1
|
Hołyńska-Iwan I, Sobiesiak M, Kowalczyk W, Wróblewski M, Cwynar A, Szewczyk-Golec K. Nickel ions influence the transepithelial sodium transport in the trachea, intestine and skin. Sci Rep 2023; 13:6931. [PMID: 37117206 PMCID: PMC10147918 DOI: 10.1038/s41598-023-33690-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Measurements of transepithelial potential and resistance in tissue and organ model systems enable the evaluation of the Ni2+ effect on the epithelial sodium channels, aquaporin 3, and the sodium-potassium pump in the epithelial cells. The aim of the presented study was to assess the immediate and prolonged effect of nickel ions on the transport of sodium ions in tissues exposed to direct contact with nickel, including airways, digestive tract and the skin. The influence of 0.1 mM nickel solution was performed on the trachea (n = 34), intestine (n = 44), and skin (n = 51) samples descended from 16 New Zealand albino rabbits. The electrophysiological parameters were measured in a modified Ussing chamber in stationary conditions and during a 15-s mechanical-chemical stimulation. A statistically significant decrease in the electric resistance values and the smallest range of the measured potential were observed for the Ni-treated trachea specimens. The use of nickel solution did not affect the sodium transport in the intestine epithelium. The skin fragments showed altered sodium ion transport, as demonstrated by the lower range and intensity of the measured potential. The gastrointestinal tract seems to be an organ best adapted to contact with nickel ions. In airways, nickel ions most likely enter epithelial cells and the space between them, modifying proteins and the airway surface liquid. The skin turned out to be the most sensitive tissue to the intensification of sodium ion transport through nickel ions.
Collapse
Affiliation(s)
- Iga Hołyńska-Iwan
- Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Skłodowskiej-Curie 9, 85-094, Bydgoszcz, Poland.
| | - Marta Sobiesiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Wojciech Kowalczyk
- Clinic of Allergology, Clinical Immunology and Internal Diseases, Dr Jan Biziel's University Hospital No. 2, Bydgoszcz, Poland
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Anna Cwynar
- Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Skłodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
2
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Self-assembled DNA nanotrains for targeted delivery of mithramycin dimers coordinated by different metal ions: Effect of binding affinity on drug loading, release and cytotoxicity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Amin Mir M, Waqar Ashraf M, Andrews K. Synthesis and the formation analysis of Ni (II), Zn (II) and L-glutamine binary complexes in dimethylformamide-aqueous mixture. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Vamsikrishna N, Daravath S, Ganji N, Pasha N, Shivaraj. Synthesis, structural characterization, DNA interaction, antibacterial and cytotoxicity studies of bivalent transition metal complexes of 6-aminobenzothiazole Schiff base. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107767] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Sardroud SJ, Hosseini-Yazdi SA, Mahdavi M, Poupon M, Skorepova E. Synthesis, characterization and in vitro evaluation of anticancer activity of a new water-soluble thiosemicarbazone ligand and its complexes. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Yang QY, Cao QQ, Qin QP, Deng CX, Liang H, Chen ZF. Syntheses, Crystal Structures, and Antitumor Activities of Copper(II) and Nickel(II) Complexes with 2-((2-(Pyridin-2-yl)hydrazono)methyl)quinolin-8-ol. Int J Mol Sci 2018; 19:E1874. [PMID: 29949884 PMCID: PMC6073241 DOI: 10.3390/ijms19071874] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023] Open
Abstract
Two transition metal complexes with 2-((2-(pyridin-2-yl)hydrazono)methyl)quinolin-8-ol (L), [Cu(L)Cl₂]₂ (1) and [Ni(L)Cl₂]·CH₂Cl₂ (2), were synthesized and fully characterized. Complex 1 exhibited high in vitro antitumor activity against SK-OV-3, MGC80-3 and HeLa cells with IC50 values of 3.69 ± 0.16, 2.60 ± 0.17, and 3.62 ± 0.12 μM, respectively. In addition, complex 1 caused cell arrest in the S phase, which led to the down-regulation of Cdc25 A, Cyclin B, Cyclin A, and CDK2, and the up-regulation of p27, p21, and p53 proteins in MGC80-3 cells. Complex 1 induced MGC80-3 cell apoptosis via a mitochondrial dysfunction pathway, as shown by the significantly decreased level of bcl-2 protein and the loss of Δψ, as well as increased levels of reactive oxygen species (ROS), intracellular Ca2+, cytochrome C, apaf-1, caspase-3, and caspase-9 proteins in MGC80-3 cells.
