1
|
Ruiz-Mazón L, Ramírez-Rico G, de la Garza M. Lactoferrin Affects the Viability of Bacteria in a Biofilm and the Formation of a New Biofilm Cycle of Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:8718. [PMID: 39201405 PMCID: PMC11355051 DOI: 10.3390/ijms25168718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Respiratory diseases in ruminants are responsible for enormous economic losses for the dairy and meat industry. The main causative bacterial agent of pneumonia in ovine is Mannheimia haemolytica A2. Due to the impact of this disease, the effect of the antimicrobial protein, bovine lactoferrin (bLf), against virulence factors of this bacterium has been studied. However, its effect on biofilm formation has not been reported. In this work, we evaluated the effect on different stages of the biofilm. Our results reveal a decrease in biofilm formation when bacteria were pre-incubated with bLf. However, when bLf was added at the start of biofilm formation and on mature biofilm, an increase was observed, which was visualized by greater bacterial aggregation and secretion of biofilm matrix components. Additionally, through SDS-PAGE, a remarkable band of ~80 kDa was observed when bLf was added to biofilms. Therefore, the presence of bLf on the biofilm was determined through the Western blot and Microscopy techniques. Finally, by using Live/Dead staining, we observed that most of the bacteria in a biofilm with bLf were not viable. In addition, bLf affects the formation of a new biofilm cycle. In conclusion, bLf binds to the biofilm of M. haemolytica A2 and affects the viability of bacteria and the formation a new biofilm cycle.
Collapse
Affiliation(s)
- Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán-Teoloyucan, Cuautitlán Izcalli 54714, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
| |
Collapse
|
2
|
Ongena R, Dierick M, Vanrompay D, Cox E, Devriendt B. Lactoferrin impairs pathogen virulence through its proteolytic activity. Front Vet Sci 2024; 11:1428156. [PMID: 39176399 PMCID: PMC11339958 DOI: 10.3389/fvets.2024.1428156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Antibiotics, often hailed as 'miracle drugs' in the 20th century, have revolutionised medicine by saving millions of lives in human and veterinary medicine, effectively combatting bacterial infections. However, the escalating global challenge of antimicrobial resistance and the appearance and spread of multidrug-resistant pathogens necessitates research into alternatives. One such alternative could be lactoferrin. Lactoferrin, an iron-binding multifunctional protein, is abundantly present in mammalian secretions and exhibits antimicrobial and immunomodulatory activities. An often overlooked aspect of lactoferrin is its proteolytic activity, which could contribute to its antibacterial activity. The proteolytic activity of lactoferrin has been linked to the degradation of virulence factors from several bacterial pathogens, impeding their colonisation and potentially limiting their pathogenicity. Despite numerous studies, the exact proteolytically active site of lactoferrin, the specific bacterial virulence factors it degrades and the underlying mechanism remain incompletely understood. This review gives an overview of the current knowledge concerning the proteolytic activity of lactoferrins and summarises the bacterial virulence factors degraded by lactoferrins. We further detail how a deeper understanding of the proteolytic activity of lactoferrin might position it as a viable alternative for antibiotics, being crucial to halt the spread of multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Ruben Ongena
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Matthias Dierick
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Ramírez-Rico G, Ruiz-Mazón L, Reyes-López M, Rivillas Acevedo L, Serrano-Luna J, de la Garza M. Apo-Lactoferrin Inhibits the Proteolytic Activity of the 110 kDa Zn Metalloprotease Produced by Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:8232. [PMID: 39125801 PMCID: PMC11311601 DOI: 10.3390/ijms25158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México 54714, Mexico;
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Lina Rivillas Acevedo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| |
Collapse
|
4
|
Acanthamoeba castellanii Genotype T4: Inhibition of Proteases Activity and Cytopathic Effect by Bovine Apo-Lactoferrin. Microorganisms 2023; 11:microorganisms11030708. [PMID: 36985284 PMCID: PMC10059889 DOI: 10.3390/microorganisms11030708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Acanthamoeba castellanii genotype T4 is a clinically significant free-living amoeba that causes granulomatous amoebic encephalitis and amoebic keratitis in human beings. During the initial stages of infection, trophozoites interact with various host immune responses, such as lactoferrin (Lf), in the corneal epithelium, nasal mucosa, and blood. Lf plays an important role in the elimination of pathogenic microorganisms, and evasion of the innate immune response is crucial in the colonization process. In this study, we describe the resistance of A. castellanii to the microbicidal effect of bovine apo-lactoferrin (apo-bLf) at different concentrations (25, 50, 100, and 500 µM). Acanthamoeba castellanii trophozoites incubated with apo-bLf at 500 µM for 12 h maintained 98% viability. Interestingly, despite this lack of effect on viability, our results showed that the apo-bLf inhibited the cytopathic effect of A. castellanii in MDCK cells culture, and analysis of amoebic proteases by zymography showed significant inhibition of cysteine and serine proteases by interaction with the apo-bLf. From these results, we conclude that bovine apo-Lf influences the activity of A. castellanii secretion proteases, which in turn decreases amoebic cytopathic activity.
