1
|
Liu S, Kong Z, Guo H, Zhang Y, Han X, Gao Y, Daigger GT, Zhang G, Li R, Liu Y, Zhang P, Song G. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125019. [PMID: 39326826 DOI: 10.1016/j.envpol.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Gu W, Wu S, Liu X, Wang L, Wang X, Qiu Q, Wang G. Algal-bacterial consortium promotes carbon sink formation in saline environment. J Adv Res 2024; 60:111-125. [PMID: 37597746 PMCID: PMC11156706 DOI: 10.1016/j.jare.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The level of atmospheric CO2 has continuously been increasing and the resulting greenhouse effects are receiving attention globally. Carbon removal from the atmosphere occurs naturally in various ecosystems. Among them, saline environments contribute significantly to the global carbon cycle. Carbonate deposits in the sediments of salt lakes are omnipresent, and the biological effects, especially driven by halophilic microalgae and bacteria, on carbonate formation remain to be elucidated. OBJECTIVES The present study aims to characterize the carbonates formed in saline environments and demonstrate the mechanisms underlying biological-driven CO2 removal via microalgal-bacterial consortium. METHODS The carbonates naturally formed in saline environments were collected and analyzed. Two saline representative organisms, the photosynthetic microalga Dunaliella salina and its mutualistic halophilic bacteria Nesterenkonia sp. were isolated from the inhabiting saline environment and co-cultivated to study their biological effects on carbonates precipitation and isotopic composition. During this process, electrochemical parameters and Ca2+ flux, and expression of genes related to CaCO3 formation were analyzed. Genome sequencing and metagenomic analysis were conducted to provide molecular evidence. RESULTS The results showed that natural saline sediments are enriched with CaCO3 and enrichment of genes related to photosynthesis and ureolysis. The co-cultivation stimulated 54.54% increase in CaCO3 precipitation and significantly promoted the absorption of external CO2 by 49.63%. A pH gradient was formed between the bacteria and algae culture, creating 150.22 mV of electronic potential, which might promote Ca2+ movement toward D. salina cells. Based on the results of lab-scale induction and 13C analysis, a theoretical calculation indicates a non-negligible amount of 0.16 and 2.3 Tg C/year carbon sequestration in China and global saline lakes, respectively. CONCLUSION The combined effects of these two typical representative species have contributed to the carbon sequestration in saline environments, by promoting Ca2+ influx and increase of pH via microalgal and bacterial metabolic processes.
Collapse
Affiliation(s)
- Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Songcui Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xuehua Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xulei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qi Qiu
- Tianjin Changlu Hangu Saltern Co., LTD, 300480, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
3
|
Sun X, Xiao Y, Yong C, Sun H, Li S, Huang H, Jiang H. Interactions between the nitrogen-fixing cyanobacterium Trichodesmium and siderophore-producing cyanobacterium Synechococcus under iron limitation. ISME COMMUNICATIONS 2024; 4:ycae072. [PMID: 38873030 PMCID: PMC11171426 DOI: 10.1093/ismeco/ycae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/07/2024] [Indexed: 06/15/2024]
Abstract
As diazotrophic cyanobacteria of tremendous biomass, Trichodesmium continuously provide a nitrogen source for carbon-fixing cyanobacteria and drive the generation of primary productivity in marine environments. However, ocean iron deficiencies limit growth and metabolism of Trichodesmium. Recent studies have shown the co-occurrence of Trichodesmium and siderophore-producing Synechococcus in iron-deficient oceans, but whether siderophores secreted by Synechococcus can be used by Trichodesmium to adapt to iron deficiency is not clear. We constructed a mutant Synechococcus strain unable to produce siderophores to explore this issue. Synechococcus filtrates with or without siderophores were added into a Trichodesmium microbial consortium consisting of Trichodesmium erythraeum IMS 101 as the dominant microbe with chronic iron deficiency. By analyzing the physiological phenotype, metagenome, and metatranscriptome, we investigated the interactions between the nitrogen-fixing cyanobacterium Tricodesmium and siderophore-producing cyanobacterium Synechococcus under conditions of iron deficiency. The results indicated that siderophores secreted by Synechococcus are likely to chelate with free iron in the culture medium of the Trichodesmium consortium, reducing the concentration of bioavailable iron and posing greater challenges to the absorption of iron by Trichodesmium. These findings revealed the characteristics of iron-competitive utilization between diazotrophic cyanobacteria and siderophore-producing cyanobacteria, as well as potential interactions, and provide a scientific basis for understanding the regulatory effects of nutrient limitation on marine primary productivity.
