1
|
Pardue EJ, Sartorio MG, Jana B, Scott NE, Beatty WL, Ortiz-Marquez JC, Van Opijnen T, Hsu FF, Potter RF, Feldman MF. Dual membrane-spanning anti-sigma factors regulate vesiculation in Bacteroides thetaiotaomicron. Proc Natl Acad Sci U S A 2024; 121:e2321910121. [PMID: 38422018 PMCID: PMC10927553 DOI: 10.1073/pnas.2321910121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.
Collapse
Affiliation(s)
- Evan J. Pardue
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Mariana G. Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Biswanath Jana
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC3000, Australia
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | | | | | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO63110
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
2
|
Mascher T. Past, Present, and Future of Extracytoplasmic Function σ Factors: Distribution and Regulatory Diversity of the Third Pillar of Bacterial Signal Transduction. Annu Rev Microbiol 2023; 77:625-644. [PMID: 37437215 DOI: 10.1146/annurev-micro-032221-024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Responding to environmental cues is a prerequisite for survival in the microbial world. Extracytoplasmic function σ factors (ECFs) represent the third most abundant and by far the most diverse type of bacterial signal transduction. While archetypal ECFs are controlled by cognate anti-σ factors, comprehensive comparative genomics efforts have revealed a much higher abundance and regulatory diversity of ECF regulation than previously appreciated. They have also uncovered a diverse range of anti-σ factor-independent modes of controlling ECF activity, including fused regulatory domains and phosphorylation-dependent mechanisms. While our understanding of ECF diversity is comprehensive for well-represented and heavily studied bacterial phyla-such as Proteobacteria, Firmicutes, and Actinobacteria (phylum Actinomycetota)-our current knowledge about ECF-dependent signaling in the vast majority of underrepresented phyla is still far from complete. In particular, the dramatic extension of bacterial diversity in the course of metagenomic studies represents both a new challenge and an opportunity in expanding the world of ECF-dependent signal transduction.
Collapse
Affiliation(s)
- Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany;
| |
Collapse
|
3
|
Braun V, Ratliff AC, Celia H, Buchanan SK. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. J Bacteriol 2023; 205:e0003523. [PMID: 37219427 PMCID: PMC10294619 DOI: 10.1128/jb.00035-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.
Collapse
Affiliation(s)
- Volkmar Braun
- Max-Planck-Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Anna C. Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| |
Collapse
|
4
|
Liao CH, Lu HF, Huang HH, Chen Y, Li LH, Lin YT, Yang TC. The fciTABC and feoABI systems contribute to ferric citrate acquisition in Stenotrophomonas maltophilia. J Biomed Sci 2022; 29:26. [PMID: 35477574 PMCID: PMC9047314 DOI: 10.1186/s12929-022-00809-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Stenotrophomonas maltophilia, a member of γ-proteobacteria, is a ubiquitous environmental bacterium that is recognized as an opportunistic nosocomial pathogen. FecABCD system contributes to ferric citrate acquisition in Escherichia coli. FeoABC system, consisting of an inner membrane transporter (FeoB) and two cytoplasmic proteins (FeoA and FeoC), is a well-known ferrous iron transporter system in γ-proteobacteria. As revealed by the sequenced genome, S. maltophilia appears to be equipped with several iron acquisition systems; however, the understanding of these systems is limited. In this study, we aimed to elucidate the ferric citrate acquisition system of S. maltophilia. Methods Candidate genes searching and function validation are the strategy for elucidating the genes involved in ferric citrate acquisition. The candidate genes responsible for ferric citrate acquisition were firstly selected using FecABCD of E. coli as a reference, and then revealed by transcriptome analysis of S. maltophilia KJ with and without 2,2′-dipyridyl (DIP) treatment. Function validation was carried out by deletion mutant construction and ferric citrate utilization assay. The bacterial adenylate cyclase two-hybrid system was used to verify intra-membrane protein–protein interaction. Results Smlt2858 and Smlt2356, the homologues of FecA and FecC/D of E. coli, were first considered; however, deletion mutant construction and functional validation ruled out their involvement in ferric citrate acquisition. FciA (Smlt1148), revealed by its upregulation in DIP-treated KJ cells, was the outer membrane receptor for ferric citrate uptake. The fciA gene is a member of the fciTABC operon, in which fciT, fciA, and fciC participated in ferric citrate acquisition. Uniquely, the Feo system of S. maltophilia is composed of a cytoplasmic protein FeoA, an inner membrane transporter FeoB, and a predicted inner membrane protein FeoI. The intra-membrane protein–protein interaction between FeoB and FeoI may extend the substrate profile of FeoB to ferric citrate. FeoABI system functioned as an inner membrane transporter of ferric citrate. Conclusions The FciTABC and FeoABI systems contribute to ferric citrate acquisition in S. maltophilia. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00809-y.
Collapse
Affiliation(s)
- Chun-Hsing Liao
- Division of Infectious Disease, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Hsin-Hui Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu Chen
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Ph.D. Program of Medical Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Braun V, Hartmann MD, Hantke K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev 2022; 46:6524835. [PMID: 35138377 PMCID: PMC9249621 DOI: 10.1093/femsre/fuac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as “cell surface signaling”. Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Klaus Hantke
- IMIT Institute, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Yokoyama T, Niinae T, Tsumagari K, Imami K, Ishihama Y, Hizukuri Y, Akiyama Y. The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR. J Biol Chem 2021; 296:100673. [PMID: 33865858 PMCID: PMC8144685 DOI: 10.1016/j.jbc.2021.100673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli RseP, a member of the site-2 protease family of intramembrane proteases, is involved in the activation of the σE extracytoplasmic stress response and elimination of signal peptides from the cytoplasmic membrane. However, whether RseP has additional cellular functions is unclear. In this study, we used mass spectrometry-based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles for RseP. Our data showed that the levels of several Fec system proteins encoded by the fecABCDE operon (fec operon) were significantly decreased in an RseP-deficient strain. The Fec system is responsible for the uptake of ferric citrate, and the transcription of the fec operon is controlled by FecI, an alternative sigma factor, and its regulator FecR, a single-pass transmembrane protein. Assays with a fec operon expression reporter demonstrated that the proteolytic activity of RseP is essential for the ferric citrate-dependent upregulation of the fec operon. Analysis using the FecR protein and FecR-derived model proteins showed that FecR undergoes sequential processing at the membrane and that RseP participates in the last step of this sequential processing to generate the N-terminal cytoplasmic fragment of FecR that participates in the transcription of the fec operon with FecI. A shortened FecR construct was not dependent on RseP for activation, confirming this cleavage step is the essential and sufficient role of RseP. Our study unveiled that E. coli RseP performs the intramembrane proteolysis of FecR, a novel physiological role that is essential for regulating iron uptake by the ferric citrate transport system.
Collapse
Affiliation(s)
- Tatsuhiko Yokoyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoya Niinae
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuya Tsumagari
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Xie Y, Liu W, Shao X, Zhang W, Deng X. Signal transduction schemes in Pseudomonas syringae. Comput Struct Biotechnol J 2020; 18:3415-3424. [PMID: 33294136 PMCID: PMC7691447 DOI: 10.1016/j.csbj.2020.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/11/2022] Open
Abstract
To cope with their continually fluctuating surroundings, pathovars of the unicellular phytopathogen Pseudomonas syringae have developed rapid and sophisticated signalling networks to sense extracellular stimuli, which allow them to adjust their cellular composition to survive and cause diseases in host plants. Comparative genomic analyses of P. syringae strains have identified various genes that encode several classes of signalling proteins, although how this bacterium directly perceives these environmental cues remains elusive. Recent work has revealed new mechanisms of a cluster of bacterial signal transduction systems that mainly include two-component systems (such as RhpRS, GacAS, CvsRS and AauRS), extracytoplasmic function sigma factors (such as HrpL and AlgU), nucleotide-based secondary messengers, methyl-accepting chemotaxis sensor proteins and several other intracellular surveillance systems. In this review, we compile a list of the signal transduction mechanisms that P. syringae uses to monitor and respond in a timely manner to intracellular and external conditions. Further understanding of these surveillance processes will provide new perspectives from which to combat P. syringae infections.
