the mobile phase and processed by the LC - Multistage MS procedure (LC-MS/MS) using optimum multiple reaction monitoring (MRM). The method of multiple standard additions was used for the evaluation of each AE fingerprint concentration. The concentration of C12EOx having 2-9 oxyethylene subunits was determined. Standards for higher C12EOx are not yet available. The developed method offers an LOD of between 1 and 9 ng L(-1), and is suitable for the monitoring of NS fingerprints in river water. The range of C12EO2-9 concentrations determined in the River Warta varied within two orders of magnitude in all cases. The lowest determined concentration was 17 ± 1 ng L(-1), while the highest was 2.6 ± 0.14 μg L(-1). The total concentration of C12EO2-C12EO9 homologues varied between 1.4 and 11.2 μg L(-1). A relatively high concentration of short-chained homologues (2-5 oxyethylene subunits) was observed in the investigated river water. This provides evidence of a biodegradation pathway involving the gradual shortening of the AE oxyethylene chain. Distinct evidence was also obtained of unregulated NS discharges into the river.
Collapse
Affiliation(s)
- Joanna Zembrzuska
- Poznan University of Technology, Institute of Chemistry, pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland.
| | - Irena Budnik
- Poznan University of Technology, Institute of Chemistry, pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
| | - Zenon Lukaszewski
- Poznan University of Technology, Institute of Chemistry, pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
| |
Collapse
|
6
|
Zembrzuska J, Budnik I, Lukaszewski Z. Separation and determination of homogenous fatty alcohol ethoxylates by liquid chromatography with mulitstage mass spectrometry. J Sep Sci 2014; 37:1694-702. [DOI: 10.1002/jssc.201301391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry; Poznan University of Technology; Poznan Poland
| | - Irena Budnik
- Institute of Chemistry and Technical Electrochemistry; Poznan University of Technology; Poznan Poland
| | - Zenon Lukaszewski
- Institute of Chemistry and Technical Electrochemistry; Poznan University of Technology; Poznan Poland
| |
Collapse
|
7
|
West R, Banton M, Hu J, Klapacz J. The distribution, fate, and effects of propylene glycol substances in the environment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 232:107-138. [PMID: 24984837 DOI: 10.1007/978-3-319-06746-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The propylene glycol substances comprise a homologous family of synthetic organic molecules that have widespread use and very high production volumes across the globe. The information presented and summarized here is intended to provide an overview of the most current and reliable information available for assessing the potential environmental exposures and impacts of these substances across the manufacture, use, and disposal phases of their product life cycles.The PG substances are characterized as being miscible in water, having very low octanol-water partition coefficients (log Pow) and exhibiting low potential to volatilize from water or soil in both pure and dissolved forms. The combination of these properties dictates that, almost regardless of the mode of their initial emission, they will ultimately associate with surface water, soil, and the related groundwater compartments in the environment. These substances have low affinity for soil and sediment particles, and thus will remain mobile and bio-available within these media.In the atmosphere, the PG substances are demonstrated to have short lifetimes(I. 7-11 h), due to rapid reaction with photochemically-generated hydroxyl radicals.This reactivity, combined with efficient wet deposition of their vapor and aerosol forms, lends to their very low potential for long-range transport via the atmosphere.In the aquatic and terrestrial compartments of the environment, the PG substances are rapidly and ultimately biodegraded under both aerobic and anaerobic conditions by a wide variety of microorganisms, regardless of prior adaptation to the substances.Except for the TePG substance, the propylene glycol substances meet the OECD definition of "readily biodegradable", and according to this definition are not expected to persist in either aquatic or terrestrial environments. The TePG exhibits inherent biodegradability, is not regarded to be persistent, and is expected to ultimately biodegrade in the environment, albeit at a somewhat slower rate. The apparent ease with which microorganisms and higher organisms can metabolize the PG substances, along with their low log Pow and very high water solubility values, portends them to have very low potential for bioaccumulation and/or biomagnification in aquatic and terrestrial organisms. These same properties, along with their neutral structures and lack of biological reactivity, are the reasons for which the PG substances exhibit a base-line, non-polar narcosis mode of toxicity.The PG substances have been shown here to be practically non-toxic to essentially every aquatic and terrestrial animal and plant species tested. Collectively, the available wealth of information relating to persistence, bioaccumulation, and eco-toxicity of these substances allows a definitive conclusion of their categorization as not being PBT (i.e., persistently bioaccumulative/toxic). The PBT screening and categorization of substances on the Canadian Domestic Substances List (DSL) by Environment Canada has formally concluded that each member of this substance family is "not P", "not B", and "not T' according to their associated PBT criteria.Similarly, the preceding evaluations of these high production volume substances within the OECD SIDS program concluded that MPG, DPG, and TPG are low priorities for further examination of potential impacts to humans and the environment.More extensive evaluations of potential risks to human health and the environment were recently completed by industry, as required for their registration under the European Union REACh legislation; each evaluation demonstrated that current uses, associated exposures, and controls thereof, will not result in exposures that exceed predicted no effect concentrations in the environment.
Collapse
Affiliation(s)
- Robert West
- Toxicology and Environmental Research & Consulting (TERC), The Dow Chemical Company, 1803 Building, Midland, MI, USA,
| | | | | | | |
Collapse
|