Collapse
Affiliation(s)
- Xumei Sun
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 1 Jintang Road, Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Yan Xiao
- School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People’s Republic of China
| | - Chengwen Yong
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
| | - Hansheng Sun
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
| | - Shuangqing Li
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 1 Jintang Road, Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 1 Jintang Road, Zhuhai, Guangdong, 519000, People’s Republic of China
- School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People’s Republic of China
| |
Collapse
|
4
|
Tan PY, Kato Y, Konishi M. A Novel Strain of the Cyanobacterial Growth-promoting Bacterium, Rhodococcus sp. AF2108, Enhances the Growth of Synechococcus elongatus. Microbes Environ 2024; 39:ME24050. [PMID: 39756986 PMCID: PMC11821763 DOI: 10.1264/jsme2.me24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 01/07/2025] Open
Abstract
To enhance the growth of the cyanobacterium Synechococcus elongatus, the present study conducted direct screening for cyanobacterium growth-promoting bacteria (CGPB) using co-cultures. Of the 144 strains obtained, four novel CGPB strains were isolated and phylogenetically identified: Rhodococcus sp. AF2108, Ancylobacter sp. GA1226, Xanthobacter sp. AF2111, and Shewanella sp. OR151. A co-culture of S. elongatus with the most effective CGPB strain, Rhodococcus sp. AF2108, achieved a 8.5-fold increase in the chlo-rophyll content of cyanobacterial cells over that in a monoculture. A flow cytometric ana-lysis showed a 3.9-fold increase in the number of S. elongatus cells in the co-culture with Rhodococcus sp. AF2108. These results were attributed to increases in forward scattering and chlo-rophyll fluorescence intensities. The new Rhodococcus strain appears to be one of the most effective CGPBs described to date.
Collapse
Affiliation(s)
- Pei Yu Tan
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090–8507, Japan
| | - Yuta Kato
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090–8507, Japan
- Kankyo Daizen Co., Ltd., 438–7, Tanno-cho 3-ku, Kitami, Hokkaido, 099–2103, Japan
| | - Masaaki Konishi
- Department of Applied Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090–8507, Japan
| |
Collapse
|
5
|
Sun X, Li X, Tang S, Lin K, Zhao T, Chen X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157620. [PMID: 35901899 DOI: 10.1016/j.scitotenv.2022.157620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture is one of the fastest growing fields of global food production industry in recent years. To maintain the ecological health of aquaculture water body and the sustainable development of aquaculture industry, the treatment of aquaculture tail water (ATW) is becoming an indispensable task. This paper discussed the demand of environmentally friendly and cost-effective technologies for ATW treatment and the potential of algal-bacterial symbiosis system (ABSS) in ATW treatment. The characteristics of ABSS based technology for ATW treatment were analyzed, such as energy consumption, greenhouse gas emission, environmental adaptability and the possibility of removal or recovery of carbon, nitrogen and phosphorus as resource simultaneously. Based on the principle of ABSS, this paper introduced the key environmental factors that should be paid attention to in the establishment of ABSS, and then summarized the species of algae, bacteria and the proportion of algae and bacteria commonly used in the establishment of ABSS. Finally, the reactor technologies and the relevant research gaps in the establishment of ABSS were reviewed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China.
| | - Xiaopeng Li
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Shi Tang
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Kairong Lin
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Tongtiegang Zhao
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Xiaohong Chen
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Center for Water Resources and Environment Research, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
6
|
Zoccarato L, Sher D, Miki T, Segrè D, Grossart HP. A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Commun Biol 2022; 5:276. [PMID: 35347228 PMCID: PMC8960797 DOI: 10.1038/s42003-022-03184-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10% of genomes), phytohormones (3-8%) and different B vitamins (57-70%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.
