1
|
Bulka O, Picott K, Mahadevan R, Edwards EA. From mec cassette to rdhA: a key Dehalobacter genomic neighborhood in a chloroform and dichloromethane-transforming microbial consortium. Appl Environ Microbiol 2024; 90:e0073224. [PMID: 38819127 PMCID: PMC11218628 DOI: 10.1128/aem.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Chloroform (CF) and dichloromethane (DCM) are groundwater contaminants of concern due to their high toxicity and inhibition of important biogeochemical processes such as methanogenesis. Anaerobic biotransformation of CF and DCM has been well documented but typically independently of one another. CF is the electron acceptor for certain organohalide-respiring bacteria that use reductive dehalogenases (RDases) to dechlorinate CF to DCM. In contrast, known DCM degraders use DCM as their electron donor, which is oxidized using a series of methyltransferases and associated proteins encoded by the mec cassette to facilitate the entry of DCM to the Wood-Ljungdahl pathway. The SC05 culture is an enrichment culture sold commercially for bioaugmentation, which transforms CF via DCM to CO2. This culture has the unique ability to dechlorinate CF to DCM using electron equivalents provided by the oxidation of DCM to CO2. Here, we use metagenomic and metaproteomic analyses to identify the functional genes involved in each of these transformations. Though 91 metagenome-assembled genomes were assembled, the genes for an RDase-named acdA-and a complete mec cassette were found to be encoded on a single contig belonging to Dehalobacter. AcdA and critical Mec proteins were also highly expressed by the culture. Heterologously expressed AcdA dechlorinated CF and other chloroalkanes but had 100-fold lower activity on DCM. Overall, the high expression of Mec proteins and the activity of AcdA suggest a Dehalobacter capable of dechlorination of CF to DCM and subsequent mineralization of DCM using the mec cassette. IMPORTANCE Chloroform (CF) and dichloromethane (DCM) are regulated groundwater contaminants. A cost-effective approach to remove these pollutants from contaminated groundwater is to employ microbes that transform CF and DCM as part of their metabolism, thus depleting the contamination as the microbes continue to grow. In this work, we investigate bioaugmentation culture SC05, a mixed microbial consortium that effectively and simultaneously degrades both CF and DCM coupled to the growth of Dehalobacter. We identified the functional genes responsible for the transformation of CF and DCM in SC05. These genetic biomarkers provide a means to monitor the remediation process in the field.
Collapse
Affiliation(s)
- Olivia Bulka
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Picott
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Lu Y, Liang F, Qin F, Zhong L, Jiang J, Liu Q, Zhang S, Yan M, Fan C, Dong H. Tourmaline guiding the electric field and dechlorination pathway of 2,3-dichlorophenol by Desulfitobacterium hafniense. J Environ Sci (China) 2024; 135:262-273. [PMID: 37778802 DOI: 10.1016/j.jes.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 10/03/2023]
Abstract
The dehalogenation of organohalides has been a research hotspot in bioremediation field; however, the influence of tourmaline, a natural ore that can generate spontaneous electric field, on organohalide-respiring bacteria (OHRB) and their dechlorination process is not well known. In this study, the effect and mechanism of tourmaline on the reductive dechlorination of 2,3-dichlorophenol (2,3-DCP) by Desulfitobacterium hafniense DCB-2T were explored. The characterization results confirmed that tourmaline had good stability and the optimal dosage of tourmaline was 2.5 g/L, which shortened the total time required for dechlorination reaction to 72 hr. Besides, tourmaline amendment also increased the proportion of 2-chlorophenol (2-CP) from 18% to 30% of end products, while that of 3-CP decreased correspondingly. The theoretical calculations showed that the bond charge of the ortho-substituted chlorine declined from -0.179 to -0.067, and that of meta-substituted chlorine increased from -0.111 to -0.129, which indicated that the spontaneous electric field of tourmaline affected the charge distribution of 2,3-DCP and was more conducive to the generation of 2-CP. Overall, tourmaline with the spontaneous electric field affected the reductive dechlorination pathway of Desulfitobacterium,and the tourmaline-OHRB combining system might serve as a novel strategy for the bioremediation of environments polluted with chlorinated phenols.