Collapse
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Wenbao Liu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Weihua Zhang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
8
|
Otero-Asman JR, Wettstadt S, Bernal P, Llamas MA. Diversity of extracytoplasmic function sigma (σ ECF ) factor-dependent signaling in Pseudomonas. Mol Microbiol 2019; 112:356-373. [PMID: 31206859 DOI: 10.1111/mmi.14331] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 12/23/2022]
Abstract
Pseudomonas bacteria are widespread and are found in soil and water, as well as pathogens of both plants and animals. The ability of Pseudomonas to colonize many different environments is facilitated by the multiple signaling systems these bacteria contain that allow Pseudomonas to adapt to changing circumstances by generating specific responses. Among others, signaling through extracytoplasmic function σ (σECF ) factors is extensively present in Pseudomonas. σECF factors trigger expression of functions required under particular conditions in response to specific signals. This manuscript reviews the phylogeny and biological roles of σECF factors in Pseudomonas, and highlights the diversity of σECF -signaling pathways of this genus in terms of function and activation. We show that Pseudomonas σECF factors belong to 16 different phylogenetic groups. Most of them are included within the iron starvation group and are mainly involved in iron acquisition. The second most abundant group is formed by RpoE-like σECF factors, which regulate the responses to cell envelope stress. Other groups controlling solvent tolerance, biofilm formation and the response to oxidative stress, among other functions, are present in lower frequency. The role of σECF factors in the virulence of Pseudomonas pathogenic species is described.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sarah Wettstadt
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Patricia Bernal
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
9
|
Moraleda-Muñoz A, Marcos-Torres FJ, Pérez J, Muñoz-Dorado J. Metal-responsive RNA polymerase extracytoplasmic function (ECF) sigma factors. Mol Microbiol 2019; 112:385-398. [PMID: 31187912 PMCID: PMC6851896 DOI: 10.1111/mmi.14328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 01/02/2023]
Abstract
In order to survive, bacteria must adapt to multiple fluctuations in their environment, including coping with changes in metal concentrations. Many metals are essential for viability, since they act as cofactors of indispensable enzymes. But on the other hand, they are potentially toxic because they generate reactive oxygen species or displace other metals from proteins, turning them inactive. This dual effect of metals forces cells to maintain homeostasis using a variety of systems to import and export them. These systems are usually inducible, and their expression is regulated by metal sensors and signal‐transduction mechanisms, one of which is mediated by extracytoplasmic function (ECF) sigma factors. In this review, we have focused on the metal‐responsive ECF sigma factors, several of which are activated by iron depletion (FecI, FpvI and PvdS), while others are activated by excess of metals such as nickel and cobalt (CnrH), copper (CarQ and CorE) or cadmium and zinc (CorE2). We focus particularly on their physiological roles, mechanisms of action and signal transduction pathways.
Collapse
Affiliation(s)
- Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| |
Collapse
|
10
|
Braun V. The Outer Membrane Took Center Stage. Annu Rev Microbiol 2018; 72:1-24. [PMID: 30200853 DOI: 10.1146/annurev-micro-090817-062156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My interest in membranes was piqued during a lecture series given by one of the founders of molecular biology, Max Delbrück, at Caltech, where I spent a postdoctoral year to learn more about protein chemistry. That general interest was further refined to my ultimate research focal point-the outer membrane of Escherichia coli-through the influence of the work of Wolfhard Weidel, who discovered the murein (peptidoglycan) layer and biochemically characterized the first phage receptors of this bacterium. The discovery of lipoprotein bound to murein was completely unexpected and demonstrated that the protein composition of the outer membrane and the structure and function of proteins could be unraveled at a time when nothing was known about outer membrane proteins. The research of my laboratory over the years covered energy-dependent import of proteinaceous toxins and iron chelates across the outer membrane, which does not contain an energy source, and gene regulation by iron, including transmembrane transcriptional regulation.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
11
|
Trovero MF, Scavone P, Platero R, de Souza EM, Fabiano E, Rosconi F. Herbaspirillum seropedicae Differentially Expressed Genes in Response to Iron Availability. Front Microbiol 2018; 9:1430. [PMID: 30018605 PMCID: PMC6037834 DOI: 10.3389/fmicb.2018.01430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/11/2018] [Indexed: 01/20/2023] Open
Abstract
Herbaspirillum seropedicae Z67 is a nitrogen-fixing endophyte that colonizes many important crops. Like in almost all organisms, vital cellular processes of this endophyte are iron dependent. In order to efficiently acquire iron to fulfill its requirements, this bacterium produces the siderophores serobactins. However, the presence in its genome of many others iron acquisition genes suggests that serobactins are not the only strategy used by H. seropedicae to overcome metal deficiency. The aim of this work was to identify genes and proteins differentially expressed by cells growing in low iron conditions in order to describe H. seropedicae response to iron limitation stress. For this purpose, and by using a transcriptomic approach, we searched and identified a set of genes up-regulated when iron was scarce. One of them, Hsero_2337, codes for a TonB-dependent transporter/transducer present in the serobactins biosynthesis genomic locus, with an unknown function. Another TonB-dependent receptor, the one encoded by Hsero_1277, and an inner membrane ferrous iron permease, coded by Hsero_2720, were also detected. By using a proteomic approach focused in membrane proteins, we identified the specific receptor for iron-serobactin internalization SbtR and two non-characterized TonB-dependent receptors (coded by genes Hsero_1277 and Hsero_3255). We constructed mutants on some of the identified genes and characterized them by in vitro growth, biofilm formation, and interaction with rice plants. Characterization of mutants in gene Hsero_2337 showed that the TonB-dependent receptor coded by this gene has a regulatory role in the biosynthesis of serobactins, probably by interacting with the alternative sigma factor PfrI, coded by gene Hsero_2338. Plant colonization of the mutant strains was not affected, since the mutant strain normally colonize the root and aerial part of rice plants. These results suggest that the strategies used by H. seropedicae to acquire iron inside plants are far more diverse than the ones characterized in this work. In vivo expression studies or colonization competition experiments between the different mutant strains could help us in future works to determine the relative importance of the different iron acquisition systems in the interaction of H. seropedicae with rice plants.
Collapse
Affiliation(s)
- María F Trovero
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Scavone
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Raúl Platero
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Emanuel M de Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Elena Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Federico Rosconi
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
12
|
Chevalier S, Bouffartigues E, Bazire A, Tahrioui A, Duchesne R, Tortuel D, Maillot O, Clamens T, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:706-721. [PMID: 29729420 DOI: 10.1016/j.bbagrm.2018.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/06/2018] [Accepted: 04/30/2018] [Indexed: 01/26/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, like all members of the genus Pseudomonas, has the capacity to thrive in very different environments, ranging from water, plant roots, to animals, including humans to whom it can cause severe infections. This remarkable adaptability is reflected in the number of transcriptional regulators, including sigma factors in this bacterium. Among those, the 19 to 21 extracytoplasmic sigma factors (ECFσ) are endowed with different regulons and functions, including the iron starvation σ (PvdS, FpvI, HasI, FecI, FecI2 and others), the cell wall stress ECFσ AlgU, SigX and SbrI, and the unorthodox σVreI involved in the expression of virulence. Recently published data show that these ECFσ have separate regulons although presenting some cross-talk. We will present evidence that these different ECFσ are involved in the expression of different phenotypes, ranging from cell-wall stress response, production of extracellular polysaccharides, formation of biofilms, to iron acquisition.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France.
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Rachel Duchesne
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Damien Tortuel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| |
Collapse
|
13
|
Bouillet S, Arabet D, Jourlin-Castelli C, Méjean V, Iobbi-Nivol C. Regulation of σ factors by conserved partner switches controlled by divergent signalling systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:127-139. [PMID: 29393573 DOI: 10.1111/1758-2229.12620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Partner-Switching Systems (PSS) are widespread regulatory systems, each comprising a kinase-anti-σ, a phosphorylatable anti-σ antagonist and a phosphatase module. The anti-σ domain quickly sequesters or delivers the target σ factor according to the phosphorylation state of the anti-σ antagonist induced by environmental signals. The PSS components are proteins alone or merged to other domains probably to adapt to the input signals. PSS are involved in major cellular processes including stress response, sporulation, biofilm formation and pathogenesis. Surprisingly, the target σ factors are often unknown and the sensing modules acting upstream from the PSS diverge according to the bacterial species. Indeed, they belong to either two-component systems or complex pathways as the stressosome or Chemosensory Systems (CS). Based on a phylogenetic analysis, we propose that the sensing module in Gram-negative bacteria is often a CS.
