1
|
Wang H, Qin L, Qi W, Elshobary M, Wang W, Feng P, Wang Z, Zhu S. Harmony in detoxification: Microalgae unleashing the potential of lignocellulosic pretreatment wastewater for resource utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171888. [PMID: 38531442 DOI: 10.1016/j.scitotenv.2024.171888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Lignocellulosic biomass is a pivotal renewable resource in biorefinery process, requiring pretreatment, primarily chemical pretreatment, for effective depolymerization and subsequent transformation. This process yields solid residue for saccharification and lignocellulosic pretreatment wastewater (LPW), which comprises sugars and inhibitors such as phenols and furans. This study explored the microalgal capacity to treat LPW, focusing on two key hydrolysate inhibitors: furfural and vanillin, which impact the growth of six green microalgae. Chlorella sorokiniana exhibited higher tolerance to furfural and vanillin. However, both inhibitors hindered the growth of C. sorokiniana and disrupted algal photosynthetic system, with vanillin displaying superior inhibition. A synergistic inhibitory effect (Q < 0.85) was observed with furfural and vanillin on algal growth. Furfural transformation to low-toxic furfuryl alcohol was rapid, yet the addition of vanillin hindered this process. Vanillin stimulated carbohydrate accumulation, with 50.48 % observed in the 0.1 g/L furfural + 0.1 g/L vanillin group. Additionally, vanillin enhanced the accumulation of C16: 0 and C18: 2, reaching 21.71 % and 40.36 %, respectively, with 0.1 g/L vanillin. This study proposed a microalgae-based detoxification and resource utilization approach for LPW, enhancing the comprehensive utilization of lignocellulosic components. The observed biomass modifications also suggested potential applications for biofuel production, contributing to the evolving landscape of sustainable biorefinery processes.
Collapse
Affiliation(s)
- Huiying Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mostafa Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Kumar Vaidyanathan V, Saikia K, Senthil Kumar P, Karanam Rathankumar A, Rangasamy G, Dattatraya Saratale G. Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents. BIORESOURCE TECHNOLOGY 2023; 378:128975. [PMID: 36990330 DOI: 10.1016/j.biortech.2023.128975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The progress of versatile chemicals and bio-based fuels using renewable biomass has gained ample importance. Furfural and 5-hydroxymethylfurfural are biomass-derived compounds that serve as the cornerstone for high-value chemicals and have a myriad of industrial applications. Despite the significant research into several chemical processes for furanic platform chemicals conversion, the harsh reaction conditions and toxic by-products render their biological conversion an ideal alternative strategy. Although biological conversion confers an array of advantages, these processes have been reviewed less. This review explicates and evaluates notable improvements in the bioconversion of 5-hydroxymethylfurfural and furfural to comprehend the current developments in the biocatalytic transformation of furan. Enzymatic conversion of HMF and furfural to furanic derivative have been explored, while the latter has substantially overlooked a foretime. This discrepancy was reviewed along with the outlook on the potential usage of 5-hydroxymethylfurfural and furfural for the furan-based value-added products' synthesis.
Collapse
Affiliation(s)
- Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kongkona Saikia
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Abiram Karanam Rathankumar
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggido, Seoul 10326, South Korea.
| |
Collapse
|
3
|
Lee SM, Cho DH, Jung HJ, Kim B, Kim SH, Bhatia SK, Gurav R, Jeon JM, Yoon JJ, Park JH, Park JH, Kim YG, Yang YH. Enhanced tolerance of Cupriavidus necator NCIMB 11599 to lignocellulosic derived inhibitors by inserting NAD salvage pathway genes. Bioprocess Biosyst Eng 2022; 45:1719-1729. [PMID: 36121506 DOI: 10.1007/s00449-022-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.