Collapse
Affiliation(s)
- Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Fangyi Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jianhong Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; China Machinery International Engineering Design & Research Institute Co., Ltd., Changsha 410007, China; Hunan Engineering Research Center for Water Treatment Process & Equipment, Changsha 410007, China
| | - Qi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China
| | - Shoujuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan Univerisy, Shenzhen 510082, China
| |
Collapse
|
3
|
Cao D, Chen X, Nan J, Wang A, Li Z. Biomolecular insights into the inhibition of heavy metals on reductive dechlorination of 2,4,6-trichlorophenol in Pseudomonas sp. CP-1. WATER RESEARCH 2023; 247:120836. [PMID: 37950953 DOI: 10.1016/j.watres.2023.120836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Influences of heavy metal exposure to the organohalide respiration process and the related molecular mechanism remain poorly understood. In this study, a non-obligate organohalide respiring bacterium, Pseudomonas sp. strain CP-1, was isolated and its molecular response to the five types of commonly existed heavy metal ions were thoroughly investigated. All types of heavy metal ions posed inhibitory effects on 2,4,6-trichlorophenol dechlorination activity and cell growth with the varied degree. Exposure to Cu (II) showed the most serious inhibitive effects on dechlorination even at the lowest concentration of 0.05 mg/L, while the inhibition by As (V) was the least with the removal kinetic constant k decreased to 0.05 under 50 mg/L. Further, multi-omics analysis found compared with Cu (II), As (V) exposure led to the insignificant downregulation of a variety of biosynthesis processes, which would be one possible account for the less inhibited activity. More importantly, the inhibited mechanisms on the organohalide respiration catabolism of strain CP-1 were firstly revealed. Cu (II) stress severely downregulated NADH generation during TCA cycle and electron donation of organohalide respiration process, which might decrease the reducing power required for organohalide respiration. While both Cu (II) and As (Ⅴ) inhibited substrate level phosphorylation during TCA cycle, as well as electron transfer and ATP generation during organohalide respiration. Meanwhile, CprA-2 was confirmed as the responsible reductive dehalogenase in charge of 2,4,6-TCP dechlorination, and transcriptional and proteomic studies confirmed the directly inhibited gene transcription and expression of CprA-2. The in-depth reveal of inhibitory effects and mechanism gave theoretical supports for alleviating heavy metal inhibition on organohalide respiration activity in groundwater co-contaminated with organohalides and heavy metals.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
4
|
Soder-Walz JM, Wasmund K, Deobald D, Vicent T, Adrian L, Marco-Urrea E. Respiratory protein interactions in Dehalobacter sp. strain 8M revealed through genomic and native proteomic analyses. Environ Microbiol 2023; 25:2604-2620. [PMID: 37452527 DOI: 10.1111/1462-2920.16464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Dehalobacter (Firmicutes) encompass obligate organohalide-respiring bacteria used for bioremediation of groundwater contaminated with halogenated organics. Various aspects of their biochemistry remain unknown, including the identities and interactions of respiratory proteins. Here, we sequenced the genome of Dehalobacter sp. strain 8M and analysed its protein expression. Strain 8M encodes 22 reductive dehalogenase homologous (RdhA) proteins. RdhA D8M_v2_40029 (TmrA) was among the two most abundant proteins during growth with trichloromethane and 1,1,2-trichloroethane. To examine interactions of respiratory proteins, we used blue native gel electrophoresis together with dehalogenation activity tests and mass spectrometry. The highest activities were found in gel slices with the highest abundance of TmrA. Protein distributions across gel lanes provided biochemical evidence that the large and small subunits of the membrane-bound [NiFe] uptake hydrogenase (HupL and HupS) interacted strongly and that HupL/S interacted weakly with RdhA. Moreover, the interaction of RdhB and membrane-bound b-type cytochrome HupC was detected. RdhC proteins, often encoded in rdh operons but without described function, migrated in a protein complex not associated with HupL/S or RdhA. This study provides the first biochemical evidence of respiratory protein interactions in Dehalobacter, discusses implications for the respiratory architecture and advances the molecular comprehension of this unique respiratory chain.
Collapse
Affiliation(s)
- Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Darja Deobald
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
5
|
Deng Z, Chen H, Wang J, Zhang N, Han Z, Xie Y, Zhang X, Fang X, Yu H, Zhang D, Yue Z, Zhang C. Marine Dehalogenator and Its Chaperones: Microbial Duties and Responses in 2,4,6-Trichlorophenol Dechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37478352 DOI: 10.1021/acs.est.3c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Marine environments contain diverse halogenated organic compounds (HOCs), both anthropogenic and natural, nourishing a group of versatile organohalide-respiring bacteria (OHRB). Here, we identified a novel OHRB (Peptococcaceae DCH) with conserved motifs but phylogenetically diverse reductive dehalogenase catalytic subunit (RdhAs) from marine enrichment culture. Further analyses clearly demonstrate the horizontal gene transfer of rdhAs among marine OHRB. Moreover, 2,4,6-trichlorophenol (TCP) was dechlorinated to 2,4-dichlorophenol and terminated at 4-chlorophenol in culture. Dendrosporobacter and Methanosarcina were the two dominant genera, and the constructed and verified metabolic pathways clearly demonstrated that the former provided various substrates for other microbes, while the latter drew nutrients, but might provide little benefit to microbial dehalogenation. Furthermore, Dendrosporobacter could readily adapt to TCP, and sporulation-related proteins of Dendrosporobacter were significantly upregulated in TCP-free controls, whereas other microbes (e.g., Methanosarcina and Aminivibrio) became more active, providing insights into how HOCs shape microbial communities. Additionally, sulfate could affect the dechlorination of Peptococcaceae DCH, but not debromination. Considering their electron accessibility and energy generation, the results clearly demonstrate that bromophenols are more suitable than chlorophenols for the enrichment of OHRB in marine environments. This study will greatly enhance our understanding of marine OHRB (rdhAs), auxiliary microbes, and microbial HOC adaptive mechanisms.