Collapse
Affiliation(s)
- Qi-Yuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Qian-Qian Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Cai-Xing Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| |
Collapse
|
8
|
Yang JM, Zhu YH, Chen S, Lu X, Wu YM, Ma FE, Li LP, Yang Y, Shi ZH, Huang KY, Hong X, Jiang P, Peng Y. A β-carboline derivative-based nickel(ii) complex as a potential antitumor agent: synthesis, characterization, and cytotoxicity. MEDCHEMCOMM 2018; 9:100-107. [PMID: 30108903 PMCID: PMC6072409 DOI: 10.1039/c7md00428a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022]
Abstract
A novel nickel(ii) complex of 6-methoxy-1-pyridine-β-carboline (4a) was synthesized and characterized. The cytotoxicities of the complex towards six cancer cell lines, including MGC-803, Hep G2, T24, OS-RC-2, NCI-H460, and SK-OV-3, and human normal liver cell line HL-7702 were investigated. The IC50 values for MGC-803, Hep G2, T24, OS-RC-2, NCI-H460 and SK-OV-3 were generally in the micromolar range (3.77-15.10 μM), lower than those of ligand 4 and cisplatin. Furthermore, 4a (6 μM) significantly induced cell cycle arrest at the S phase, and caused the down-regulation of p-AKT, cyclin E, cyclin A and CDK2 and the up-regulation of p27. Various experiments showed that 4a induced apoptosis, activated caspase-3, increased the levels of reactive oxygen species (ROS) and enhanced the intracellular [Ca2+]c levels in MGC-803. In addition, the expression of intrinsic apoptotic proteins, including cytochrome c and apaf-1, increased. Further intrinsic apoptosis was triggered via executive molecular caspase-9 and caspase-3. In short, 4a exerted its cytotoxic activity primarily through inducing cell cycle arrest at the S phase and intrinsic apoptosis.
Collapse
Affiliation(s)
- Jing-Mei Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Yan-Hong Zhu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Sheng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Xing Lu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Yi-Ming Wu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Feng-E Ma
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Liang-Ping Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Yang Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Zhen-Hao Shi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Kun-Yuan Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Xue Hong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| | - Ping Jiang
- Shanghai Mental Health Center , Shanghai Institute of Mental Health , Shanghai Jiao Tong University School of Medicine , 600 Wan Ping Nan Road , Shanghai 200030 , P.R. China . ; ; Tel: +86 21 64387250
| | - Yan Peng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , China . ; ; Tel: +86 773 2120958
| |
Collapse
|
9
|
Perontsis S, Tialiou A, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Nickel(II)-indomethacin mixed-ligand complexes: Synthesis, characterization, antioxidant activity and interaction with DNA and albumins. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Daravath S, Kumar MP, Rambabu A, Vamsikrishna N, Ganji N, Shivaraj. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of 6-amino benzothiazole derivatives. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Dilek E, Caglar S, Dogancay N, Caglar B, Sahin O, Tabak A. Synthesis, crystal structure, spectroscopy, thermal properties and carbonic anhydrase activities of new metal(II) complexes with mefenamic acid and picoline derivatives. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1366996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Esra Dilek
- Faculty of Pharmacy, Department of Biochemistry, Division of Pharmaceutical Basic Sciences, Erzincan University, Erzincan, Turkey
| | - Sema Caglar
- Faculty of Arts and Sciences, Department of Chemistry, Erzincan University, Erzincan, Turkey
| | - Nesrin Dogancay
- Faculty of Arts and Sciences, Department of Chemistry, Erzincan University, Erzincan, Turkey
| | - Bulent Caglar
- Faculty of Arts and Sciences, Department of Chemistry, Erzincan University, Erzincan, Turkey
| | - Onur Sahin
- Sinop University, Scientific and Technological Research Application and Research Center, Sinop, Turkey
| | - Ahmet Tabak
- Faculty of Arts and Sciences, Department of Chemistry, Sinop University, Sinop, Turkey
| |
Collapse
|
12
|
Totta X, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Nickel(ii)–naproxen mixed-ligand complexes: synthesis, structure, antioxidant activity and interaction with albumins and calf-thymus DNA. NEW J CHEM 2017. [DOI: 10.1039/c7nj00257b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six novel nickel(ii)–naproxen complexes exhibit selective radical scavenging activity, bind tightly to albumins and are DNA-intercalators.