Collapse
|
5
|
Avalos-Gómez C, Ramírez-Rico G, Ruiz-Mazón L, Sicairos NL, Serrano-Luna J, de la Garza M. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections. Curr Pharm Des 2022; 28:3243-3260. [PMID: 36284379 DOI: 10.2174/1381612829666221025153216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2023]
Abstract
The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico.,Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán- Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Nidia León Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| |
Collapse
|
6
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
7
|
Nakamura M, Tsuda N, Miyata T, Ikenaga M. Antimicrobial effect and mechanism of bovine lactoferrin against the potato common scab pathogen Streptomyces scabiei. PLoS One 2022; 17:e0264094. [PMID: 35213576 PMCID: PMC8880714 DOI: 10.1371/journal.pone.0264094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 12/17/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional protein with a broad spectrum of antimicrobial activities. In this study, we investigated the antimicrobial activity of LF against the potato common scab pathogen Streptomyces scabiei, which causes severe damage to potato tubers. LF derived from bovine (bLF) had much higher activity against S. scabiei than human LF. The minimal inhibitory concentration of bLF was 3.9 μM. The effects of both apo-bLF (iron-free) and holo-bLF (iron-saturated) on S. scabiei were not different. Bovine lactoferricin (LFcinB), a short peptide with a length of 25 amino acid residues located in the N-terminal region of bLF, showed antimicrobial activity against S. scabiei, similar to that of bLF. These results indicated that the antimicrobial activity of bLF against S. scabiei cannot be attributed to its iron-chelating effect but to the bioactivity of its peptides. When S. scabiei was treated with the fusion protein of mCherry-LFcinB (red fluorescent protein) expressed in Escherichia coli, the pseudohyphal cells instantly glowed, indicating that the peptide electrostatically binds to the surface of S. scabiei. An assay of synthetic peptides, with modified number of arginine (Arg) and tryptophan (Trp) residues based on the antimicrobial center (RRWQWR) of LFcinB showed that Trp residues are implicated in the antimicrobial activity against S. scabiei; however, Arg residues are also necessary to carry Trp residues to the cell surface to fully exert its activity. Although the single amino acid effect of Trp had low activity, Trp derivatives showed much higher activity against S. scabiei, suggesting that the derivatives effectively bind to the cell surface (cell membrane) by themselves without a carrier. Thus, amino acid derivatives might be considered effective and alternative antimicrobial substances.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Naoaki Tsuda
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Takeshi Miyata
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Makoto Ikenaga
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
Ramírez-Rico G, Martinez-Castillo M, Avalos-Gómez C, de la Garza M. Bovine apo-lactoferrin affects the secretion of proteases in Mannheimia haemolytica A2. Access Microbiol 2021; 3:000269. [PMID: 34816089 PMCID: PMC8604176 DOI: 10.1099/acmi.0.000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Mannheimia haemolytica serotype A2 is the main bacterial causative agent of ovine mannheimiosis, a disease that leads to substantial economic losses for livestock farmers. Several virulence factors allow M. haemolytica to colonize the lungs and establish infection. Virulence factors can be directly secreted into the environment by bacteria but are also released through outer membrane vesicles (OMVs). In addition, due to the abuse of antibiotics in the treatment of this disease, multidrug-resistant bacterial strains of M. haemolytica have emerged. One therapeutic alternative to antibiotics or an adjuvant to be used in combination with antibiotics could be lactoferrin (Lf), a multifunctional cationic glycoprotein of the mammalian innate immune system to which no bacterial resistance has been reported. The aim of this work was to determine the effect of bovine iron-free Lf (apo-BLf) on the production and secretion of proteases into culture supernatant (CS) and on their release in OMVs. Zymography assays showed that addition of sub-MIC concentrations of apo-BLf to M. haemolytica cultures inhibited protease secretion without affecting culture growth. Biochemical characterization revealed that these proteases were mainly cysteine- and metalloproteases. The secretion of a 100 kDa metalloprotease was inhibited by sub-MIC concentrations of apo-BLf since this protease was present in the cytoplasm and OMVs but not in CS proteins, as corroborated by Western blotting. On the other hand, proteases produced by M. haemolytica caused cleavage of apo-BLf. However, when Lf is cleaved, peptides known as lactoferricins, which are more bactericidal than natural Lf, can be produced. M. haemolytica A2 protease-mediated degradation of host tissue proteins could be an important virulence factor during the infectious process of pneumonia in ovines. The mechanism of M. haemolytica protease secretion could be inhibited by treatment with apo-BLf in animals.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, CdMx 07360, Mexico.,Present address: Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán-Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Moises Martinez-Castillo