Collapse
Affiliation(s)
- Luca Zoccarato
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel.
| | - Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, 520-2194, Otsu, Japan
| | - Daniel Segrè
- Departments of Biology, Biomedical Engineering, Physics, Boston University, 02215, Boston, MA, USA
- Bioinformatics Program & Biological Design Center, Boston University, 02215, Boston, MA, USA
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
- Institute of Biochemistry and Biology, Potsdam University, 14476, Potsdam, Germany.
| |
Collapse
|
7
|
Van Den Berghe M, Merino N, Nealson KH, West AJ. Silicate minerals as a direct source of limiting nutrients: Siderophore synthesis and uptake promote ferric iron bioavailability from olivine and microbial growth. GEOBIOLOGY 2021; 19:618-630. [PMID: 34105248 DOI: 10.1111/gbi.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Iron is a micronutrient critical to fundamental biological processes including respiration and photosynthesis, and it can therefore impact primary and heterotrophic productivity. Yet in oxic environments, iron is highly insoluble, rendering it, in principle, unavailable as a nutrient for biological growth. Life has "solved" this problem via the invention of iron chelates, known as siderophores, that keep iron available for microbial productivity. In this work, we examined the impact of siderophore synthesis on the speciation, mobility, and bioavailability of iron from rock-forming silicate minerals-shedding new light on the mechanisms by which microbes use mineral substrates to support primary productivity, as well as the consequent effects on silicate dissolution. Growth experiments were performed with Shewanella oneidensis MR-1 in an oxic, iron-depleted minimal medium, amended with olivine minerals as the sole source of iron. Experiments included the wild-type strain MR-1, and a siderophore synthesis gene deletion mutant strain (ΔMR-1). Relative to MR-1, ΔMR-1 exhibited a very pronounced growth penalty and an extended lag phase. However, substantial growth of ΔMR-1, comparable to MR-1 growth, was observed when the mutant strain was provided with siderophores in the form of either filtrate from a well-grown MR-1 culture, or commercially available deferoxamine. These observations suggest that siderophores are critical for S. oneidensis to acquire iron from olivine. Growth-limiting concentrations of deferoxamine amendments were observed to be ≤5-10 µM, concentrations significantly lower than previously recorded as necessary to impact mineral dissolution rates. X-ray photoelectric spectroscopy analyses of the incubated olivine surfaces suggest that siderophores deplete mineral surface layers of ferric iron. Combined, these results demonstrate that low micromolar concentrations of siderophores can effectively mobilize iron bound within silicate minerals, supporting very significant biological growth in limiting environments. The specific mechanism would involve siderophores removing a protective layer of nanometer-thick iron oxides, enhancing silicate dissolution and nutrient bioavailability.
Collapse
Affiliation(s)
- Martin Van Den Berghe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - A Joshua West
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Wu Z, Yang X, Lin S, Lee WH, Lam PKS. A Rhizobium bacterium and its population dynamics under different culture conditions of its associated toxic dinoflagellate Gambierdiscus balechii. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:542-551. [PMID: 37073262 PMCID: PMC10077202 DOI: 10.1007/s42995-021-00102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
Rhizobium bacteria are known as symbionts of legumes for developing nodules on plant roots and fixing N2 for the host plants but unknown for associations with dinoflagellates. Here, we detected, isolated, and characterized a Rhizobium species from the marine toxic dinoflagellate Gambierdiscus culture. Its 16S rRNA gene (rDNA) is 99% identical to that of Rhizobium rosettiformans, and the affiliation is supported by the phylogenetic placement of its cell wall hydrolase -encoding gene (cwh). Using quantitative PCR of 16S rDNA and cwh, we found that the abundance of this bacterium increased during the late exponential growth phase of Gambierdiscus and under nitrogen limitation, suggesting potential physiological interactions between the dinoflagellate and the bacterium. This is the first report of dinoflagellate-associated Rhizobium bacterium, and its prevalence and ecological roles in dinoflagellate-Rhizobium relationships remain to be investigated in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00102-1.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xiaohong Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005 China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005 China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340 USA