Collapse
Affiliation(s)
- Sophie Bouillet
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | - Dallel Arabet
- Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | | | - Vincent Méjean
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | | |
Collapse
|
14
|
Bishop TF, Martin LW, Lamont IL. Activation of a Cell Surface Signaling Pathway in Pseudomonas aeruginosa Requires ClpP Protease and New Sigma Factor Synthesis. Front Microbiol 2017; 8:2442. [PMID: 29312164 PMCID: PMC5733041 DOI: 10.3389/fmicb.2017.02442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/24/2017] [Indexed: 11/13/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors control expression of large numbers of genes in bacteria. Most ECF sigma factors are inhibited by antisigma proteins, with inhibition being relieved by environmental signals that lead to inactivation of the antisigma protein and consequent sigma factor activity. In cell surface signaling (CSS) systems in Gram negative bacteria antisigma activity is controlled by an outer membrane protein receptor and its ligand. In Pseudomonas aeruginosa one such system controls expression of genes for secretion and uptake of a siderophore, pyoverdine. In this system the activities of two sigma factors σFpvI and σPvdS are inhibited by antisigma protein FpvR20 that binds to the sigma factors, preventing their interaction with core RNA polymerase. Transport of ferripyoverdine by its outer membrane receptor FpvA causes proteolytic degradation of FpvR20, inducing expression of σFpvI- and σPvdS-dependent target genes. Here we show that degradation of FpvR20 and induction of target gene expression was initiated within 1 min of addition of pyoverdine. FpvR20 was only partially degraded in a mutant lacking the intracellular ClpP protease, resulting in an FpvR20 subfragment (FpvR12) that inhibited σFpvI and σPvdS. The translation inhibitor chloramphenicol did not prevent induction of an σFpvI-dependent gene, showing that degradation of FpvR20 released pre-existing σFpvI in an active form. However, chloramphenicol inhibited induction of σPvdS-dependent genes showing that active σPvdS is not released when FpvR20 is degraded and instead, σPvdS must be synthesized in the absence of FpvR20 to be active. These findings show that sigma factor activation occurs rapidly following addition of the inducing signal in a CSS pathway and requires ClpP protease. Induction of gene expression that can arise from release of active sigma from an antisigma protein but can also require new sigma factor synthesis.
Collapse
Affiliation(s)
- Thomas F Bishop
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Bastiaansen KC, Civantos C, Bitter W, Llamas MA. New Insights into the Regulation of Cell-Surface Signaling Activity Acquired from a Mutagenesis Screen of the Pseudomonas putida IutY Sigma/Anti-Sigma Factor. Front Microbiol 2017; 8:747. [PMID: 28512454 PMCID: PMC5411451 DOI: 10.3389/fmicb.2017.00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023] Open
Abstract
Cell-surface signaling (CSS) is a signal transfer system that allows Gram-negative bacteria to detect environmental signals and generate a cytosolic response. These systems are composed of an outer membrane receptor that senses the inducing signal, an extracytoplasmic function sigma factor (σECF) that targets the cytosolic response by modifying gene expression and a cytoplasmic membrane anti-sigma factor that keeps the σECF in an inactive state in the absence of the signal and transduces its presence from the outer membrane to the cytosol. Although CSS systems regulate bacterial processes as crucial as stress response, iron scavenging and virulence, the exact mechanisms that drive CSS are still not completely understood. Binding of the signal to the CSS receptor is known to trigger a signaling cascade that results in the regulated proteolysis of the anti-sigma factor and the activation of the σECF in the cytosol. This study was carried out to generate new insights in the proteolytic activation of CSS σECF. We performed a random mutagenesis screen of the unique IutY protein of Pseudomonas putida, a protein that combines a cytosolic σECF domain and a periplasmic anti-sigma factor domain in a single polypeptide. In response to the presence of an iron carrier, the siderophore aerobactin, in the extracellular medium, IutY is processed by two different proteases, Prc and RseP, which results in the release and activation of the σIutY domain. Our experiments show that all IutY mutant proteins that contain periplasmic residues depend on RseP for activation. In contrast, Prc is only required for mutant variants with a periplasmic domain longer than 50 amino acids, which indicates that the periplasmic region of IutY is trimmed down to ~50 amino acids creating the RseP substrate. Moreover, we have identified several conserved residues in the CSS anti-sigma factor family of which mutation leads to constitutive activation of their cognate σECF. These findings advance our knowledge on how CSS activity is regulated by the consecutive action of two proteases. Elucidation of the exact mechanism behind CSS activation will enable the development of strategies to block CSS in pathogenic bacteria.
Collapse
Affiliation(s)
- Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC)Granada, Spain.,Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University AmsterdamAmsterdam, Netherlands
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC)Granada, Spain
| | - Wilbert Bitter
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University AmsterdamAmsterdam, Netherlands
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC)Granada, Spain
| |
Collapse
|
16
|
Marcus JI, Hassoun S, Nair NU. Computational prediction of functional abortive RNA in E. coli. Genomics 2017; 109:196-203. [PMID: 28347827 DOI: 10.1016/j.ygeno.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 11/26/2022]
Abstract
Failure by RNA polymerase to break contacts with promoter DNA results in release of bound RNA and re-initiation of transcription. These abortive RNAs were assumed to be non-functional but have recently been shown to affect termination in bacteriophage T7. Little is known about the functional role of these RNA in other genetic models. Using a computational approach, we investigated whether abortive RNA could exert function in E. coli. Fragments generated from 3780 transcription units were used as query sequences within their respective transcription units to search for possible binding sites. Sites that fell within known regulatory features were then ranked based upon the free energy of hybridization to the abortive. We further hypothesize about mechanisms of regulatory action for a select number of likely matches. Future experimental validation of these putative abortive-mRNA pairs may confirm our findings and promote exploration of functional abortive RNAs (faRNAs) in natural and synthetic systems.
Collapse
Affiliation(s)
- Jeremy I Marcus
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, MA 02155, United States; Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, United States
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
17
|
Curran TD, Abacha F, Hibberd SP, Rolfe MD, Lacey MM, Green J. Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon. MICROBIOLOGY-SGM 2017; 163:400-409. [PMID: 28073397 PMCID: PMC5797941 DOI: 10.1099/mic.0.000423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases, SlyA activates gene expression by antagonizing repression by the nucleoid-associated protein H-NS. Here, the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different from that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have previously been associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression, and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain.
Collapse
Affiliation(s)
- Thomas D Curran
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Fatima Abacha
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Stephen P Hibberd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melissa M Lacey
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
18
|
Structural basis of the signalling through a bacterial membrane receptor HasR deciphered by an integrative approach. Biochem J 2016; 473:2239-48. [PMID: 27208170 PMCID: PMC4941744 DOI: 10.1042/bcj20160131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
In bacteria, some scarce nutrients are sensed, bound and internalized by their specific transporter. In the present study, using an integrative structural approach, we study HasR, a bacterial haem transporter in both its free and its loaded forms. Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70–90 Å (1 Å=0.1 nm) from the HasR β-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners.
Collapse
|
19
|
A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b. Appl Environ Microbiol 2016; 82:1917-1923. [PMID: 26773085 DOI: 10.1128/aem.03884-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gm(r) mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gm(r) mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake.
Collapse
|
20
|
Bastiaansen KC, van Ulsen P, Wijtmans M, Bitter W, Llamas MA. Self-cleavage of the Pseudomonas aeruginosa Cell-surface Signaling Anti-sigma Factor FoxR Occurs through an N-O Acyl Rearrangement. J Biol Chem 2015; 290:12237-46. [PMID: 25809487 DOI: 10.1074/jbc.m115.643098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 11/06/2022] Open
Abstract
The Fox system of Pseudomonas aeruginosa is a cell-surface signaling (CSS) pathway employed by the bacterium to sense and respond to the presence of the heterologous siderophore ferrioxamine in the environment. This regulatory pathway controls the transcription of the foxA ferrioxamine receptor gene through the extracytoplasmic function sigma factor σ(FoxI). In the absence of ferrioxamine, the activity of σ(FoxI) is inhibited by the transmembrane anti-sigma factor FoxR. Upon binding of ferrioxamine by the FoxA receptor, FoxR is processed by a complex proteolytic cascade leading to the release and activation of σ(FoxI). Interestingly, we have recently shown that FoxR undergoes self-cleavage between the periplasmic Gly-191 and Thr-192 residues independent of the perception of ferrioxamine. This autoproteolytic event, which is widespread among CSS anti-sigma factors, produces two distinct domains that interact and function together to transduce the presence of the signal. In this work, we provide evidence that the self-cleavage of FoxR is not an enzyme-dependent process but is induced by an N-O acyl rearrangement. Mutation analysis showed that the nucleophilic side chain of the Thr-192 residue at +1 of the cleavage site is required for an attack on the preceding Gly-191, after which the resulting ester bond is likely hydrolyzed. Because the cleavage site is well preserved and the hydrolysis of periplasmic CSS anti-sigma factors is widely observed, we hypothesize that cleavage via an N-O acyl rearrangement is a conserved feature of these proteins.