Collapse
Affiliation(s)
- Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Haixin Chen
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Jun Wang
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Ning Zhang
- Department of Environmental Engineering, School of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Zhiqiang Han
- Department of Marine Resources and Environment, Fishery College, Zhejiang Ocean University, Zhoushan 316002, Zhejiang, China
| | - Yeting Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China
| | - Xiaoyan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China
| | | | - Hao Yu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Zhen Yue
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China
| |
Collapse
|
6
|
Cao D, Li ZL, Shi K, Liang B, Zhu Z, Liu W, Nan J, Sun K, Wang AJ. Cathode potential regulates the microbiome assembly and function in electrostimulated bio- dechlorination system. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130113. [PMID: 36252407 DOI: 10.1016/j.jhazmat.2022.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Mechanism of microbiome assembly and function driven by cathode potential in electro-stimulated microbial reductive dechlorination system remain poorly understood. Here, core microbiome structure, interaction, function and assembly regulating by cathode potential were investigated in a 2,4,6-trichlorophenol bio-dechlorination system. The highest dechlorination rate (24.30 μM/d) was observed under - 0.36 V with phenol as a major end metabolite, while, lower (-0.56 V) or higher (0.04 V or -0.16 V) potentials resulted in 1.3-3.8 times decreased of dechlorination kinetic constant. The lower the cathode potential, the higher the generated CH4, revealing cathode participated in hydrogenotrophic methanogenesis. Taxonomic and functional structure of core microbiome significantly shifted within groups of - 0.36 V and - 0.56 V, with dechlorinators (Desulfitobacterium, Dehalobacter), fermenters (norank_f_Propionibacteriaceae, Dysgonomonas) and methanogen (Methanosarcina) highly enriched, and the more positive interactions between functional genera were found. The lowest number of nodes and links and the highest positive correlations were observed among constructed sub-networks classified by function, revealing simplified and strengthened cooperation of functional genera driven by group of - 0.36 V. Cathode potential plays one important driver controlling core microbiome assembly, and the low potentials drove the assembly of major dechlorinating, methanogenic and electro-active genera to be more deterministic, while, the major fermenting genera were mostly governed by stochastic processes.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ke Shi
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongli Zhu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- Key Lab of Structures Dynamic Behavior and Control of China Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Deng Z, Zhang N, Jiang L, Liu H, Hu S, Zhang D, Chen B, Liu Q, Sun Y, Chen J, Zhang C. Influence of microplastics on microbial anaerobic detoxification of chlorophenols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120707. [PMID: 36427829 DOI: 10.1016/j.envpol.2022.120707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) can absorb halogenated organic compounds and transport them into marine anaerobic zones. Microbial reductive dehalogenation is a major process that naturally attenuates organohalide pollutants in anaerobic environments. Here, we aimed to determine the mechanisms through which MPs affect the microbe-mediated marine halogen cycle by incubating 2,4,6-trichlorophenol (TCP) dechlorinating cultures with various types of MPs. We found that TCP was dechlorinated to 4-chlorophenol in biotic control and polypropylene (PP) cultures, but essentially terminated at 2,4-dichlorophenol in polyethylene (PE) and polyethylene terephthalate (PET) cultures after incubation for 20 days. Oxygen-containing functional groups such as peroxide and aldehyde were enriched on PE and PET after incubation and corresponded to elevated levels of intracellular reactive oxygen species (ROS) in the microorganisms. Adding PE or PET to the cultures exerted limited effects on hydrogenase and ATPase activities, but delayed the expression of the gene encoding reductive dehalogenase (RDase). Considering the limited changes in the microbial composition of the enriched cultures, these findings suggested that microbial dechlorination is probably affected by MPs through the ROS-induced inhibition of RDase synthesis and/or activity. Overall, our findings showed that extensive MP pollution is unfavorable to environmental xenobiotic detoxification.
Collapse
Affiliation(s)
- Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Ning Zhang
- Department of Environmental Engineering, School of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Hui Liu
- Shengzhou Bureau of Agriculture and Rural Affairs, Shaoxing, 312400, Zhejiang, China
| | - Songtao Hu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Bairu Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Qing Liu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Yuxia Sun
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Jiawang Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
8
|
Hudari MSB, Richnow H, Vogt C, Nijenhuis I. Mini-review: effect of temperature on microbial reductive dehalogenation of chlorinated ethenes: a review. FEMS Microbiol Ecol 2022; 98:6638985. [PMID: 35810002 DOI: 10.1093/femsec/fiac081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Temperature is a key factor affecting microbial activity and ecology. An increase in temperature generally increases rates of microbial processes up to a certain threshold, above which rates decline rapidly. In the subsurface, temperature of groundwater is usually stable and related to the annual average temperature at the surface. However, anthropogenic activities related to the use of the subsurface, e.g. for thermal heat management, foremost heat storage, will affect the temperature of groundwater locally. This mini-review intends to summarize the current knowledge on reductive dehalogenation activities of the chlorinated ethenes, common urban groundwater contaminants, at different temperatures. This includes an overview of activity and dehalogenation extent at different temperatures in laboratory isolates and enrichment cultures, the effect of shifts in temperature in micro- and mesocosm studies as well as observed biotransformation at different natural and induced temperatures at contaminated field sites. Furthermore, we address indirect effects on biotransformation, e.g. changes in fermentation, methanogenesis and sulfate reduction as competing or synergetic microbial processes. Finally, we address the current gaps in knowledge regarding bioremediation of chlorinated ethenes, microbial community shifts and bottlenecks for active combination with thermal energy storage, and necessities for bioaugmentation and/or natural re-populations after exposure to high temperature.
Collapse
Affiliation(s)
- Mohammad Sufian Bin Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hans Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
9
|
Hotta Y, Yagoshi C, Okazaki R, Ikeda M. Studies on the inhibition of methanogenesis and dechlorination by (4-hydroxyphenyl) chloromethanesulfonate. JOURNAL OF PESTICIDE SCIENCE 2022; 47:69-77. [PMID: 35800391 PMCID: PMC9184246 DOI: 10.1584/jpestics.d21-071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to demonstrate the inhibitory effect of chemicals on methane emissions in paddy soil. We found that (4-hydroxyphenyl) chloromethanesulfonate (C-1) has a methanogenic inhibition activity, and we studied its inhibition mechanism using laboratory tests. The study found that C-1 treatment of flooded soil did not significantly affect the bacterial community but rather the archaeal community; particularly, Methanosarcina spp. C-1 strongly inhibited the aceticlastic methanogenesis route. It was suggested that the inhibitory target of C-1 was different from the well-known methanogenic inhibitor 2-bromoethanesulfonate, which targets methyl-coenzyme M reductase of methanogen. In addition, C-1 had a secondary effect of inhibiting the dechlorination of chlorophenols. Although field trials are required as the next development step, C-1 can be used to reduce methane emissions from paddy fields, one of the largest sources in the agricultural sector.