| | - Wai Hin Lee
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Paul K. S. Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
9
|
Cao JY, Wang YY, Wu MN, Kong ZY, Lin JH, Ling T, Xu SM, Ma SN, Zhang L, Zhou CX, Yan XJ, Xu JL. RNA-seq Insights Into the Impact of Alteromonas macleodii on Isochrysis galbana. Front Microbiol 2021; 12:711998. [PMID: 34566917 PMCID: PMC8456094 DOI: 10.3389/fmicb.2021.711998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Phycospheric bacteria may be the key biological factors affecting the growth of algae. However, the studies about interaction between Isochrysis galbana and its phycospheric bacteria are limited. Here, we show that a marine heterotrophic bacterium, Alteromonas macleodii, enhanced the growth of I. galbana, and inhibited non-photochemical quenching (NPQ) and superoxide dismutase (SOD) activities of this microalgae. Further, we explored this phenomenon via examining how the entire transcriptomes of I. galbana changed when it was co-cultured with A. macleodii. Notable increase was observed in transcripts related to photosynthesis, carbon fixation, oxidative phosphorylation, ribosomal proteins, biosynthetic enzymes, and transport processes of I. galbana in the presence of A. macleodii, suggesting the introduction of the bacterium might have introduced increased production and transport of carbon compounds and other types of biomolecules. Besides, the transcriptome changed largely corresponded to reduced stress conditions for I. galbana, as inferred from the depletion of transcripts encoding DNA repair enzymes, superoxide dismutase (SOD) and other stress-response proteins. Taken together, the presence of A. macleodii mainly enhanced photosynthesis and biosynthesis of I. galbana and protected it from stress, especially oxidative stress. Transfer of fixed organic carbon, but perhaps other types of biomolecules, between the autotroph and the heterotroph might happen in I. galbana-A. macleodii co-culture. The present work provides novel insights into the transcriptional consequences of I. galbana of mutualism with its heterotrophic bacterial partner, and mutually beneficial associations existing in I. galbana-A. macleodii might be explored to improve productivity and sustainability of aquaculture algal rearing systems.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Ying-Ying Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Min-Nan Wu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Zhou-Yan Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Jing-Hao Lin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Ting Ling
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Si-Min Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Shuo-Nan Ma
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Cheng-Xu Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Xiao-Jun Yan
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Ji-Lin Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Qu T, Hou C, Zhao X, Zhong Y, Guan C, Lin Z, Tang X, Wang Y. Bacteria associated with Ulva prolifera: a vital role in green tide formation and migration. HARMFUL ALGAE 2021; 108:102104. [PMID: 34588120 DOI: 10.1016/j.hal.2021.102104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Ulva prolifera green tide in the Yellow Sea of China is a typical cross-regional marine ecological disaster. We hypothesized that the complex interactions between U. prolifera and its associated bacterial communities possibly impact the formation and outbreak of green tide. To test this hypothesis, the U. prolifera-associated bacterial community changes in the entire migration area were investigated through field sampling and high-throughput sequencing. The results showed that (1) with the green tide migration, the richness and diversity increased for U. prolifera epiphytic bacterial communities, while they decreased for seawater bacterial communities in the phycosphere. (2) The richness, diversity, and community composition of U. prolifera-associated bacteria changed more dramatically in the 35.00°N sea area. (3) Potential interactions between bacteria and U. prolifera existed during the entire long-distance migration of green tide, and six bacterial functional groups (BFGs) were defined. Growth-regulating BFG I and antibacterial and stress-resistance BFG II were the dominant communities in the early stage of the green tide migration, which have the role of regulating algal growth and synergistic protection. Heterotrophic BFG III and algicidal BFG IV were the dominant communities in the late stage of the green tide migration, and they were able to compete with algae for nutrients and inhibit algal growth. Nutritive BFG V and algae-derived nutritional type BFG VI symbiotically lived with algal host. Our study highlights the spatial and temporal complexity of U. prolifera-associated bacterial communities and provides valuable insights into the potential contribution of U. prolifera-associated bacterial communities to green tide outbreaks.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
