1
|
Calvillo-Medina RP, Gunde-Cimerman N, Escudero-Leyva E, Barba-Escoto L, Fernández-Tellez EI, Medina-Tellez AA, Bautista-de Lucio V, Ramos-López MÁ, Campos-Guillén J. Richness and metallo-tolerance of cultivable fungi recovered from three high altitude glaciers from Citlaltépetl and Iztaccíhuatl volcanoes (Mexico). Extremophiles 2020; 24:625-636. [PMID: 32535716 DOI: 10.1007/s00792-020-01182-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
In Mexico little is known about high-altitude glacial psychrotolerant or psychrophilic fungal species, with most glacial fungi isolated from polar environments or Alpine glaciers. It has been documented that some of these species may play an important role in bioremediation of contaminated environments with heavy metals. In the present study, 75 fungi were isolated from glaciers in Citlaltépetl (5675 masl) and Iztaccíhuatl (5286 masl) volcanoes. Combining morphological characteristics and molecular methods, based on ITS rDNA, 38 fungi were partially identified to genus level, 35 belonging to Ascomycota and three to Mucoromycota. The most abundant genera were Cladosporium, followed by Alternaria and Sordariomycetes order. All isolated fungi were psychrotolerant, pigmented and resistant to different concentrations of Cr(III) and Pb(II), while none tolerated Hg(II). Fungi most tolerant to Cr(III) and Pb(II) belong to the genera Stemphylium, Cladosporium and Penicillium and to a lesser extent Aureobasidium and Sordariomycetes. To our knowledge, this is the first report on cultivable mycobiota richness and their Cr and Pb tolerance. The results open new research possibilities about fungal diversity and heavy metals myco-remediation. Extremophilic fungal communities should be further investigated before global warming causes permanent changes and we miss the opportunity to describe these sites in Mexico.
Collapse
Affiliation(s)
| | - Nina Gunde-Cimerman
- Molecular Genetics and Biology of Microorganisms, Dept. Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Efraín Escudero-Leyva
- Centro de Investigaciones en Productos Naturales (CIPRONA) Y Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), Centro Nacional de Computación Avanzada (CNCA), CeNAT-CONARE, San José, Costa Rica
| | - Luis Barba-Escoto
- International Maize and Wheat Improvement Center (CIMMYT), Sustainable Intensification Program, Texcoco, Mexico
| | | | | | - Victor Bautista-de Lucio
- Laboratorio de Microbiología Y Proteómica, Instituto de Oftalmología "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico
| | | | - Juan Campos-Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, Mexico
| |
Collapse
|
2
|
Qin H, Hu T, Zhai Y, Lu N, Aliyeva J. The improved methods of heavy metals removal by biosorbents: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113777. [PMID: 31864928 DOI: 10.1016/j.envpol.2019.113777] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/13/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
For decades, a vast array of innovative biosorbents have been found out and used in the removal of heavy metals, including bacteria, algae and fungi, etc. Although extensive biological species have been tried as a biosorbent for heavy metals removal, for removal efficiency or economy efficiency limited, it has failed to make a substantial breakthrough in practical application. Thus, many improved methods based on biosorbents emerged. In this review, based on the literature and our research results, we highlight three types of novel methods for biosorbents removal of heavy metals: chemical modification of biosorbents; biomass and chemical materials combination; multiple biomass complex systems. We mainly focus on their configuration, biosorption performance, their creation method, regeneration/reuse, their application and development in the future. Through the comparative analysis of various methods, we think that intracellular autogenous nanomaterials may open up another window in biosorption of heavy metals area. At the same time, the combination of various treatment methods will be the development tendency of heavy metal pollution treatment in the future.