Collapse
Affiliation(s)
- Yudai Hotta
- Life Science Research Institute, Kumiai Chemical Industry Co. Ltd., Tamari, Kakegawa, Shizuoka 436–0011, Japan
| | - Chizu Yagoshi
- Life Science Research Institute, Kumiai Chemical Industry Co. Ltd., Tamari, Kakegawa, Shizuoka 436–0011, Japan
| | - Ryo Okazaki
- Life Science Research Institute, Kumiai Chemical Industry Co. Ltd., Tamari, Kakegawa, Shizuoka 436–0011, Japan
| | - Mitsumasa Ikeda
- Life Science Research Institute, Kumiai Chemical Industry Co. Ltd., Tamari, Kakegawa, Shizuoka 436–0011, Japan
| |
Collapse
|
10
|
Brucha G, Aldas-Vargas A, Ross Z, Peng P, Atashgahi S, Smidt H, Langenhoff A, Sutton NB. 2,4-Dichlorophenoxyacetic acid degradation in methanogenic mixed cultures obtained from Brazilian Amazonian soil samples. Biodegradation 2021; 32:419-433. [PMID: 33877512 PMCID: PMC8260542 DOI: 10.1007/s10532-021-09940-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/31/2021] [Indexed: 01/23/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D's high mobility and long half-life under anoxic conditions, this herbicide has high probability for groundwater contamination. Bioremediation is an attractive solution for 2,4-D contaminated anoxic environments, but there is limited understanding of anaerobic 2,4-D biodegradation. In this study, methanogenic enrichment cultures were obtained from Amazonian top soil (0-40 cm) and deep soil (50 -80 cm below ground) that biotransform 2,4-D (5 µM) to 4-chlorophenol and phenol. When these cultures were transferred (10% v/v) to fresh medium containing 40 µM or 160 µM 2,4-D, the rate of 2,4-D degradation decreased, and biotransformation did not proceed beyond 4-chlorophenol and 2,4-dichlorophenol in the top and deep soil cultures, respectively. 16S rRNA gene sequencing and qPCR of a selection of microbes revealed no significant enrichment of known organohalide-respiring bacteria. Furthermore, a member of the genus Cryptanaerobacter was identified as possibly responsible for phenol conversion to benzoate in the top soil inoculated culture. Overall, these results demonstrate the effect of 2,4-D concentration on biodegradation and microbial community composition, which are both important factors when developing pesticide bioremediation technologies.
Collapse
Affiliation(s)
- Gunther Brucha
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
- Institute of Science and Technology, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Zacchariah Ross
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Peng Peng
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. WATER RESEARCH 2021; 193:116862. [PMID: 33550168 DOI: 10.1016/j.watres.2021.116862] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Wang L, Zhou W, Li H, Yang H, Shan N. Clinical Significance, Cellular Function, and Potential Molecular Pathways of CCT7 in Endometrial Cancer. Front Oncol 2020; 10:1468. [PMID: 32983981 PMCID: PMC7483479 DOI: 10.3389/fonc.2020.01468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: Endometrial cancer (EC) is a common gynecologic malignancy; myometrial invasion (MI) is a typical approach of EC spreads and an important index to assess tumor metastasis and outcome in EC patients. CCT7 is a member of the TCP1 chaperone family, involved in cytoskeletal protein folding and unfolding. In this study, the role of CCT7 in EC development was investigated. Methods: Clinical data for 87 EC cases and expression of CCT7 were analyzed. CCT7 was knocked out using siRNA-CCT7 in Ishikawa and RL95-2 cells, and their function about proliferation, apoptosis, and invasion was further tested. Bioinformatics methods were used to predict the potential pathways of CCT7 in EC development. Results: The rates of CCT7-positive cells in EC and adjacent normal endometrium tissues had a significant difference (67.8 vs. 51.4%, p = 0.035), and the expression rate increased from low to high pathological stage (39.7% in the I/II stage, 71.4% in the III/IV stage, p = 0.029). A similar change was found in protein level. CCT7 expression differed significantly between the deep MI group (>1/2) and the superficial MI group (≤1/2) (p = 0.039). However, there were no differences with respect to age, pathological type, and histological grade. CCT7 suppression induced a function loss in both Ishikawa and RL95-2 cells. Bioinformatics analysis demonstrated that EC patients with lower-level CCT7 expression had better overall survival (p = 0.0081). Gene ontology enrichment indicated that "RNA binding," "Mitochondrion," "Translation," and "Spliceosome" were most significantly enriched potential pathways. Five hub genes, PSMA5, PSMD14, SNRPB, SNRPG, and TXNL4A, were all significantly upregulated in EC and had a positive correlation with CCT7. Conclusions: CCT7 may be involved in EC development by excessively activating tumor cell function to promote MI or distant/nodal metastasis, which may contribute to the prognosis of EC patients.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Zhou
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Reproductive, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Yang
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Nianchun Shan
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Molenda O, Puentes Jácome LA, Cao X, Nesbø CL, Tang S, Morson N, Patron J, Lomheim L, Wishart DS, Edwards EA. Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:663-678. [PMID: 32159535 DOI: 10.1039/c9em00605b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organohalide respiring bacteria (OHRB) express reductive dehalogenases for energy conservation and growth. Some of these enzymes catalyze the reductive dehalogenation of chlorinated and brominated pollutants in anaerobic subsurface environments, providing a valuable ecosystem service. Dehalococcoides mccartyi strains have been most extensively studied owing to their ability to dechlorinate all chlorinated ethenes - most notably carcinogenic vinyl chloride - to ethene. The genomes of OHRB, particularly obligate OHRB, often harbour multiple putative reductive dehalogenase genes (rdhA), most of which have yet to be characterized. We recently sequenced and closed the genomes of eight new strains, increasing the number of available D. mccartyi genomes in NCBI from 16 to 24. From all available OHRB genomes, we classified predicted translations of reductive dehalogenase genes using a previously established 90% amino acid pairwise identity cut-off to identify Ortholog Groups (OGs). Interestingly, the majority of D. mccartyi dehalogenase gene sequences, once classified into OGs, exhibited a remarkable degree of synteny (gene order) in all genomes sequenced to date. This organization was not apparent without the classification. A high degree of synteny indicates that differences arose from rdhA gene loss rather than recombination. Phylogenetic analysis suggests that most rdhA genes have a long evolutionary history in the Dehalococcoidia with origin prior to speciation of Dehalococcoides and Dehalogenimonas. We also looked for evidence of synteny in the genomes of other species of OHRB. Unfortunately, there are too few closed Dehalogenimonas genomes to compare at this time. There is some partial evidence for synteny in the Dehalobacter restrictus genomes, but here too more closed genomes are needed for confirmation. Interestingly, we found that the rdhA genes that encode enzymes that catalyze dehalogenation of industrial pollutants are the only rdhA genes with strong evidence of recent lateral transfer - at least in the genomes examined herein. Given the utility of the RdhA sequence classification to comparative analyses, we are building a public web server () for the community to use, which allows users to add and classify new sequences, and download the entire curated database of reductive dehalogenases.