Collapse
Affiliation(s)
- Karlijn C Bastiaansen
- From the Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada E-18008, Spain and Section of Molecular Microbiology, Department of Molecular Cell Biology and
| | - Peter van Ulsen
- Section of Molecular Microbiology, Department of Molecular Cell Biology and
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section of Molecular Microbiology, Department of Molecular Cell Biology and
| | - María A Llamas
- From the Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada E-18008, Spain and
| |
Collapse
|
21
|
Bastiaansen KC, Otero-Asman JR, Luirink J, Bitter W, Llamas MA. Processing of cell-surface signalling anti-sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains. Environ Microbiol 2015; 17:3263-77. [PMID: 25581349 DOI: 10.1111/1462-2920.12776] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 02/02/2023]
Abstract
Cell-surface signalling (CSS) enables Gram-negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti-sigma factor in the cytoplasmic membrane, allowing the activation of an extracytoplasmic function (ECF) sigma factor. Recent studies have demonstrated that RseP-mediated proteolysis of the anti-sigma factors is key to σ(ECF) activation. Using the Pseudomonas aeruginosa FoxR anti-sigma factor, we show here that RseP is responsible for the generation of an N-terminal tail that likely contains pro-sigma activity. Furthermore, it has been reported previously that this anti-sigma factor is processed in two separate domains prior to signal recognition. Here, we demonstrate that this process is common in these types of proteins and that the processing event is probably due to autoproteolytic activity. The resulting domains interact and function together to transduce the CSS signal. However, our results also indicate that this processing event is not essential for activity. In fact, we have identified functional CSS anti-sigma factors that are not cleaved prior to signal perception. Together, our results indicate that CSS regulation can occur through both complete and initially processed anti-sigma factors.
Collapse
Affiliation(s)
- Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.,Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | - Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Joen Luirink
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
22
|
Abstract
Research in Tübingen on bacterial cell walls began in 1951 and continues to this day. The studies over the decades reflect the development in the field, which was strongly influenced by the design of suitable biochemical and genetic methods used to unravel the highly complex envelope structure. At the beginning of this period, improper crude extraction and solubilization methods were employed in an attempt to isolate pure components. Nevertheless, progress was steady and culminated in major insights into the structure and function of individual cell wall components and the cell wall as a whole. The "cell wall" has various definitions. In this short overview, the term includes the cell wall of gram-positive bacteria in the strict sense, and also the outer membrane, the murein (peptidoglycan) and the outer membrane of gram-negative bacteria and the cytoplasmic membranes.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Biville F, Brézillon C, Giorgini D, Taha MK. Pyrophosphate-mediated iron acquisition from transferrin in Neisseria meningitidis does not require TonB activity. PLoS One 2014; 9:e107612. [PMID: 25290693 PMCID: PMC4189776 DOI: 10.1371/journal.pone.0107612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/14/2014] [Indexed: 11/17/2022] Open
Abstract
The ability to acquire iron from various sources has been demonstrated to be a major determinant
in the pathogenesis of Neisseria meningitidis. Outside the cells, iron is bound to
transferrin in serum, or to lactoferrin in mucosal secretions. Meningococci can extract iron from
iron-loaded human transferrin by the TbpA/TbpB outer membrane complex. Moreover, N.
meningitidis expresses the LbpA/LbpB outer membrane complex, which can extract iron from
iron-loaded human lactoferrin. Iron transport through the outer membrane requires energy provided by
the ExbB-ExbD-TonB complex. After transportation through the outer membrane, iron is bound by
periplasmic protein FbpA and is addressed to the FbpBC inner membrane transporter. Iron-complexing
compounds like citrate and pyrophosphate have been shown to support meningococcal growth ex
vivo. The use of iron pyrophosphate as an iron source by N. meningitidis
was previously described, but has not been investigated. Pyrophosphate was shown to participate in
iron transfer from transferrin to ferritin. In this report, we investigated the use of ferric
pyrophosphate as an iron source by N. meningitidis both ex vivo
and in a mouse model. We showed that pyrophosphate was able to sustain N.
meningitidis growth when desferal was used as an iron chelator. Addition of a pyrophosphate
analogue to bacterial suspension at millimolar concentrations supported N.
meningitidis survival in the mouse model. Finally, we show that pyrophosphate enabled
TonB-independent ex vivo use of iron-loaded human or bovine transferrin as an iron
source by N. meningitidis. Our data suggest that, in addition to acquiring iron
through sophisticated systems, N. meningitidis is able to use simple strategies to
acquire iron from a wide range of sources so as to sustain bacterial survival.
Collapse
Affiliation(s)
- Francis Biville
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Christophe Brézillon
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Dario Giorgini
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Muhamed-Kheir Taha
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Bastiaansen KC, Ibañez A, Ramos JL, Bitter W, Llamas MA. The Prc and RseP proteases control bacterial cell-surface signalling activity. Environ Microbiol 2014; 16:2433-43. [PMID: 24373018 DOI: 10.1111/1462-2920.12371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/09/2013] [Accepted: 12/15/2013] [Indexed: 11/29/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors play a key role in the regulation of vital functions in the bacterial response to the environment. In Gram-negative bacteria, activity of these sigma factors is often controlled by cell-surface signalling (CSS), a regulatory system that also involves an outer membrane receptor and a transmembrane anti-sigma factor. To get more insight into the molecular mechanism behind CSS regulation, we have focused on the unique Iut system of Pseudomonas putida. This system contains a hybrid protein containing both a cytoplasmic ECF sigma domain and a periplasmic anti-sigma domain, apparently leading to a permanent interaction between the sigma and anti-sigma factor. We show that the Iut ECF sigma factor regulates the response to aerobactin under iron deficiency conditions and is activated by a proteolytic pathway that involves the sequential action of two proteases: Prc, which removes the periplasmic anti-sigma domain, and RseP, which subsequently removes the transmembrane domain and thereby generates the ECF active transcriptional form. We furthermore demonstrate the role of these proteases in the regulation of classical CSS systems in which the sigma and anti-sigma factors are two different proteins.