Collapse
Affiliation(s)
- Huaqing Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Tianjue Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ningqin Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jamila Aliyeva
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
3
|
Tu C, Liu Y, Wei J, Li L, Scheckel KG, Luo Y. Characterization and mechanism of copper biosorption by a highly copper-resistant fungal strain isolated from copper-polluted acidic orchard soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24965-24974. [PMID: 29931648 PMCID: PMC6309591 DOI: 10.1007/s11356-018-2563-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/13/2018] [Indexed: 05/26/2023]
Abstract
In this paper, a highly copper-resistant fungal strain NT-1 was characterized by morphological, physiological, biochemical, and molecular biological techniques. Physiological response to Cu(II) stress, effects of environmental factors on Cu(II) biosorption, as well as mechanisms of Cu(II) biosorption by strain NT-1 were also investigated in this study. The results showed that NT-1 belonged to the genus Gibberella, which exhibited high tolerance to both acidic conditions and Cu(II) contamination in the environment. High concentrations of copper stress inhibited the growth of NT-1 to various degrees, leading to the decreases in mycelial biomass and colony diameter, as well as changes in morphology. Under optimal conditions (initial copper concentration: 200 mg L-1, temperature 28 °C, pH 5.0, and inoculum dose 10%), the maximum copper removal percentage from solution through culture of strain NT-1 within 5 days reached up to 45.5%. The biosorption of Cu(II) by NT-1 conformed to quasi-second-order kinetics and Langmuir isothermal adsorption model and was confirmed to be a monolayer adsorption process dominated by surface adsorption. The binding of NT-1 to Cu(II) was mainly achieved by forming polydentate complexes with carboxylate and amide group through covalent interactions and forming Cu-nitrogen-containing heterocyclic complexes via Cu(II)-π interaction. The results of this study provide a new fungal resource and key parameters influencing growth and copper removal capacity of the strain for developing an effective bioremediation strategy for copper-contaminated acidic orchard soils.
Collapse
Affiliation(s)
- Chen Tu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Ying Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Jing Wei
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Lianzhen Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Kirk G Scheckel
- National Risk Management Research Laboratory, United States Environmental Protection Agency, 5995 Center Hill Avenue, Cincinnati, OH, 45224-1701, USA
| | - Yongming Luo
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China.
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
4
|
Chen Y, Shen Y, Wang W, Wei D. Mn 2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:54. [PMID: 29507606 PMCID: PMC5831609 DOI: 10.1186/s13068-018-1055-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/18/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei Rut-C30 is one of the most vital fungi for the production of cellulases, which can be used for biofuel production from lignocellulose. Nevertheless, the mechanism of transmission of external stimuli and signals in modulating cellulase production in T. reesei Rut-C30 remains unclear. Calcium is a known second messenger regulating cellulase gene expression in T. reesei. RESULTS In this study, we found that a biologically relevant extracellular Mn2+ concentration markedly stimulates cellulase production, total protein secretion, and the intracellular Mn2+ concentration of Rut-C30, a cellulase hyper-producing strain of T. reesei. Furthermore, we identified two Mn2+ transport proteins, designated as TPHO84-1 and TPHO84-2, indicating that they are upstream in the signaling pathway that leads to cellulase upregulation. We also found that Mn2+ induced a significant increase in cytosolic Ca2+ concentration, and that this increased cytosolic Ca2+ might be a key step in the Mn2+-mediated regulation of cellulase gene transcription and production. The utilization of LaCl3 to block plasma membrane Ca2+ channels, and deletion of crz1 (calcineurin-responsive zinc finger transcription factor 1) to interrupt calcium signaling, showed that Mn2+ exerts the induction of cellulase genes via calcium channels and calcium signaling. To substantiate this, we identified a Ca2+/Mn2+ P-type ATPase, TPMR1, which could play a pivotal role in Ca2+/Mn2+ homeostasis and Mn2+ induction of cellulase genes in T. reesei Rut-C30. CONCLUSIONS Taken together, our results revealed for the first time that Mn2+ stimulates cellulase production, and demonstrates that Mn2+ upregulates cellulase genes via calcium channels and calcium signaling. Our research also provides a direction to facilitate enhanced cellulase production by T. reesei.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| | - Yaling Shen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| |
Collapse
|
5
|
Siewiera P, Różalska S, Bernat P. Estrogen-mediated protection of the organotin-degrading strain Metarhizium robertsii against oxidative stress promoted by monobutyltin. CHEMOSPHERE 2017; 185:96-104. [PMID: 28688342 DOI: 10.1016/j.chemosphere.2017.06.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Dibutyltin (DBT) is a global pollutant characterized by pro-oxidative properties. The fungal strain Metarhizium robertsii can eliminate high levels of DBT efficiently. In this study, induction of oxidative stress as well as its alleviation through the application of natural estrogens during the elimination of DBT by M. robertsii were evaluated. During the first 24 h of incubation, the initial concentration of DBT (20 mg l-1) was reduced to 3.1 mg l-1, with simultaneous formation of a major byproduct - monobutyltin (MBT). In the presence of estrone (E1) or 17β-estradiol (E2), the amounts of dibutyltin residues in the fungal cultures were found to be approximately 2-fold higher compared to cultures without estrogens, which was associated with the simultaneous utilization of the compounds by cytochrome P450 enzymes. On the other hand, MBT levels were approximately 2.5 times lower in the fungal cultures with the addition of one of the estrogens. MBT (not DBT) promotes the generation of O2-, H2O2, and NO at levels 65.89 ± 18.08, 4.04 ± 3.62, and 27.92 ± 1.95, respectively. Superoxide dismutase and catalase activities did not show any response of the M. robertsii strain against the overproduction of superoxide anion and hydrogen peroxide. Application of E1 as well as E2 ensured non-enzymatic defense against nitrosative and oxidative stress through scavenging of nitrogen and oxygen reactive species, and limited their levels from 1.5-fold to 21-fold, depending on the used estrogen.