Collapse
Affiliation(s)
- Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin XQ, Li ZL, Zhu YY, Chen F, Liang B, Nan J, Wang AJ. Palladium/iron nanoparticles stimulate tetrabromobisphenol a microbial reductive debromination and further mineralization in sediment. ENVIRONMENT INTERNATIONAL 2020; 135:105353. [PMID: 31830727 DOI: 10.1016/j.envint.2019.105353] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA) has aroused serious pollution in surface sediment. To date, whether and how iron-based nanoparticles could stimulate TBBPA in situ anaerobic biodegradation in sediment remains poorly understood. In this study, the distinctly enhanced TBBPA degradation activity with the rate constant k improved 4.7 times by fed with Pd/Fe nanoparticles (0.412 g L-1 dosage, 0.5 wt% Pd loading) was observed. TBBPA degradation first went through reductive dehalogenation with bisphenol A (BPA) as the metabolites, and after the addition of Pd/Fe nanoparticles, BPA was further degraded to 4-(allene)phenol and 2,2-bis(4-hydroxyphenyl) propanoic acid via UPLC-QTOF-MS analysis, suggesting the complete detoxification potential. By the addition of Pd/Fe nanoparticles, the large amount of H2 production (560 times higher) and the significant inhibition of methane generation facilitated the metabolism of potential reductive dehalogenators (Desulfovibrio, Clostridium, etc.), demonstrated by their increased ecological abundance and the tighter cooperative interrelations between each other. Meanwhile, the addition of Pd/Fe nanoparticles largely promoted the ecological abundance of Fe(III) reducing and aromatics degrading bacteria (Bacillus, Cryptanaerobacter, etc.), resulting in BPA further degradation. The bacterial ecological network further revealed that the potential BPA degrading bacteria shared the more positive interactions with the potential dehalogenators in the presence of Pd/Fe nanoparticles. The study firstly revealed the addition of Pd/Fe nanoparticles obviously enhanced the respiratory metabolic activities and cooperative interrelations of reductive dehalogenators and BPA degraders, which gives suggestions for in situ remediation and detoxification of BFRs in contaminated sediment.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China.
| | - Ying-Ying Zhu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Fan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P. Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microb Biotechnol 2020; 13:67-86. [PMID: 31565852 PMCID: PMC6922536 DOI: 10.1111/1751-7915.13488] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Halogenated aromatics are used widely in various industrial, agricultural and household applications. However, due to their stability, most of these compounds persist for a long time, leading to accumulation in the environment. Biological degradation of halogenated aromatics provides sustainable, low-cost and environmentally friendly technologies for removing these toxicants from the environment. This minireview discusses the molecular mechanisms of the enzymatic reactions for degrading halogenated aromatics which naturally occur in various microorganisms. In general, the biodegradation process (especially for aerobic degradation) can be divided into three main steps: upper, middle and lower metabolic pathways which successively convert the toxic halogenated aromatics to common metabolites in cells. The most difficult step in the degradation of halogenated aromatics is the dehalogenation step in the middle pathway. Although a variety of enzymes are involved in the degradation of halogenated aromatics, these various pathways all share the common feature of eventually generating metabolites for utilizing in the energy-producing metabolic pathways in cells. An in-depth understanding of how microbes employ various enzymes in biodegradation can lead to the development of new biotechnologies via enzyme/cell/metabolic engineering or synthetic biology for sustainable biodegradation processes.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon Pathom73000Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme TechnologyFaculty of ScienceMahidol UniversityBangkok10400Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| |
Collapse
|
16
|
Lin XQ, Li ZL, Liang B, Zhai HL, Cai WW, Nan J, Wang AJ. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. WATER RESEARCH 2019; 162:236-245. [PMID: 31279315 DOI: 10.1016/j.watres.2019.06.068] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 05/20/2023]
Abstract
Microbial reductive dechlorination of chlorinated aromatics frequently suffers from the long dechlorination period and the generation of toxic metabolites. Biocathode bioelectrochemical systems were verified to be effective in the degradation of various refractory pollutants. However, the electrochemical and microbial related working mechanisms for bio-dechlorination by electro-stimulation remain poorly understood. In this study, we reported the significantly improved 2,4,6-trichlorophenol dechlorination activity through the weak electro-stimulation (cathode potential of -0.36 V vs. SHE), as evidenced by the 3.1 times higher dechlorination rate and the complete dechlorination ability with phenol as the end dechlorination product. The high reductive dechlorination rate (20.8 μM/d) could be maintained by utilizing electrode as an effective electron donor (coulombic efficiency of 82.3 ± 4.8%). Cyclic voltammetry analysis of the cathodic biofilm gave the direct evidences of the cathodic respiration with the improved and positive-shifted reduction peaks of 2,4,6-TCP, 2,4-DCP and 4-CP. The optimal 2,4,6-TCP reductive dechlorination rate (24.2 μM/d) was obtained when a small amount of lactate (2 mM) was added, and the generation of H2 and CH4 were accompanied due to the biological fermentation and methanogenesis. The electrical stimulation significantly altered the cathodic biofilm structure and composition with some potential dechlorinators (like Acetobacterium) predominated. The microbial interactions in the ecological network of cathodic biofilm were more simplified than the planktonic community. However, some potential dechlorinators (Acetobacterium, Desulfovibrio, etc.) shared more positive interactions. The co-existence and possible cooperative relationships between potential dechlorinators and fermenters (Sedimentibacter, etc.) were revealed. Meanwhile, the competitive interrelations between potential dechlorinators and methanogens (Methanomassiliicoccus) were found. In the network of plankton, the fermenters and methanogens possessed the more positive interrelations. Electro-stimulation at the cathodic potential of -0.36 V selectively enhanced the dechlorination function, while it showed little influence on either fermentation or methanogenesis process. The study gave suggestions for the enhanced bioremediation of chlorinated aromatics, in views of the electro-stimulation capacity, efficiency and microbial interrelations related microbial mechanism.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Hong-Liang Zhai