11
|
Krug L, Erlacher A, Markut K, Berg G, Cernava T. The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME JOURNAL 2020; 14:2197-2210. [PMID: 32424246 PMCID: PMC7608445 DOI: 10.1038/s41396-020-0677-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Mutualistic interactions within microbial assemblages provide a survival strategy under extreme conditions; however, little is known about the complexity of interaction networks in multipartite, free-living communities. In the present study, the interplay within algae-dominated microbial communities exposed to harsh environmental influences in the Austrian Alps was assessed in order to reveal the interconnectivity of eukaryotic and prokaryotic inhabitants. All analyzed snowfields harbored distinct microbial communities. Network analyses revealed that mutual exclusion prevailed among microalgae in the alpine environment, while bacteria were mainly positively embedded in the interaction networks. Especially members of Proteobacteria, with a high prevalence of Oxalobacteraceae, Pseudomonadaceae, and Sphingomonadaceae showed genus-specific co-occurrences with distinct microalgae. Co-cultivation experiments with algal and bacterial isolates confirmed beneficial interactions that were predicted based on the bioinformatic analyses; they resulted in up to 2.6-fold more biomass for the industrially relevant microalga Chlorella vulgaris, and up to 4.6-fold increase in biomass for the cryophilic Chloromonas typhlos. Our findings support the initial hypothesis that microbial communities exposed to adverse environmental conditions in alpine systems harbor inter-kingdom supportive capacities. The insights into mutualistic inter-kingdom interactions and the ecology of microalgae within complex microbial communities provide explanations for the prevalence and resilience of such assemblages in alpine environments.
Collapse
Affiliation(s)
- Lisa Krug
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.,ACIB GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Katharina Markut
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
12
|
D'Costa PM, Kunkolienkar RSS, Naik AG, Naik RK, Roy R. The response of Prorocentrum sigmoides
and its associated culturable bacteria to metals and organic pollutants. J Basic Microbiol 2019; 59:979-991. [DOI: 10.1002/jobm.201900244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/10/2019] [Accepted: 08/10/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Priya M. D'Costa
- Department of Microbiology; Goa University; Taleigao Plateau Goa India
| | | | - Arti G. Naik
- Department of Microbiology; Goa University; Taleigao Plateau Goa India
| | - Ravidas K. Naik
- Southern Ocean Studies; ESSO-National Centre for Polar and Ocean Research; Vasco-da-Gama Goa India
| | - Rajdeep Roy
- National Remote-Sensing Centre-Earth and Climate Science Area; Indian Space Research Organization; Hyderabad Telangana India
| |
Collapse
|
13
|
Distribution of dissolved iron and bacteria producing the photoactive siderophore, vibrioferrin, in waters off Southern California and Northern Baja. Biometals 2019; 32:139-154. [PMID: 30623317 DOI: 10.1007/s10534-018-00163-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022]
Abstract
Phytoplankton blooms can cause acute effects on marine ecosystems due either to their production of endogenous toxins or to their enormous biomass leading to major impacts on local economies and public health. Despite years of effort, the causes of these Harmful Algal Blooms are still not fully understood. Our hypothesis is that bacteria that produce photoactive siderophores may provide a bioavailable source of iron for phytoplankton which could in turn stimulate algal growth and support bloom dynamics. Here we correlate iron concentrations, phytoplankton cell counts, bacterial cell abundance, and copy numbers for a photoactive siderophore vibrioferrin biosynthesis gene in water samples taken from 2017 cruises in the Gulf of California, and the Pacific Ocean off the coast of northern Baja California as well as during a multiyear sampling at Scripps Pier in San Diego, CA. We find that bacteria producing the photoactive siderophore vibrioferrin, make up a surprisingly high percentage of total bacteria in Pacific/Gulf of California coastal waters (up to 9%). Vibroferrin's unique properties and the widespread prevalence of its bacterial producers suggest that it may contribute significantly to generating bioavailability of iron via photoredox reactions.