Collapse
Affiliation(s)
- Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain; Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Boechat AL, Kaihami GH, Politi MJ, Lépine F, Baldini RL. A novel role for an ECF sigma factor in fatty acid biosynthesis and membrane fluidity in Pseudomonas aeruginosa. PLoS One 2013; 8:e84775. [PMID: 24386415 PMCID: PMC3875570 DOI: 10.1371/journal.pone.0084775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/18/2013] [Indexed: 01/27/2023] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are members of cell-surface signaling systems, abundant in the opportunistic pathogen Pseudomonas aeruginosa. Twenty genes coding for ECF sigma factors are present in P. aeruginosa sequenced genomes, most of them being part of TonB systems related to iron uptake. In this work, poorly characterized sigma factors were overexpressed in strain PA14, in an attempt to understand their role in the bacterium's physiology. Cultures overexpressing SigX displayed a biphasic growth curve, reaching stationary phase earlier than the control strain, followed by subsequent growth resumption. During the first stationary phase, most cells swell and die, but the remaining cells return to the wild type morphology and proceed to a second exponential growth. This is not due to compensatory mutations, since cells recovered from late time points and diluted into fresh medium repeated this behavior. Swollen cells have a more fluid membrane and contain higher amounts of shorter chain fatty acids. A proteomic analysis was performed to identify differentially expressed proteins due to overexpression of sigX, revealing the induction of several fatty acid synthesis (FAS) enzymes. Using qRT-PCR, we showed that at least one isoform from each of the FAS pathway enzymes were upregulated at the mRNA level in the SigX overexpressing strain thus pointing to a role for this ECF sigma factor in the FAS regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Ana Laura Boechat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gilberto Hideo Kaihami
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Mario José Politi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - François Lépine
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Regina L. Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Faure LM, Llamas MA, Bastiaansen KC, de Bentzmann S, Bigot S. Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa σvreI ECF factor and its target genes. MICROBIOLOGY-SGM 2013; 159:1315-1327. [PMID: 23657684 DOI: 10.1099/mic.0.067645-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cell-surface signalling (CSS) system represents an important regulatory mechanism by which Gram-negative bacteria respond to the environment. Gene regulation by CSS systems is particularly present and important in the opportunistic human pathogen Pseudomonas aeruginosa. In this bacterium, these mechanisms regulate mainly the uptake of iron, but also virulence functions. The latter is the case for the P. aeruginosa PUMA3 CSS system formed by the putative VreA receptor, the σ(VreI) extracytoplasmic function sigma factor and the VreR anti-sigma factor. A role for this system in P. aeruginosa virulence has been demonstrated previously. However, the conditions under which this system is expressed and activated have not been elucidated so far. In this work, we have identified and characterized the global regulatory cascade activating the expression of the PUMA3 system. We show that the PhoB transcriptional regulator, part of the PhoB-PhoR two-component signalling system, can sense a limitation of inorganic phosphate to turn on the expression of the vreA, vreI and vreR genes, which constitute an operon. Upon expression of these genes in this condition, σ(VreI) factor mediates transcription of most, but not all, of the previously identified σ(VreI)-regulated genes. Indeed, we found new σ(VreI)-targeted genes and we show that σ(VreI)-regulon genes are all located immediately downstream to the vreAIR gene cluster.
Collapse
Affiliation(s)
- Laura M Faure
- UMR7255, CNRS - Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-CSIC, 18008 Granada, Spain
| | - Karlijn C Bastiaansen
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, 1081 HV Amsterdam, The Netherlands.,Department of Environmental Protection, Estación Experimental del Zaidín-CSIC, 18008 Granada, Spain
| | - Sophie de Bentzmann
- UMR7255, CNRS - Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Sarah Bigot
- UMR7255, CNRS - Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
27
|
Mascher T. Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. Curr Opin Microbiol 2013; 16:148-55. [DOI: 10.1016/j.mib.2013.02.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/30/2013] [Accepted: 02/03/2013] [Indexed: 11/16/2022]
|
28
|
de Amorim GC, Prochnicka-Chalufour A, Delepelaire P, Lefèvre J, Simenel C, Wandersman C, Delepierre M, Izadi-Pruneyre N. The structure of HasB reveals a new class of TonB protein fold. PLoS One 2013; 8:e58964. [PMID: 23527057 PMCID: PMC3602595 DOI: 10.1371/journal.pone.0058964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/08/2013] [Indexed: 11/22/2022] Open
Abstract
TonB is a key protein in active transport of essential nutrients like vitamin B12 and metal sources through the outer membrane transporters of Gram-negative bacteria. This inner membrane protein spans the periplasm, contacts the outer membrane receptor by its periplasmic domain and transduces energy from the cytoplasmic membrane pmf to the receptor allowing nutrient internalization. Whereas generally a single TonB protein allows the acquisition of several nutrients through their cognate receptor, in some species one particular TonB is dedicated to a specific system. Despite a considerable amount of data available, the molecular mechanism of TonB-dependent active transport is still poorly understood. In this work, we present a structural study of a TonB-like protein, HasB dedicated to the HasR receptor. HasR acquires heme either free or via an extracellular heme transporter, the hemophore HasA. Heme is used as an iron source by bacteria. We have solved the structure of the HasB periplasmic domain of Serratia marcescens and describe its interaction with a critical region of HasR. Some important differences are observed between HasB and TonB structures. The HasB fold reveals a new structural class of TonB-like proteins. Furthermore, we have identified the structural features that explain the functional specificity of HasB. These results give a new insight into the molecular mechanism of nutrient active transport through the bacterial outer membrane and present the first detailed structural study of a specific TonB-like protein and its interaction with the receptor.
Collapse
Affiliation(s)
- Gisele Cardoso de Amorim
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Ada Prochnicka-Chalufour
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Philippe Delepelaire
- Institut de Biologie Physico-Chimique, CNRS Université Paris-Diderot UMR 7099, Paris, France
| | - Julien Lefèvre
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Catherine Simenel
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Cécile Wandersman
- Institut Pasteur, Unité des Membranes Bactériennes, Département de Microbiologie, Paris, France
| | - Muriel Delepierre
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Regulons of three Pseudomonas syringae pv. tomato DC3000 iron starvation sigma factors. Appl Environ Microbiol 2012; 79:725-7. [PMID: 23124242 DOI: 10.1128/aem.02801-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 contains genes for 15 sigma factors. The majority are members of the extracytoplasmic function class of sigma factors, including five that belong to the iron starvation subgroup. In this study, we identified the genes controlled by three iron starvation sigma factors. Their regulons are composed of a small number of genes likely to be involved in iron uptake.
Collapse
|
30
|
Stockwell SB, Reutimann L, Guerinot ML. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:119-28. [PMID: 21879796 DOI: 10.1094/mpmi-07-11-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alternative sigma (σ) factors, proteins that recruit RNA polymerase core enzyme to target promoters, are one mechanism by which bacteria transcriptionally regulate groups of genes in response to environmental stimuli. A class of σ(70) proteins, termed extracytoplasmic function (ECF) σ factors, are involved in cellular processes such as bacterial stress responses and virulence. Here, we describe an ECF16 σ factor, EcfS (Blr4928) from the gram-negative soil bacterium Bradyrhizobium japonicum USDA110, that plays a critical role in the establishment of a functional symbiosis with soybean. Nonpolar insertional mutants of ecfS form immature nodules that do not fix nitrogen, a defect that can be successfully complemented by expression of ecfS. Overexpression of the cocistronic gene, tmrS (blr4929), phenocopies the ecfS mutant in planta and, therefore, we propose that TmrS is a negative regulator of EcfS, a determination consistent with the prediction that it encodes an anti-σ factor. Microarray analysis of the ecfS mutant and tmrS overexpressor was used to identify 40 transcripts misregulated in both strains. These transcripts primarily encode proteins of unknown and transport-related functions and may provide insights into the symbiotic defect in these strains.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bradyrhizobium/genetics
- Bradyrhizobium/metabolism
- Bradyrhizobium/physiology
- DNA, Complementary/genetics
- Gene Expression/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genetic Complementation Test
- Mutagenesis, Insertional
- Nitrogen Fixation
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Plant Leaves/microbiology
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Root Nodules, Plant/microbiology
- Root Nodules, Plant/ultrastructure
- Sigma Factor/genetics
- Sigma Factor/metabolism
- Glycine max/microbiology
- Glycine max/ultrastructure
- Stress, Physiological
- Symbiosis
- Transcription, Genetic
- Transcriptome
Collapse
Affiliation(s)
- S B Stockwell
- Biological Sciences Department, Dartmouth College, Hanover, NH, USA.
| | | | | |
Collapse
|
31
|
Abstract
The dramatic changes in the environmental conditions that organisms encountered during evolution and adaptation to life in specific niches, have influenced intracellular and extracellular metal ion contents and, as a consequence, the cellular ability to sense and utilize different metal ions. This metal-driven differentiation is reflected in the specific panels of metal-responsive transcriptional regulators found in different organisms, which finely tune the intracellular metal ion content and all metal-dependent processes. In order to understand the processes underlying this complex metal homeostasis network, the study of the molecular processes that determine the protein-metal ion recognition, as well as how this event is transduced into a transcriptional output, is necessary. This chapter describes how metal ion binding to specific proteins influences protein interaction with DNA and how this event can influence the fate of genetic expression, leading to specific transcriptional outputs. The features of representative metal-responsive transcriptional regulators, as well as the molecular basis of metal-protein and protein-DNA interactions, are discussed on the basis of the structural information available. An overview of the recent advances in the understanding of how these proteins choose specific metal ions among the intracellular metal ion pool, as well as how they allosterically respond to their effector binding, is given.