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei-Wei Cai
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
17
|
Türkowsky D, Jehmlich N, Diekert G, Adrian L, von Bergen M, Goris T. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol Ecol 2019; 94:4830072. [PMID: 29390082 DOI: 10.1093/femsec/fiy013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Organohalide respiration (OHR) is a crucial process in the global halogen cycle and of interest for bioremediation. However, investigations on OHR are hampered by the restricted genetic accessibility and the poor growth yields of many organohalide-respiring bacteria (OHRB). Therefore, genomics, transcriptomics and proteomics are often used to investigate OHRB. In general, these gene expression studies are more useful when the data of the different 'omics' approaches are integrated and compared among a wide range of cultivation conditions and ideally involve several closely related OHRB. Despite the availability of a couple of proteomic and transcriptomic datasets dealing with OHRB, such approaches are currently not covered in reviews. Therefore, we here present an integrative and comparative overview of omics studies performed with the OHRB Sulfurospirillum multivorans, Dehalococcoides mccartyi, Desulfitobacterium spp. and Dehalobacter restrictus. Genes, transcripts, proteins and the regulatory and biochemical processes involved in OHR are discussed, and a comprehensive view on the unusual metabolism of D. mccartyi, which is one of the few bacteria possibly using a quinone-independent respiratory chain, is provided. Several 'omics'-derived theories on OHRB, e.g. the organohalide-respiratory chain, hydrogen metabolism, corrinoid biosynthesis or one-carbon metabolism are critically discussed on the basis of this integrative approach.
Collapse
Affiliation(s)
- Dominique Türkowsky
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
18
|
Wang PH, Correia K, Ho HC, Venayak N, Nemr K, Flick R, Mahadevan R, Edwards EA. An interspecies malate-pyruvate shuttle reconciles redox imbalance in an anaerobic microbial community. ISME JOURNAL 2019; 13:1042-1055. [PMID: 30607026 DOI: 10.1038/s41396-018-0333-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022]
Abstract
Microbes in ecosystems often develop coordinated metabolic interactions. Therefore, understanding metabolic interdependencies between microbes is critical to deciphering ecosystem function. In this study, we sought to deconstruct metabolic interdependencies in organohalide-respiring consortium ACT-3 containing Dehalobacter restrictus using a combination of metabolic modeling and experimental validation. D. restrictus possesses a complete set of genes for amino acid biosynthesis yet when grown in isolation requires amino acid supplementation. We reconciled this discrepancy using flux balance analysis considering cofactor availability, enzyme promiscuity, and shared protein expression patterns for several D. restrictus strains. Experimentally, 13C incorporation assays, growth assays, and metabolite analysis of D. restrictus strain PER-K23 cultures were performed to validate the model predictions. The model resolved that the amino acid dependency of D. restrictus resulted from restricted NADPH regeneration and predicted that malate supplementation would replenish intracellular NADPH. Interestingly, we observed unexpected export of pyruvate and glutamate in parallel to malate consumption in strain PER-K23 cultures. Further experimental analysis using the ACT-3 transfer cultures suggested the occurrence of an interspecies malate-pyruvate shuttle reconciling a redox imbalance, reminiscent of the mitochondrial malate shunt pathway in eukaryotic cells. Altogether, this study suggests that redox imbalance and metabolic complementarity are important driving forces for metabolite exchange in anaerobic microbial communities.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Han-Chen Ho
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Naveen Venayak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Kayla Nemr
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| |
Collapse
|
19
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
20
|
El-Sayed WS, Al-Senani SR, Elbahloul Y. Diversity of dehalorespiring bacteria and selective enrichment of aryl halides-dechlorinating consortium from sedimentary environment near an oil refinery. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1495869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wael S. El-Sayed
- Department of Biology, Faculty of Science, Taibah University, Medina, KSA
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Yasser Elbahloul
- Department of Biology, Faculty of Science, Taibah University, Medina, KSA
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
El-Sayed WS. Characterization of a Highly Enriched Microbial Consortium Reductively Dechlorinating 2,3-Dichlorophenol and 2,4,6-Trichlorophenol and the Corresponding cprA Genes from River Sediment. Pol J Microbiol 2018; 65:341-352. [PMID: 29334051 DOI: 10.5604/17331331.1215613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anaerobic reductive dechlorination of 2,3-dichlorophenol (2,3DCP) and 2,4,6-trichlorophenol (2,4,6TCP) was investigated in microcosms from River Nile sediment. A stable sediment-free anaerobic microbial consortium reductively dechlorinating 2,3DCP and 2,4,6TCP was established. Defined sediment-free cultures showing stable dechlorination were restricted to ortho chlorine when enriched with hydrogen as the electron donor, acetate as the carbon source, and either 2,3-DCP or 2,4,6-TCP as electron acceptors. When acetate, formate, or pyruvate were used as electron donors, dechlorination activity was lost. Only lactate can replace dihydrogen as an electron donor. However, the dechlorination potential was decreased after successive transfers. To reveal chlororespiring species, the microbial community structure of chlorophenol-reductive dechlorinating enrichment cultures was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Eight dominant bacteria were detected in the dechlorinating microcosms including members of the genera Citrobacter, Geobacter, Pseudomonas, Desulfitobacterium, Desulfovibrio and Clostridium. Highly enriched dechlorinating cultures were dominated by four bacterial species belonging to the genera Pseudomonas, Desulfitobacterium, and Clostridium. Desulfitobacterium represented the major fraction in DGGE profiles indicating its importance in dechlorination activity, which was further confirmed by its absence resulting in complete loss of dechlorination. Reductive dechlorination was confirmed by the stoichiometric dechlorination of 2,3DCP and 2,4,6TCP to metabolites with less chloride groups and by the detection of chlorophenol RD cprA gene fragments in dechlorinating cultures. PCR amplified cprA gene fragments were cloned and sequenced and found to cluster with the cprA/pceA type genes of Dehalobacter restrictus.