Collapse
Affiliation(s)
- Paulina Siewiera
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
6
|
|
7
|
Xu YS, Zheng T, Yong XY, Zhai DD, Si RW, Li B, Yu YY, Yong YC. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. BIORESOURCE TECHNOLOGY 2016; 211:542-547. [PMID: 27038263 DOI: 10.1016/j.biortech.2016.03.144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1μgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1μgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs.
Collapse
Affiliation(s)
- Yu-Shang Xu
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China; College of Biotechnology and Pharmaceutical Engineering and Bioenergy Research Institute, Nanjing TECH University, Nanjing 210095, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy, Chinese Academy of Science, Guangzhou, Guangdong 510640, China
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering and Bioenergy Research Institute, Nanjing TECH University, Nanjing 210095, China
| | - Dan-Dan Zhai
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Rong-Wei Si
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Bing Li
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Yang Yu
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Li X, Li F, Fang L. Effect of Paecilomyces cateniannulatus on the adsorption of nickel onto graphene oxide. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0097-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Li F, Gao Z, Li X, Fang L. The effect of Paecilomyces catenlannulatus on removal of U(VI) by illite. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 137:31-36. [PMID: 24998746 DOI: 10.1016/j.jenvrad.2014.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 06/05/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
The effect of Paecilomyces catenlannulatus (P. catenlannulatus) on removal of U(VI) onto illite as a function of contact time, pH, ionic strength, and solution concentration was conducted by batch techniques. The adsorption kinetics indicated that the removal of U(VI) on illite and illite coated P. catenlannulatus can be fitted by pseudo-second order kinetic model very well. The removal of U(VI) on illite and illite coated P. catenlannulatus increased with increasing pH from 1.0 to 7.0, whereas the decrease of U(VI) adsorption on illite and illite coated P. catenlannulatus was observed at pH > 7.5. The adsorption behavior of U(VI) on illite and illite coated P. catenlannulatus can be simulated by the double diffuse model under various pH conditions. The ionic strength-dependent experiments showed that the removal of U(VI) on illite was outer-sphere surface complexation, whereas the inner-sphere surface complexation predominated the U(VI) adsorption onto illite coated P. catenlannulatus at pH 5.0-7.0. The maximum adsorption capacity of U(VI) on illite and illite coated P. catenlannulatus calculated from Langmuir model at pH 5.0 and T = 298 K was 46.729 and 54.347 mg/g, respectively, revealing enhanced adsorption of U(VI) on illite coated P. catenlannulatus. This paper highlights the effect of microorganism on the removal of radionuclides from aqueous solutions in environmental pollution management.