Collapse
Affiliation(s)
- Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Republic of Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
da Cunha Abreu Xavier M, Teixeira Franco T. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi. Biotechnol Lett 2021; 43:967-979. [PMID: 33517513 DOI: 10.1007/s10529-021-03080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The extraction of the hemicellulose fraction of sugarcane bagasse (SCB) by acid hydrolysis was evaluated in an autoclave and a Parr reactor aiming the application of the hydrolysate as a carbon source for lipid production by Lipomyces starkeyi. RESULTS The hydrolysis that resulted in the highest sugar concentration was obtained by treatment in the Parr reactor (HHR) at 1.5% (m/v) H2SO4 and 120 °C for 20 min, reaching a hemicellulose conversion of approximately 82%. The adaptation of the yeast to the hydrolysate provided good fermentability and no lag phase. The fermentation of hemicellulose-derived sugars (HHR) by L. starkeyi resulted in a 27.8% (w/w) lipid content and YP/S of 0.16 g/l.h. Increasing the inoculum size increased the lipid content by approximately 61%, reaching 44.8% (w/w). CONCLUSION The hemicellulose hydrolysate from SCB is a potential substrate for L. starkeyi to produce lipids for biodiesel synthesis based on the biorefinery concept.
Collapse
Affiliation(s)
- Michelle da Cunha Abreu Xavier
- Department of Bioprocess Engineering and Biotechnology, Federal University of Tocantins (UFT), Badejos Street 69-72, Jardim Cervilha, Gurupi, TO, 77404-970, Brazil.
| | - Telma Teixeira Franco
- Department of Process Engineering (DEPro), School of Chemical Engineering, State University of Campinas (UNICAMP), Albert Einstein Avenue, 500, Zeferino Vaz University City, Campinas, SP, 13083-852, Brazil
| |
Collapse
|
5
|
Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts 2020. [DOI: 10.3390/catal10070743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The constant depletion of fossil fuels along with the increasing need for novel materials, necessitate the development of alternative routes for polymer synthesis. Lignocellulosic biomass, the most abundant carbon source on the planet, can serve as a renewable starting material for the design of environmentally-friendly processes for the synthesis of polyesters, polyamides and other polymers with significant value. The present review provides an overview of the main processes that have been reported throughout the literature for the production of bio-based monomers from lignocellulose, focusing on physicochemical procedures and biocatalysis. An extensive description of all different stages for the production of furans is presented, starting from physicochemical pretreatment of biomass and biocatalytic decomposition to monomeric sugars, coupled with isomerization by enzymes prior to chemical dehydration by acid Lewis catalysts. A summary of all biotransformations of furans carried out by enzymes is also described, focusing on galactose, glyoxal and aryl-alcohol oxidases, monooxygenases and transaminases for the production of oxidized derivatives and amines. The increased interest in these products in polymer chemistry can lead to a redirection of biomass valorization from second generation biofuels to chemical synthesis, by creating novel pathways to produce bio-based polymers.
Collapse
|
6
|
Pinto ASS, Ribeiro MPA, Farinas CS. Fast spectroscopic monitoring of inhibitors in the 2G ethanol process. BIORESOURCE TECHNOLOGY 2018; 250:148-154. [PMID: 29161574 DOI: 10.1016/j.biortech.2017.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 05/22/2023]
Abstract
One of the main challenges of second generation (2G) ethanol production is the high quantities of phenolic compounds and furan derivatives generated in the pretreatment of the lignocellulosic biomass, which inhibit the enzymatic hydrolysis and fermentation steps. Fast monitoring of these inhibitory compounds could provide better control of the pretreatment, hydrolysis, and fermentation processes by enabling the implementation of strategic process control actions. We investigated the feasibility of monitoring these inhibitory compounds by ultraviolet-visible (UV-Vis) spectroscopy associated with partial least squares (PLS) regression. Hydroxymethylfurfural, furfural, vanillin, and ferulic and p-coumaric acids generated during different severities of liquid hot water pretreatment of sugarcane bagasse were quantified with highly accuracy. In cross-validation (leave-one-out), the PLS-UV-Vis method presented root mean square error of prediction (RMSECV) of around only 5.0%. The results demonstrated that the monitoring performance achieved with PLS-UV-Vis could support future studies of optimization and control protocols for application in industrial processes.