Collapse
|
14
|
Tavares NK, VanDrisse CM, Escalante-Semerena JC. Rhodobacterales use a unique L-threonine kinase for the assembly of the nucleotide loop of coenzyme B 12. Mol Microbiol 2018; 110:239-261. [PMID: 30098062 DOI: 10.1111/mmi.14100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several of the enzymes involved in the conversion of adenosylcobyric acid (AdoCby) to adenosylcobamide (AdoCba) are yet to be identified and characterized in some cobamide (Cba)-producing prokaryotes. Using a bioinformatics approach, we identified the bluE gene (locus tag RSP_0788) of Rhodobacter sphaeroides 2.4.1 as a putative functional homolog of the L-threonine kinase enzyme (PduX, EC 2.7.1.177) of S. enterica. In AdoCba, (R)-1-aminopropan-2-ol O-phosphate (AP-P) links the nucleotide loop to the corrin ring; most known AdoCba producers derive AP-P from L-Thr-O-3-phosphate (L-Thr-P). Here, we show that RsBluE has L-Thr-independent ATPase activity in vivo and in vitro. We used 31 P-NMR spectroscopy to show that RsBluE generates L-Thr-P at the expense of ATP and is unable to use L-Ser as a substrate. BluE from R. sphaeroides or Rhodobacter capsulatus restored AdoCba biosynthesis in S. enterica ΕpduX and R. sphaeroides ΕbluE mutant strains. R. sphaeroides ΕbluE strains exhibited a decreased pigment phenotype that was restored by complementation with BluE. Finally, phylogenetic analyses revealed that bluE was restricted to the genomes of a few Rhodobacterales that appear to have a preference for a specific form of Cba, namely Coᴽ-(ᴽ-5,6-dimethylbenzimidazolyl-Coᵦ-adenosylcobamide (a.k.a. adenosylcobalamin, AdoCbl; coenzyme B12 , CoB12 ).
Collapse
|
15
|
Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol 2018; 126:359-368. [PMID: 30168644 DOI: 10.1111/jam.14095] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/24/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023]
Abstract
Photosynthetic microalgae can capture solar energy and convert it to bioenergy and biochemical products. In nature or industrial processes, microalgae live together with bacterial communities and may maintain symbiotic relationships. In general interactions, microalgae exude dissolved organic carbon that becomes available to bacteria. In return, the bacteria remineralize sulphur, nitrogen and phosphorous to support the further growth of microalgae. In specific interactions, heterotrophic bacteria supply B vitamins as organic cofactors or produce siderophores to bind iron, which could be utilized by microalgae, while the algae supply fixed carbon to the bacteria in return. In this review, we focus on mutualistic relationship between microalgae and bacteria, summarizing recent studies on the mechanisms involved in microalgae-bacteria symbiosis. Symbiotic bacteria on promoting microalgal growth are described and the relevance of microalgae-bacteria interactions for biofuel production processes is discussed. Symbiotic microalgae-bacteria consortia could be utilized to improve microalgal biomass production and to enrich the biomass with valuable chemical and energy compounds. The suitable control of such biological interactions between microalgae and bacteria will help to improve the microalgae-based biomass and biofuel production in the future.
Collapse
Affiliation(s)
- S Yao
- Microbiology Group, College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China.,Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - S Lyu
- Microbiology Group, College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Y An
- Microbiology Group, College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - J Lu
- Microbial Engineering Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Roskilde, Denmark
| | - C Gjermansen
- Microbial Engineering Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Roskilde, Denmark
| | - A Schramm
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
16
|
Baker LJ, Alegado RA, Kemp PF. Response of diatom-associated bacteria to host growth state, nutrient concentrations, and viral host infection in a model system. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:917-927. [PMID: 27558069 DOI: 10.1111/1758-2229.12456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Diatoms are photosynthetic unicellular eukaryotes found ubiquitously in aquatic systems. Frequent physical associations with other microorganisms such as bacteria may influence diatom fitness. The predictability of bacterial-diatom interactions is hypothesized to depend on availability of nutrients as well as the physiological state of the host. Biotic and abiotic factors such as nutrient levels, host growth stage and host viral infection were manipulated to determine their effect on the ecological succession of bacterial communities associated with a single cell line of Chaetoceros sp. KBDT20; this was assessed using the relative abundance of bacterial phylotypes based on 16S rDNA sequences. A single bacterial family, Alteromonadaceae, dominated the attached-bacterial community (84.0%), with the most prevalent phylotypes belonging to the Alteromonas and Marinobacter genera. The taxa comprising the other 16% of the attached bacterial assemblage include Alphaproteobacteria, Betaproteobacteria, Bacilli, Deltaproteobacteria, other Gammaproteobacteria and Flavobacteria. Nutrient concentration and host growth stage had a statistically significant effect on the phylogenetic composition of the attached bacteria. It was inferred that interactions between attached bacteria, as well as the inherent stochasticity mediating contact may also contribute to diatom-bacterial associations.