Collapse
Affiliation(s)
- Fengbo Li
- The College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; The School of Life Science and Environmental Science, Huangshan University, Huangshan 245041, China
| | - Zhimou Gao
- The College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyu Li
- The School of Life Science and Environmental Science, Huangshan University, Huangshan 245041, China
| | - Lejin Fang
- The School of Life Science and Environmental Science, Huangshan University, Huangshan 245041, China
| |
Collapse
|
10
|
Xu YN, Xia XX, Zhong JJ. Induction of ganoderic acid biosynthesis by Mn2+ in static liquid cultivation of Ganoderma lucidum. Biotechnol Bioeng 2014; 111:2358-65. [PMID: 24870062 DOI: 10.1002/bit.25288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/07/2022]
Abstract
Metal ions affect cell physiology and metabolism significantly, but the role of Mn(2+) in the secondary metabolism of mushrooms is yet unclear. In static liquid cultivation of Ganoderma lucidum for producing antitumor ganoderic acids (GAs), the Mn(2+) addition was performed. Addition of 10 mM Mn(2+) at the start of the static liquid cultivation resulted in 2.2-fold improvement of total GAs production. The expression levels of GA biosynthetic and Ca(2+) sensors' genes were up-regulated with Mn(2+) induction while down-regulated by adding cyclosporin A (calcineurin inhibitor), suggesting that higher GA production might result from calcineurin signal regulation. Intracellular Ca(2+) imaging and calcineurin inhibitor study revealed that addition of Mn(2+) led to Ca(2+) influx from medium to the cells to trigger calcineurin signals. Mn(2+) addition was therefore an efficient induction strategy for improving GAs production, whose regulation mechanism was via calcineurin signaling transduction.
Collapse
Affiliation(s)
- Yi-Ning Xu
- State Key Laboratory of Microbial Metabolism and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240, China
| | | | | |
Collapse
|
11
|
The effect of environmental factors on the uptake of 60Co by Paecilomyces catenlannulatus. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2827-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li F, Gao Z, Li X, Fang L. The adsorption of U(VI) and Hg(II) on Paecilomyces catenlannulatus proteases. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2658-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Słaba M, Gajewska E, Bernat P, Fornalska M, Długoński J. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3423-34. [PMID: 23132407 DOI: 10.1007/s11356-012-1281-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/23/2012] [Indexed: 05/05/2023]
Abstract
The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.
Collapse
Affiliation(s)
- Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | | | | | | | | |
Collapse
|
14
|
Colin VL, Pereira CE, Villegas LB, Amoroso MJ, Abate CM. Production and partial characterization of bioemulsifier from a chromium-resistant actinobacteria. CHEMOSPHERE 2013; 90:1372-1378. [PMID: 22985590 DOI: 10.1016/j.chemosphere.2012.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 06/01/2023]
Abstract
Surface-active compounds such as synthetic emulsifiers have been used for several decades, both for the degradation of hydrocarbons and increasing desorption of soil-bound metals. However, due to their high toxicity, low degradability, and production costs unaffordable for use in larger ecosystems, synthetic emulsifiers have been gradually replaced by those derived from natural sources such as plants or microbes. In previous studies, the bacterium Streptomyces sp. MC1 has shown the ability to reduce and/or accumulate Cr(VI), a highly promising advance in the development of methods for environmental clean-up of sites contaminated with chromium. Here, new studies on the production of emulsifier from this strain are presented. The cultivation factors that have a significant influence on emulsifier biosynthesis, as well as the interactions among them, were studied by factorial design. Based upon optimization studies, maximum bioemulsifier production was detected in the culture medium having an initial pH of 8 with phosphate 2.0 g L(-1) and Ca(+2) 1.0 g L(-1) added, with an emulsification index about 3.5 times greater compared to the basal value. Interestingly, in the presence of 5.0 g L(-1) Cr(VI), Streptomyces sp. MC1 retained about 65% of its emulsifier production ability. Partially purified emulsifier presented high thermo-stability and partial water solubility. These findings could have promising future prospects for the remediation of organic- and metal-contaminated sites.
Collapse
Affiliation(s)
- Verónica Leticia Colin
- Planta Piloto de Procesos Industriales y Microbiológicos, CONICET, Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina.
| | | | | | | | | |
Collapse
|
15
|
Paraszkiewicz K, Bernat P, Naliwajski M, Długoński J. Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Arch Microbiol 2010; 192:135-41. [DOI: 10.1007/s00203-009-0542-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 12/18/2009] [Accepted: 12/27/2009] [Indexed: 12/31/2022]
|