Collapse
Affiliation(s)
- Xanthippi Totta
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | - Antonios G. Hatzidimitriou
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | - Athanasios N. Papadopoulos
- Department of Nutrition and Dietetics
- Faculty of Food Technology and Nutrition
- Alexandrion Technological Educational Institution
- Thessaloniki
- Greece
| | - George Psomas
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| |
Collapse
|
13
|
Hameed A, Al-Rashida M, Uroos M, Abid Ali S, Khan KM. Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opin Ther Pat 2016; 27:63-79. [PMID: 27774821 DOI: 10.1080/13543776.2017.1252752] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.
Collapse
Affiliation(s)
- Abdul Hameed
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - Mariya Al-Rashida
- b Department of Chemistry , Forman Christian College (A Chartered University) , Lahore , Pakistan
| | - Maliha Uroos
- c Institute of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Syed Abid Ali
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - Khalid Mohammed Khan
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| |
Collapse
|
14
|
Tserkezidou C, Hatzidimitriou AG, Psomas G. Nickel(II) complexes of flufenamic acid: Characterization, structure and interaction with DNA and albumins. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Nickel(II) complexes of the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, structure, antioxidant activity and interaction with albumins and calf-thymus DNA. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Perontsis S, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Nickel-diflunisal complexes: synthesis, characterization, in vitro antioxidant activity and interaction with DNA and albumins. J Inorg Biochem 2016; 162:9-21. [DOI: 10.1016/j.jinorgbio.2016.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/16/2016] [Accepted: 06/03/2016] [Indexed: 01/06/2023]
|
17
|
Weidenbach S, Hou C, Chen JM, Tsodikov OV, Rohr J. Dimerization and DNA recognition rules of mithramycin and its analogues. J Inorg Biochem 2015; 156:40-7. [PMID: 26760230 DOI: 10.1016/j.jinorgbio.2015.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Abstract
The antineoplastic and antibiotic natural product mithramycin (MTM) is used against cancer-related hypercalcemia and, experimentally, against Ewing sarcoma and lung cancers. MTM exerts its cytotoxic effect by binding DNA as a divalent metal ion (Me(2+))-coordinated dimer and disrupting the function of transcription factors. A precise molecular mechanism of action of MTM, needed to develop MTM analogues selective against desired transcription factors, is lacking. Although it is known that MTM binds G/C-rich DNA, the exact DNA recognition rules that would allow one to map MTM binding sites remain incompletely understood. Towards this goal, we quantitatively investigated dimerization of MTM and several of its analogues, MTM SDK (for Short side chain, DiKeto), MTM SA-Trp (for Short side chain and Acid), MTM SA-Ala, and a biosynthetic precursor premithramycin B (PreMTM B), and measured the binding affinities of these molecules to DNA oligomers of different sequences and structural forms at physiological salt concentrations. We show that MTM and its analogues form stable dimers even in the absence of DNA. All molecules, except for PreMTM B, can bind DNA with the following rank order of affinities (strong to weak): MTM=MTM SDK>MTM SA-Trp>MTM SA-Ala. An X(G/C)(G/C)X motif, where X is any base, is necessary and sufficient for MTM binding to DNA, without a strong dependence on DNA conformation. These recognition rules will aid in mapping MTM sites across different promoters towards development of MTM analogues as useful anticancer agents.