Collapse
|
32
|
Oliveira R, Collares T, Smith K, Collares T, Seixas F. The use of genes for performance enhancement: doping or therapy? Braz J Med Biol Res 2011; 44:1194-201. [DOI: 10.1590/s0100-879x2011007500145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/13/2011] [Indexed: 01/18/2023] Open
Affiliation(s)
| | | | - K.R. Smith
- University of Abertay Dundee, United Kingdom
| | | | | |
Collapse
|
33
|
Di Nocera PP, Rocco F, Giannouli M, Triassi M, Zarrilli R. Genome organization of epidemic Acinetobacter baumannii strains. BMC Microbiol 2011; 11:224. [PMID: 21985032 PMCID: PMC3224125 DOI: 10.1186/1471-2180-11-224] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/10/2011] [Indexed: 01/28/2023] Open
Abstract
Background Acinetobacter baumannii is an opportunistic pathogen responsible for hospital-acquired infections. A. baumannii epidemics described world-wide were caused by few genotypic clusters of strains. The occurrence of epidemics caused by multi-drug resistant strains assigned to novel genotypes have been reported over the last few years. Results In the present study, we compared whole genome sequences of three A. baumannii strains assigned to genotypes ST2, ST25 and ST78, representative of the most frequent genotypes responsible for epidemics in several Mediterranean hospitals, and four complete genome sequences of A. baumannii strains assigned to genotypes ST1, ST2 and ST77. Comparative genome analysis showed extensive synteny and identified 3068 coding regions which are conserved, at the same chromosomal position, in all A. baumannii genomes. Genome alignments also identified 63 DNA regions, ranging in size from 4 o 126 kb, all defined as genomic islands, which were present in some genomes, but were either missing or replaced by non-homologous DNA sequences in others. Some islands are involved in resistance to drugs and metals, others carry genes encoding surface proteins or enzymes involved in specific metabolic pathways, and others correspond to prophage-like elements. Accessory DNA regions encode 12 to 19% of the potential gene products of the analyzed strains. The analysis of a collection of epidemic A. baumannii strains showed that some islands were restricted to specific genotypes. Conclusion The definition of the genome components of A. baumannii provides a scaffold to rapidly evaluate the genomic organization of novel clinical A. baumannii isolates. Changes in island profiling will be useful in genomic epidemiology of A. baumannii population.
Collapse
Affiliation(s)
- Pier Paolo Di Nocera
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Via S, Pansini 5, 80131 Napoli, Italy.
| | | | | | | | | |
Collapse
|
34
|
Lassalle F, Campillo T, Vial L, Baude J, Costechareyre D, Chapulliot D, Shams M, Abrouk D, Lavire C, Oger-Desfeux C, Hommais F, Guéguen L, Daubin V, Muller D, Nesme X. Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 2011; 3:762-81. [PMID: 21795751 PMCID: PMC3163468 DOI: 10.1093/gbe/evr070] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome—one on the circular chromosome and six on the linear chromosome—suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species.
Collapse
Affiliation(s)
- Florent Lassalle
- Université de Lyon, Université Lyon 1, CNRS, INRA, Laboratoire Ecologie Microbienne Lyon, UMR 5557, USC 1193, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2131-40. [DOI: 10.1016/j.bbamem.2010.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/05/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022]
|
36
|
Insights into the extracytoplasmic stress response of Xanthomonas campestris pv. campestris: role and regulation of {sigma}E-dependent activity. J Bacteriol 2010; 193:246-64. [PMID: 20971899 DOI: 10.1128/jb.00884-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Xanthomonas campestris pv. campestris is an epiphytic bacterium that can become a vascular pathogen responsible for black rot disease of crucifers. To adapt gene expression in response to ever-changing habitats, phytopathogenic bacteria have evolved signal transduction regulatory pathways, such as extracytoplasmic function (ECF) σ factors. The alternative sigma factor σ(E), encoded by rpoE, is crucial for envelope stress response and plays a role in the pathogenicity of many bacterial species. Here, we combine different approaches to investigate the role and mechanism of σ(E)-dependent activation in X. campestris pv. campestris. We show that the rpoE gene is organized as a single transcription unit with the anti-σ gene rseA and the protease gene mucD and that rpoE transcription is autoregulated. rseA and mucD transcription is also controlled by a highly conserved σ(E)-dependent promoter within the σ(E) gene sequence. The σ(E)-mediated stress response is required for stationary-phase survival, resistance to cadmium, and adaptation to membrane-perturbing stresses (elevated temperature and ethanol). Using microarray technology, we started to define the σ(E) regulon of X. campestris pv. campestris. These genes encode proteins belonging to different classes, including periplasmic or membrane proteins, biosynthetic enzymes, classical heat shock proteins, and the heat stress σ factor σ(H). The consensus sequence for the predicted σ(E)-regulated promoter elements is GGAACTN(15-17)GTCNNA. Determination of the rpoH transcription start site revealed that rpoH was directly regulated by σ(E) under both normal and heat stress conditions. Finally, σ(E) activity is regulated by the putative regulated intramembrane proteolysis (RIP) proteases RseP and DegS, as previously described in many other bacteria. However, our data suggest that RseP and DegS are not only dedicated to RseA cleavage and that the proteolytic cascade of RseA could involve other proteases.
Collapse
|
37
|
Fetherston JD, Kirillina O, Bobrov AG, Paulley JT, Perry RD. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun 2010; 78:2045-52. [PMID: 20160020 PMCID: PMC2863531 DOI: 10.1128/iai.01236-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/30/2009] [Accepted: 02/04/2010] [Indexed: 01/18/2023] Open
Abstract
Iron acquisition from the host is an important step in the pathogenic process. While Yersinia pestis has multiple iron transporters, the yersiniabactin (Ybt) siderophore-dependent system plays a major role in iron acquisition in vitro and in vivo. In this study, we determined that the Ybt system is required for the use of iron bound by transferrin and lactoferrin and examined the importance of the Ybt system for virulence in mouse models of bubonic and pneumonic plague. Y. pestis mutants unable to either transport Ybt or synthesize the siderophore were both essentially avirulent via subcutaneous injection (bubonic plague model). Surprisingly, via intranasal instillation (pneumonic plague model), we saw a difference in the virulence of Ybt biosynthetic and transport mutants. Ybt biosynthetic mutants displayed an approximately 24-fold-higher 50% lethal dose (LD(50)) than transport mutants. In contrast, under iron-restricted conditions in vitro, a Ybt transport mutant had a more severe growth defect than the Ybt biosynthetic mutant. Finally, a Delta pgm mutant had a greater loss of virulence than the Ybt biosynthetic mutant, indicating that the 102-kb pgm locus encodes a virulence factor, in addition to Ybt, that plays a role in the pathogenesis of pneumonic plague.
Collapse
Affiliation(s)
- Jacqueline D. Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Alexander G. Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - James T. Paulley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Robert D. Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| |
Collapse
|
38
|
Expression of BfrH, a putative siderophore receptor of Bordetella bronchiseptica, is regulated by iron, Fur1, and the extracellular function sigma factor EcfI. Infect Immun 2009; 78:1147-62. [PMID: 20008538 DOI: 10.1128/iai.00961-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron (Fe) in soluble elemental form is found in the tissues and fluids of animals at concentrations insufficient for sustaining growth of bacteria. Consequently, to promote colonization and persistence, pathogenic bacteria evolved a myriad of scavenging mechanisms to acquire Fe from the host. Bordetella bronchiseptica, the etiologic agent of upper respiratory infections in a wide range of mammalian hosts, expresses a number of proteins for acquisition of Fe. Using proteomic and genomic approaches, three Fe-regulated genes were identified in the bordetellae: bfrH, a gene encoding a putative siderophore receptor; ecfI, a gene encoding a putative extracellular function (ECF) sigma factor; and ecfR, a gene encoding a putative EcfI modulator. All three genes are highly conserved in B. pertussis, B. parapertussis, and B. avium. Genetic analysis revealed that transcription of bfrH was coregulated by ecfI, ecfR, and fur1, one of two fur homologues carried by B. bronchiseptica. Overexpression of ecfI decoupled bfrH from Fe-dependent regulation. In contrast, expression of bfrH was significantly reduced in an ecfI deletion mutant. Deletion of ecfR, however, was correlated with a significant increase in expression of bfrH, due in part to a cis-acting nucleotide sequence within ecfR which likely reduces the frequency of readthrough transcription of bfrH from the Fe-dependent ecfIR promoter. Using a murine competition infection model, bfrH was shown to be required for optimal virulence of B. bronchiseptica. These experiments revealed ecfIR-bfrH as a locus encoding a new member of the growing family of Fe and ECF sigma factor-modulated regulons in the bordetellae.