Collapse
Affiliation(s)
- Ariane S S Pinto
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, PO Box 676, São Carlos, SP, Brazil; Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970 São Carlos, SP, Brazil
| | - Marcelo P A Ribeiro
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, PO Box 676, São Carlos, SP, Brazil; Chemical Engineering Department, Federal University of São Carlos, 13565-905, PO Box 676, São Carlos, SP, Brazil
| | - Cristiane S Farinas
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, PO Box 676, São Carlos, SP, Brazil; Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
7
|
FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:2685-92. [PMID: 26541332 DOI: 10.1007/s00253-015-7115-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Lignocellulosic hydrolysates contain compounds that inhibit microbial growth and fermentation, thereby decreasing the productivity of biofuel and biochemical production. In particular, the heterocyclic aldehyde furfural is one of the most toxic compounds found in these hydrolysates. We previously demonstrated that Corynebacterium glutamicum converts furfural into the less toxic compounds furfuryl alcohol and 2-furoic acid. To date, however, the genes involved in these oxidation and reduction reactions have not been identified in the C. glutamicum genome. Here, we show that Cgl0331 (designated FudC) is mainly responsible for the reduction of furfural into furfuryl alcohol in C. glutamicum. Deletion of the gene encoding FudC markedly diminished the in vivo reduction of furfural to furfuryl alcohol. Purified His-tagged FudC protein from Escherichia coli was also shown to convert furfural into furfuryl alcohol in an in vitro reaction utilizing NADPH, but not NADH, as a cofactor. Kinetic measurements demonstrated that FudC has a high affinity for furfural but has a narrow substrate range for other aldehydes compared to the protein responsible for furfural reduction in E. coli.
Collapse
|
8
|
Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, Smilde AK, Punt PJ. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol 2014; 14:22. [PMID: 24655423 PMCID: PMC3998114 DOI: 10.1186/1472-6750-14-22] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Background Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. Results We studied the composition and fermentability of 24 different biomass hydrolysates. To create diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing relationship between fermentability and composition of the hydrolysates. These identified compounds were tested for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the majority of the identified compounds were indeed inhibitors. Conclusion Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter J Punt
- TNO Microbiology & Systems Biology, Utrechtsweg 48, Zeist 3704 HE, The Netherlands.
| |
Collapse
|
9
|
Chai WM, Liu X, Hu YH, Feng HL, Jia YL, Guo YJ, Zhou HT, Chen QX. Antityrosinase and antimicrobial activities of furfuryl alcohol, furfural and furoic acid. Int J Biol Macromol 2013; 57:151-5. [DOI: 10.1016/j.ijbiomac.2013.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
10
|
Çelik A, Aktaş F. A new NADH-dependent, zinc containing alcohol dehydrogenase from Bacillus thuringiensis serovar israelensis involved in oxidations of short to medium chain primary alcohols. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Kang C, Hayes R, Sanchez EJ, Webb BN, Li Q, Hooper T, Nissen MS, Xun L. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134. Mol Microbiol 2011; 83:85-95. [PMID: 22081946 DOI: 10.1111/j.1365-2958.2011.07914.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn(2+) coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn(2+) coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD(+) dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD(+) to NADH that is subsequently used for furfural reduction.
Collapse
Affiliation(s)
- ChulHee Kang
- School of Molecular Biosciences Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li Q, Metthew Lam LK, Xun L. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase. Biodegradation 2011; 22:1215-25. [PMID: 21526390 DOI: 10.1007/s10532-011-9476-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The "furfural reductase" (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD(+) as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power.
Collapse
Affiliation(s)
- Qunrui Li
- School of Molecular Biosciences, Washington State University, Life Sciences Building, Room 202, 100 Dairy Road, Pullman, WA 99164-7520, USA
| | | | | |
Collapse
|