Collapse
Affiliation(s)
- Stevi Weidenbach
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jhong-Min Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
18
|
Annaraj B, Neelakantan M. Synthesis, crystal structure, spectral characterization and biological exploration of water soluble Cu(II) complexes of vitamin B6 derivative. Eur J Med Chem 2015; 102:1-8. [DOI: 10.1016/j.ejmech.2015.07.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/09/2023]
|
19
|
Fukushima T, Taniguchi E, Yamada H, Kato K, Shimizu A, Nishiguchi Y, Onozato M, Ichiba H, Azuma Y. Anti-proliferative effect of Fe(III) complexed with 1-(2-hydroxy-3-methoxybenzaldehyde)-4-aminosalicylhydrazone in HepG2 cells. Biometals 2015; 28:669-77. [PMID: 25850340 DOI: 10.1007/s10534-015-9852-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
We previously developed a chelating ligand, 1-(2-hydroxy-3-methoxybenzaldehyde)-4-aminosalicylhydrazone (HMB-ASH), which can chelate Fe(III) to form a complex. The HMB-ASH-Fe(III) complex exhibits a dose-dependent anti-proliferative effect in HepG2 cells, whereas the ligand, HMB-ASH, and Fe(III) alone had no considerable effect. The HMB-ASH-Fe(III) complex was composed of Fe(III):HMB-ASH (1:2), as determined by high-performance liquid chromatography with high-resolution mass spectrometry. The IC50 value was approximately 20 μM, which was comparable to those of the anti-cancer drugs oxaliplatin (OXP) and etoposide (ETP) under the same conditions. Similar to OXP and ETP, HMB-ASH-Fe(III) induced apoptosis in HepG2 cells, as revealed by terminal deoxynucleotidyl transferase fluorescein-12-dUTP nick end labeling assay.
Collapse
Affiliation(s)
- Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba, 274-8510, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Totta X, Papadopoulou AA, Hatzidimitriou AG, Papadopoulos A, Psomas G. Synthesis, structure and biological activity of nickel(II) complexes with mefenamato and nitrogen-donor ligands. J Inorg Biochem 2015; 145:79-93. [DOI: 10.1016/j.jinorgbio.2015.01.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 01/12/2023]
|
21
|
Nascimento LO, Goulart PP, Correa JL, Abrishamkar A, Da Silva JG, Mangrich AS, de França AA, Denadai ÂM. Molecular and supramolecular characterization of Ni(II)/losartan hydrophobic nanoprecipitate. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.05.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Wani WA, Al-Othman Z, Ali I, Saleem K, Hsieh MF. Copper(II), nickel(II), and ruthenium(III) complexes of an oxopyrrolidine-based heterocyclic ligand as anticancer agents. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.931947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Waseem A. Wani
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Zeid Al-Othman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Kishwar Saleem
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
| |
Collapse
|
23
|
Ibrahim MM, Mersal GA, Al-Juaid S, El-Shazly SA. Syntheses, characterization, and SOD activity studies of barbital-based nickel(II) complexes with different chelating amines: The X-ray crystal structures of Barb-H and [Ni(Barb)2(en)2] (Barb=5,5-diethylbarbiturate). J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Selvamurugan S, Ramachandran R, Viswanathamurthi P. Ruthenium(II) carbonyl complexes containing S-methylisothiosemicarbazone based tetradentate ligand: synthesis, characterization and biological applications. Biometals 2013; 26:741-53. [DOI: 10.1007/s10534-013-9649-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/12/2013] [Indexed: 01/19/2023]
|