Collapse
|
39
|
Staroń A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol 2009; 74:557-81. [PMID: 19737356 DOI: 10.1111/j.1365-2958.2009.06870.x] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of a bacterial cell to monitor and adaptively respond to its environment is crucial for survival. After one- and two-component systems, extracytoplasmic function (ECF) sigma factors - the largest group of alternative sigma factors - represent the third fundamental mechanism of bacterial signal transduction, with about six such regulators on average per bacterial genome. Together with their cognate anti-sigma factors, they represent a highly modular design that primarily facilitates transmembrane signal transduction. A comprehensive analysis of the ECF sigma factor protein family identified more than 40 distinct major groups of ECF sigma factors. The functional relevance of this classification is supported by the sequence similarity and domain architecture of cognate anti-sigma factors, genomic context conservation, and potential target promoter motifs. Moreover, this phylogenetic analysis revealed unique features indicating novel mechanisms of ECF-mediated signal transduction. This classification, together with the web tool ECFfinder and the information stored in the Microbial Signal Transduction (MiST) database, provides a comprehensive resource for the analysis of ECF sigma factor-dependent gene regulation.
Collapse
Affiliation(s)
- Anna Staroń
- KIT Research Group 11-1, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Llamas MA, van der Sar A, Chu BCH, Sparrius M, Vogel HJ, Bitter W. A Novel extracytoplasmic function (ECF) sigma factor regulates virulence in Pseudomonas aeruginosa. PLoS Pathog 2009; 5:e1000572. [PMID: 19730690 PMCID: PMC2729926 DOI: 10.1371/journal.ppat.1000572] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/10/2009] [Indexed: 11/28/2022] Open
Abstract
Next to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor. Upon perception of the extracellular signal by the receptor the ECF sigma factor is activated and promotes the transcription of a specific set of gene(s). Although most P. aeruginosa CSS systems are involved in the regulation of iron uptake, we have identified a novel system involved in the regulation of virulence. This CSS system, which has been designated PUMA3, has a number of unusual characteristics. The most obvious difference is the receptor component which is considerably smaller than that of other CSS outer membrane receptors and lacks a β-barrel domain. Homology modeling of PA0674 shows that this receptor is predicted to be a bilobal protein, with an N-terminal domain that resembles the N-terminal periplasmic signaling domain of CSS receptors, and a C-terminal domain that resembles the periplasmic C-terminal domains of the TolA/TonB proteins. Furthermore, the sigma factor regulator both inhibits the function of the ECF sigma factor and is required for its activity. By microarray analysis we show that PUMA3 regulates the expression of a number of genes encoding potential virulence factors, including a two-partner secretion (TPS) system. Using zebrafish (Danio rerio) embryos as a host we have demonstrated that the P. aeruginosa PUMA3-induced strain is more virulent than the wild-type. PUMA3 represents the first CSS system dedicated to the transcriptional activation of virulence functions in a human pathogen. Pseudomonas aeruginosa is a versatile pathogen; these bacteria are able to cause an infection in humans and other mammals, zebrafish, insects, nematodes and even plants. P. aeruginosa evolved an impressive amount of gene regulation systems to be able to express the right virulence genes under the right circumstances. The best studied examples of these are the two-component systems and the autoinducers. In addition, P. aeruginosa is also able to regulate virulence genes using the pyoverdine cell-surface signaling system (CSS). Genome analysis shows that there are multiple putative CSS systems in P. aeruginosa. In this paper we have studied a novel CSS system with a number of remarkable characteristics and show that this system is involved in the regulation of several putative virulence factors. Induction of this system leads to increased virulence in our zebrafish embryo infection model. Our study provides new insights into the regulation of virulence by P. aeruginosa.
Collapse
Affiliation(s)
- María A Llamas
- Department of Medical Microbiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Marshall B, Stintzi A, Gilmour C, Meyer JM, Poole K. Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter. MICROBIOLOGY-SGM 2009; 155:305-315. [PMID: 19118371 DOI: 10.1099/mic.0.023531-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In an attempt to identify components of a ferric citrate uptake system in Pseudomonas aeruginosa, a mutant library of a siderophore-deficient strain (IA614) was constructed and screened for defects in citrate-promoted growth in an Fe-restricted medium. A mutant disrupted in gene PA3901, encoding a homologue of the outer-membrane ferric citrate receptor, FecA, of Escherichia coli (FecA(E.c.)), was recovered and shown to be deficient in citrate-promoted growth and citrate-mediated Fe uptake. A mutant disrupted in gene PA4825, encoding a homologue of the MgtA/MgtB Mg2+ transporters in Salmonella enterica, was similarly deficient in citrate-promoted growth, though this was due to a citrate sensitivity of the mutant apparently resulting from citrate-promoted acquisition of Fe2+ and resultant oxidative stress. Consistent with citrate delivering Fe to cells as Fe2+, a P. aeruginosa mutant lacking the FeoB Fe2+ transporter homologue, PA4358, was compromised for citrate-promoted growth in Fe-restricted medium and showed markedly reduced citrate-mediated Fe uptake. Subsequent elimination of two Fe3+ transporter homologues, PA5216 and PA4687, in the feoB mutant failed to further compromise citrate-promoted growth or Fe uptake, though the additional loss of pcoA, encoding a periplasmic ferroxidase implicated in Fe2+ acquisition, completely abrogated citrate-mediated Fe uptake. Fe acquisition mediated by other siderophores (e.g. pyoverdine) was, however, unaffected in the quadruple knockout strain. These data indicate that Fe delivered to P. aeruginosa by citrate is released as Fe2+, probably in the periplasm, prior to its transport into cells via Fe transport components.
Collapse
Affiliation(s)
- Bryan Marshall
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christie Gilmour
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jean-Marie Meyer
- Laboratoire de Microbiologie et Génétique, Université Louis Pasteur/CNRS FRE 2326, 28 rue Goethe, 67083 Strasbourg, France
| | - Keith Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
42
|
Cornelis P, Matthijs S, Van Oeffelen L. Iron uptake regulation in Pseudomonas aeruginosa. Biometals 2009; 22:15-22. [PMID: 19130263 DOI: 10.1007/s10534-008-9193-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/07/2008] [Indexed: 01/18/2023]
Abstract
The Pseudomonas genus belongs to the gamma division of Proteobacteria and many species produce the characteristic yellow-green siderophore pyoverdine, and often a second siderophore, of lower affinity for iron. These bacteria are known for their ability to colonize different ecological niches and for their versatile metabolism. It is therefore not surprising that they are endowed with the capacity to take up exogenous xenosiderophores via different TonB-dependent receptors. Uptake of iron is controlled by the central regulator Fur, and via extracytoplasmic sigma factors or other types of regulators (two-component systems, AraC regulators). In this review the Fur regulon (experimentally proven and/or predicted) of P. aeruginosa will be presented. An interesting feature revealed by this analysis of Fur-regulated genes is the overlap between the iron and the sulfur regulons as well with the quorum sensing system.
Collapse
Affiliation(s)
- Pierre Cornelis
- Department of Molecular and Cellular Interactions, Laboratory of Microbial Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
43
|
Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 938] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
|
44
|
Abstract
Serratia marcescens possesses two functional TonB paralogs, TonB(Sm) and HasB, for energizing TonB-dependent transport receptors (TBDT). Previous work had shown that HasB is specific to heme uptake in the natural host and in Escherichia coli expressing the S. marcescens TBDT receptor HasR, whereas the S. marcescens TonB and E. coli TonB proteins function equally well with various TBDT receptors for heme and siderophores. This has raised the question of the target of this specificity. HasB could be specific either to heme TBDT receptors or only to HasR. To resolve this question, we have cloned in E. coli another S. marcescens heme receptor, HemR, and we show here that this receptor is TonB dependent and does not work with HasB. This demonstrates that HasB is not dedicated to heme TBDT receptors but rather forms a specific pair with HasR. This is the first reported case of a specific TonB protein working with only one TBDT receptor in one given species. We discuss the occurrence, possible molecular mechanisms, and selective advantages of such dedicated TonB paralogs.