Collapse
Affiliation(s)
- Wael S El-Sayed
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, KSA; Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
22
|
Lin X, Wu Y, Hao Y, Sun Q, Yan Y, Li C. Sensitive and Selective Determination of 2,4,6-Trichlorophenol Using a Molecularly Imprinted Polymer Based on Zinc Oxide Quantum Dots. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1384480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xinyu Lin
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yilin Wu
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yue Hao
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Qian Sun
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| | - Alfred M. Spormann
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| |
Collapse
|
24
|
Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture. Appl Microbiol Biotechnol 2017; 101:5481-5492. [DOI: 10.1007/s00253-017-8236-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
|
25
|
Kleindienst S, Higgins SA, Tsementzi D, Chen G, Konstantinidis KT, Mack EE, Löffler FE. 'Candidatus Dichloromethanomonas elyunquensis' gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Syst Appl Microbiol 2016; 40:150-159. [PMID: 28292625 DOI: 10.1016/j.syapm.2016.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
Abstract
Taxonomic assignments of anaerobic dichloromethane (DCM)-degrading bacteria remain poorly constrained but are important for understanding the microbial diversity of organisms contributing to DCM turnover in environmental systems. We describe the taxonomic classification of a novel DCM degrader in consortium RM obtained from pristine Rio Mameyes sediment. Phylogenetic analysis of full-length 16S rRNA gene sequences demonstrated that the DCM degrader was most closely related to members of the genera Dehalobacter and Syntrophobotulus, but sequence similarities did not exceed 94% and 93%, respectively. Genome-aggregate average amino acid identities against Peptococcaceae members did not exceed 66%, suggesting that the DCM degrader does not affiliate with any described genus. Phylogenetic analysis of conserved single-copy functional genes supported that the DCM degrader represents a novel clade. Growth strictly depended on the presence of DCM, which was consumed at a rate of 160±3μmolL-1 d-1. The DCM degrader attained 5.25×107±1.0×107 cells per μmol DCM consumed. Fluorescence in situ hybridization revealed rod-shaped cells 4±0.8μm long and 0.4±0.1μm wide. Based on the unique phylogenetic, genomic, and physiological characteristics, we propose that the DCM degrader represents a new genus and species, 'Candidatus Dichloromethanomonas elyunquensis'.
Collapse
Affiliation(s)
- Sara Kleindienst
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Steven A Higgins
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA
| | - Despina Tsementzi
- Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA 30332, USA
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA; Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Konstantinos T Konstantinidis
- Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA 30332, USA; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - E Erin Mack
- Corporate Remediation Group, E. I. DuPont de Nemours and Company, Newark, DE 19714, USA
| | - Frank E Löffler
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA; Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
26
|
Refined experimental annotation reveals conserved corrinoid autotrophy in chloroform-respiring Dehalobacter isolates. ISME JOURNAL 2016; 11:626-640. [PMID: 27898054 DOI: 10.1038/ismej.2016.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/25/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Two novel chlorinated alkane-respiring Dehalobacter restrictus strains CF and DCA were isolated from the same enrichment culture, ACT-3, and characterized. The closed genomes of these highly similar sister strains were previously assembled from metagenomic sequence data and annotated. The isolation of the strains enabled experimental verification of predicted annotations, particularly focusing on irregularities or predicted gaps in central metabolic pathways and cofactor biosynthesis. Similar to D. restrictus strain PER-K23, strains CF and DCA require arginine, histidine and threonine for growth, although the corresponding biosynthesis pathways are predicted to be functional. Using strain CF to experimentally verify annotations, we determined that the predicted defective serine biosynthesis pathway can be rescued with a promiscuous serine hydroxymethyltransferase. Strain CF grew without added thiamine although the thiamine biosynthesis pathway is predicted to be absent; intracellular thiamine diphosphate, the cofactor of carboxylases in central metabolism, was not detected in cell extracts. Thus, strain CF may use amino acids to replenish central metabolites, portending entangled metabolite exchanges in ACT-3. Consistent with annotation, strain CF possesses a functional corrinoid biosynthesis pathway, demonstrated by increasing corrinoid content during growth and guided cobalamin biosynthesis in corrinoid-free medium. Chloroform toxicity to corrinoid-producing methanogens and acetogens may drive the conservation of corrinoid autotrophy in Dehalobacter strains. Heme detection in strain CF cell extracts suggests the 'archaeal' heme biosynthesis pathway also functions in anaerobic Firmicutes. This study reinforces the importance of incorporating enzyme promiscuity and cofactor availability in genome-scale functional predictions and identifies essential nutrient interdependencies in anaerobic dechlorinating microbial communities.