Collapse
Affiliation(s)
- Lydia J Baker
- Oceanography Department, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Rosanna A Alegado
- Oceanography Department, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Paul F Kemp
- Oceanography Department, University of Hawai'i Mānoa, Honolulu, HI, USA
| |
Collapse
|
17
|
Ortiz-Marquez JCF, Do Nascimento M, Zehr JP, Curatti L. Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends Biotechnol 2013; 31:521-9. [PMID: 23791304 DOI: 10.1016/j.tibtech.2013.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 01/01/2023]
Abstract
There is currently much interest in developing technology to use microlgae or cyanobacteria for the production of bioenergy and biomaterials. Here, we summarize some remarkable achievements in strains improvement by traditional genetic engineering and discuss common drawbacks for further progress. We present general knowledge on natural microalgal-bacterial mutualistic interactions and discuss the potential of recent developments in genetic engineering of multispecies microbial cell factories. This synthetic biology approach would rely on the assembly of complex metabolic networks from optimized metabolic modules such as photosynthetic or nitrogen-fixing parts.
Collapse
Affiliation(s)
- Juan Cesar Federico Ortiz-Marquez
- Instituto de Investigaciones en Biodiversidad y Biotecnología - Consejo Nacional de Investigaciones Científicas y Técnicas. Mar del Plata, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
18
|
Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl Environ Microbiol 2012; 78:6900-7. [PMID: 22820333 DOI: 10.1128/aem.01790-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alga-bacterium interactions are crucial for aggregate formation and carbon cycling in aquatic systems. To understand the initiation of these interactions, we investigated bacterial chemotaxis within a bilateral model system. Marinobacter adhaerens HP15 has been demonstrated to attach to the diatom Thalassiosira weissflogii and induce transparent exopolymeric particle and aggregate formation. M. adhaerens possesses one polar flagellum and is highly motile. Bacterial cells were attracted to diatom cells, as demonstrated by addition of diatom cell homogenate or diatom culture supernatant to soft agar, suggesting that chemotaxis might be important for the interaction of M. adhaerens with diatoms. Three distinct chemotaxis-associated gene clusters were identified in the genome sequence of M. adhaerens, with the clusters showing significant sequence similarities to those of Pseudomonas aeruginosa PAO1. Mutations in the genes cheA, cheB, chpA, and chpB, which encode histidine kinases and methylesterases and which are putatively involved in either flagellum-associated chemotaxis or pilus-mediated twitching motility, were generated and mutants with the mutations were phenotypically analyzed. ΔcheA and ΔcheB mutants were found to be swimming deficient, and all four mutants were impaired in biofilm formation on abiotic surfaces. Comparison of the HP15 wild type and its chemotaxis mutants in cocultures with the diatom revealed that the fraction of bacteria attaching to the diatom decreased significantly for mutants in comparison to that for the wild type. Our results highlight the importance of M. adhaerens chemotaxis in initiation of its interaction with the diatom. In-depth knowledge of these basic processes in interspecies interactions is pivotal to obtain a systematic understanding of organic matter flux and nutrient cycling in marine ecosystems.
Collapse
|
19
|
Amin SA, Green DH, Al Waheeb D, Gärdes A, Carrano CJ. Iron transport in the genus Marinobacter. Biometals 2011; 25:135-47. [DOI: 10.1007/s10534-011-9491-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/20/2011] [Indexed: 11/27/2022]
|