Collapse
|
45
|
King-Lyons ND, Smith KF, Connell TD. Expression of hurP, a gene encoding a prospective site 2 protease, is essential for heme-dependent induction of bhuR in Bordetella bronchiseptica. J Bacteriol 2007; 189:6266-75. [PMID: 17586630 PMCID: PMC1951940 DOI: 10.1128/jb.00629-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/15/2007] [Indexed: 11/20/2022] Open
Abstract
Expression of the hurIR bhuRSTUV heme utilization locus in Bordetella bronchiseptica is coordinately controlled by the global iron-dependent regulator Fur and the extracytoplasmic function sigma factor HurI. Activation of HurI requires transduction of a heme-dependent signal via HurI, HurR, and BhuR, a three-component heme-dependent regulatory system. In silico searches of the B. bronchiseptica genome to identify other genes that encode additional participants in this heme-dependent regulatory cascade revealed hurP, an open reading frame encoding a polypeptide with homology to (i) RseP, a site 2 protease (S2P) of Escherichia coli required for modifying the cytoplasmic membrane protein RseA, and (ii) YaeL, an S2P of Vibrio cholerae required for modification of the cytoplasmic membrane protein TcpP. A mutant of B. bronchiseptica defective for hurP was incapable of regulating expression of BhuR in a heme-dependent manner. Furthermore, the hurP mutant was unable to utilize hemin as a sole source of nutrient Fe. These defects in hemin utilization and heme-dependent induction of BhuR were restored when recombinant hurP (or recombinant rseP) was introduced into the mutant. Introduction of hurP into a yaeL mutant of V. cholerae also complemented its S2P defect. These data provided strong evidence that protease activity and cleavage site recognition was conserved in HurP, RseP, and YaeL. The data are consistent with a model in which HurP functionally modifies HurR, a sigma factor regulator that is essential for heme-dependent induction of bhuR.
Collapse
Affiliation(s)
- Natalie D King-Lyons
- The Witebsky Center for Microbial Pathogenesis and Immunology and the Department of Microbiology and Immunology, The University at Buffalo, 3435 Main St., Buffalo, NY 14221, USA
| | | | | |
Collapse
|
46
|
Braun V, Herrmann C. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J Bacteriol 2007; 189:6913-8. [PMID: 17660286 PMCID: PMC2045206 DOI: 10.1128/jb.00884-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrate-mediated iron transport across the cytoplasmic membrane is catalyzed by an ABC transporter that consists of the periplasmic binding protein FecB, the transmembrane proteins FecC and FecD, and the ATPase FecE. Salt bridges between glutamate residues of the binding protein and arginine residues of the transmembrane proteins are predicted to mediate the positioning of the substrate-loaded binding protein on the transmembrane protein, based on the crystal structures of the ABC transporter for vitamin B(12), consisting of the BtuF binding protein and the BtuCD transmembrane proteins (E. L. Borths et al., Proc. Natl. Acad. Sci. USA 99:16642-16647, 2002). Here, we examined the role of the residues predicted to be involved in salt-bridge formation between FecB and FecCD by substituting these residues with alanine, cysteine, arginine, and glutamate and by analyzing the citrate-mediated iron transport of the mutants. Replacement of E93 in FecB with alanine [FecB(E93A)], cysteine, or arginine nearly abolished citrate-mediated iron transport. Mutation FecB(E222R) nearly eliminated transport, and FecB(E222A) and FecB(E222C) strongly reduced transport. FecD(R54C) and FecD(R51E) abolished transport, whereas other R-to-C mutations in putative interaction sites between FecCD and FecB substantially reduced transport. The introduced cysteine residues in FecB and FecCD also served to examine the formation of disulfide bridges in place of salt bridges between the binding protein and the transmembrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results suggest cross-linking of FecB(E93C) to FecD(R54C) and FecB(E222C) to FecC(R60C). The data are consistent with the proposal that FecB(E93) is contained in the region that binds to FecD and FecB(E222) in the region that binds to FecC.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstasse 35, 72076 Tübingen, Germany.
| | | |
Collapse
|
47
|
Brooks BE, Buchanan SK. Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1930-45. [PMID: 17673165 PMCID: PMC2562455 DOI: 10.1016/j.bbamem.2007.06.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/23/2007] [Accepted: 06/06/2007] [Indexed: 11/27/2022]
Abstract
A variety of mechanisms are used to signal extracytoplasmic conditions to the cytoplasm. These mechanisms activate extracytoplasmic function (ECF) sigma factors which recruit RNA-polymerase to specific genes in order to express appropriate proteins in response to the changing environment. The two best understood ECF signaling pathways regulate sigma(E)-mediated expression of periplasmic stress response genes in Escherichia coli and FecI-mediated expression of iron-citrate transport genes in E. coli. Homologues from other Gram-negative bacteria suggest that these two signaling mechanisms and variations on these mechanisms may be the general schemes by which ECF sigma factors are regulated in Gram-negative bacteria.
Collapse
|
48
|
Braun V, Endriss F. Energy-coupled outer membrane transport proteins and regulatory proteins. Biometals 2007; 20:219-31. [PMID: 17370038 DOI: 10.1007/s10534-006-9072-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
FhuA and FecA are two examples of energy-coupled outer membrane import proteins of gram-negative bacteria. FhuA transports iron complexed by the siderophore ferrichrome and serves as a receptor for phages, a toxic bacterial peptide, and a toxic protein. FecA transports diferric dicitrate and regulates transcription of an operon encoding five ferric citrate (Fec) transport genes. Properties of FhuA mutants selected according to the FhuA crystal structure are described. FhuA mutants in the TonB box, the hatch, and the beta-barrel are rather robust. TonB box mutants in FhuA FecA, FepA, Cir, and BtuB are compared; some mutations are suppressed by mutations in TonB. Mutant studies have not revealed a ferrichrome diffusion pathway, and tolerance to mutations in the region linking the TonB box to the hatch does not disclose a mechanism for how energy transfer from the cytoplasmic membrane to FhuA changes the conformation of FhuA such that bound substrates are released, the pore is opened, and substrates enter the periplasm, or how surface loops change their conformation such that TonB-dependent phages bind irreversibly and release their DNA into the cells. The FhuA and FecA crystal structures do not disclose the mechanism of these proteins, but they provide important information for specific functional studies. FecA is also a regulatory protein that transduces a signal from the cell surface into the cytoplasm. The interacting subdomains of the proteins in the FecA --> FecR --> FecI --> RNA polymerase signal transduction pathway resulting in fecABCDE transcription have been determined. Energy-coupled transporters transport not only iron and vitamin B12, but also other substrates of very low abundance such as sugars across the outer membrane; transcription regulation of the transport genes may occur similarly to that of the Fec transport genes.
Collapse
Affiliation(s)
- Volkmar Braun
- Microbiology/Membrane Physiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | | |
Collapse
|
49
|
Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 2006; 281:36269-79. [PMID: 16968696 DOI: 10.1074/jbc.m606509200] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult human gut microbiota is dominated by two divisions of Bacteria, the Bacteroidetes and the Firmicutes. Assembly of this community begins at birth through processes that remain largely undefined. In this report, we examine the adaptations of Bacteroides thetaiotaomicron, a prominent member of the adult distal intestinal microbiota, during the suckling and weaning periods. Germ-free NMRI mice were colonized at birth from their gnotobiotic mothers, who harbored this anaerobic Gram-negative saccharolytic bacterium. B. thetaiotaomicron was then harvested from the ceca of these hosts during the suckling period (postnatal day 17) and after weaning (postnatal day 30). Whole genome transcriptional profiles were obtained at these two time points using custom B. thetaiotaomicron GeneChips. Transcriptome-based in silico reconstructions of bacterial metabolism and gas chromatography-mass spectrometry and biochemical assays of carbohydrate utilization in vivo indicated that in the suckling gut B. thetaiotaomicron prefers host-derived polysaccharides, as well as mono- and oligosaccharides present in mother's milk. After weaning, B. thetaiotaomicron expands its metabolism to exploit abundant, plant-derived dietary polysaccharides. The bacterium's responses to postnatal alterations in its nutrient landscape involve expression of gene clusters encoding environmental sensors, outer membrane proteins involved in binding and import of glycans, and glycoside hydrolases. These expression changes are interpreted in light of a phylogenetic analysis that revealed unique expansions of related polysaccharide utilization loci in three human alimentary tract-associated Bacteroidetes, expansions that likely reflect the evolutionary adaptations of these species to different nutrient niches.
Collapse
Affiliation(s)
- Magnus K Bjursell
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | |
Collapse
|