Collapse
|
27
|
Nijenhuis I, Kuntze K. Anaerobic microbial dehalogenation of organohalides — state of the art and remediation strategies. Curr Opin Biotechnol 2016; 38:33-8. [DOI: 10.1016/j.copbio.2015.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022]
|
28
|
Tang S, Wang PH, Higgins SA, Löffler FE, Edwards EA. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates. Front Microbiol 2016; 7:100. [PMID: 26903979 PMCID: PMC4751268 DOI: 10.3389/fmicb.2016.00100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis pathway is present in the five Dehalobacter genomes. This pathway corresponds to a newly described alternative heme biosynthesis route first identified in Archaea. This analysis of organohalide-respiring Firmicutes and Chloroflexi reveals profound evolutionary differences despite very similar niche-specific metabolism and function.
Collapse
Affiliation(s)
- Shuiquan Tang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| | - Po Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| | - Steven A Higgins
- Department of Microbiology, University of TennesseeKnoxville, TN, USA; Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, USA; University of Tennessee and Oak Ridge National Laboratory Joint Institute for Biological Sciences and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Frank E Löffler
- Department of Microbiology, University of TennesseeKnoxville, TN, USA; Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, USA; University of Tennessee and Oak Ridge National Laboratory Joint Institute for Biological Sciences and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA; Department of Civil and Environmental Engineering, University of TennesseeKnoxville, TN, USA
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
29
|
Dehalogenimonas sp. Strain WBC-2 Genome and Identification of Its trans-Dichloroethene Reductive Dehalogenase, TdrA. Appl Environ Microbiol 2015; 82:40-50. [PMID: 26452554 DOI: 10.1128/aem.02017-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 02/04/2023] Open
Abstract
The Dehalogenimonas population in a dechlorinating enrichment culture referred to as WBC-2 was previously shown to be responsible for trans-dichloroethene (tDCE) hydrogenolysis to vinyl chloride (VC). In this study, blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzymatic assays and protein identification using liquid chromatography coupled with mass spectrometry (LC-MS/MS) led to the functional characterization of a novel dehalogenase, TdrA. This new reductive dehalogenase (RDase) catalyzes the dechlorination of tDCE to VC. A metagenome of the WBC-2 culture was sequenced, and a complete Dehalogenimonas genome, only the second Dehalogenimonas genome to become publicly available, was closed. The tdrA dehalogenase found within the Dehalogenimonas genome appears to be on a genomic island similar to genomic islands found in Dehalococcoides. TdrA itself is most similar to TceA from Dehalococcoides sp. strain FL2 with 76.4% amino acid pairwise identity. It is likely that the horizontal transfer of rdhA genes is not only a feature of Dehalococcoides but also a feature of other Dehalococcoidia, including Dehalogenimonas. A set of primers was developed to track tdrA in WBC-2 subcultures maintained on different electron acceptors. This newest dehalogenase is an addition to the short list of functionally defined RDases sharing the usual characteristic motifs (including an AB operon, a TAT export sequence, two iron-sulfur clusters, and a corrinoid binding domain), substrate flexibility, and evidence for horizontal gene transfer within the Dehalococcoidia.
Collapse
|
30
|
Primers That Target Functional Genes of Organohalide-Respiring Bacteria. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
31
|
Nelson JL, Jiang J, Zinder SH. Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3776-3782. [PMID: 24593835 DOI: 10.1021/es4044769] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Three enrichment cultures containing Dehalobacter spp. were developed that dehalogenate each of the dichlorobenzene (DCB) isomers to monochlorobenzene (MCB), and the strains using 1,2-DCB (12DCB1) or 1,3-DCB (13DCB1) are now considered isolated, whereas the strain using 1,4-DCB (14DCB1) is considered highly enriched. In this study, we examined the dehalogenation capability of each strain to use chlorobenzenes with three or more chlorines, tetrachloroethene (PCE), or dichlorotoluene (DCT) isomers. Strain 12DCB1 preferentially dehalogenated singly flanked chlorines, but not doubly flanked or unflanked chlorines. It dehalogenated pentachlorobenzene to MCB with little buildup of intermediates. Strain 13DCB1, which could use either 1,3-DCB or 1,2-DCB, demonstrated the widest dehalogenation spectrum of electron acceptors tested, and dehalogenated every chlorobenzene isomer except 1,4-DCB. Notably, strain 13DCB1 dehalogenated the recalcitrant 1,3,5-trichlorobenzene isomer to MCB, and qPCR of 16S rRNA genes indicated that strain 13DCB1 grew. Strain 14DCB1 exhibited the narrowest range of substrate utilization, but was the only strain to dehalogenate para-substituted chlorines. Strains 12DCB1 and 13DCB1 dehalogenated PCE to cis-dichloroethene, and all strains dehalogenated 3,4-DCT to monochlorotoluene. These findings show that Dehalobacter spp., like Dehalococcoides spp., are versatile dehalogenators and should be considered when determining the fate of chlorinated organics at contaminated sites.
Collapse
Affiliation(s)
- Jennifer L Nelson
- Department of Microbiology, 270 Wing Hall, Cornell University , Ithaca, New York 14853, United States
| | | | | |
Collapse
|
32
|
Arora PK, Bae H. Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 2014; 13:31. [PMID: 24589366 PMCID: PMC3975901 DOI: 10.1186/1475-2859-13-31] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/20/2014] [Indexed: 12/02/2022] Open
Abstract
Chlorophenols (CPs) and their derivatives are persistent environmental pollutants which are used in the manufacture of dyes, drugs, pesticides and other industrial products. CPs, which include monochlorophenols, polychlorophenols, chloronitrophenols, chloroaminophenols and chloromethylphenols, are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Several physico-chemical and biological methods have been used for removal of CPs from the environment. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing CPs from the environment. Several bacteria that use CPs as their sole carbon and energy sources have been isolated and characterized. Additionally, the metabolic pathways for degradation of CPs have been studied in bacteria and the genes and enzymes involved in the degradation of various CPs have been identified and characterized. This review describes the biochemical and genetic basis of the degradation of CPs and their derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|