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM). Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM. Hospital General de México, Col Doctores, CdMx 06726, Mexico
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, CdMx 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, CdMx 07360, Mexico
| |
Collapse
|
9
|
Avery TM, Boone RL, Lu J, Spicer SK, Guevara MA, Moore RE, Chambers SA, Manning SD, Dent L, Marshall D, Damo SM, Townsend SD, Gaddy JA. Analysis of Antimicrobial and Antibiofilm Activity of Human Milk Lactoferrin Compared to Bovine Lactoferrin against Multidrug Resistant and Susceptible Acinetobacter baumannii Clinical Isolates. ACS Infect Dis 2021; 7:2116-2126. [PMID: 34105954 DOI: 10.1021/acsinfecdis.1c00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen that causes severe infections in immunocompromised patients. The emergence of multi- and pan-drug resistant strains of A. baumannii from clinical sources has confounded treatment and enhanced morbidity and mortality associated with these infections. One way that A. baumannii circumnavigates environmental and antimicrobial challenge is by forming tertiary architectural structures of cells known as biofilms. Biofilm-inhibiting molecules could be deployed as a potential chemotherapeutic strategy to inhibit or disrupt A. baumannii biofilms and mitigate adverse outcomes due to infection. Lactoferrin is an innate immune glycoprotein produced in high concentrations in both human and bovine milk which has previously been shown to have antibacterial and antibiofilm activities. We sought to test lactoferrin against a bank of clinical isolates of A. baumannii to determine changes in bacterial growth or biofilm formation. Our results indicate that human lactoferrin has slightly more potent antibacterial activities than bovine lactoferrin against certain strains of A. baumannii and that these effects are associated with anatomical site of isolation. Additionally, we have shown that both bovine and human lactoferrin can inhibit A. baumannii biofilm formation and that these effects are associated with anatomical site of isolation and whether the strain forms robust or weak biofilms.
Collapse
Affiliation(s)
- Tyra M. Avery
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, Tennessee 37208, United States
| | - RaNashia L. Boone
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, Tennessee 37208, United States
| | - Jacky Lu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, United States
| | - Sabrina K. Spicer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Miriam A. Guevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, United States
| | - Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Schuyler A. Chambers
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Leon Dent
- Department of Pathology, Anatomy, and Cell Biology, Meharry Medical College, Nashville, Tennessee 37208, United States
- Trauma Services, Phoebe Putney Memorial Hospital, Albany, Georgia 31701, United States
| | - Dana Marshall
- Department of Pathology, Anatomy, and Cell Biology, Meharry Medical College, Nashville, Tennessee 37208, United States
| | - Steven M. Damo
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, Tennessee 37208, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, United States
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
| |
Collapse
|
10
|
García-Borjas KA, Ceballos-Olvera I, Luna-Castro S, Peña-Avelino Y. Bovine Lactoferrin can Decrease the In Vitro Biofilm Production and Show Synergy with Antibiotics Against Listeria and Escherichia coli Isolates. Protein Pept Lett 2021; 28:101-107. [PMID: 32242775 DOI: 10.2174/0929866527666200403111743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bovine Lactoferrin (bLf) has been reported as antimicrobial, antiviral, immunomodulatory and anticancer protein. Escherichia coli and Listeria spp. are food-borne bacteria that can produce illness in human being and mammals, the emergent antimicrobial drug resistance has been reported in these pathogens. OBJECTIVE The aim for this study was to evaluate the bLf effect on in vitro biofilm production and the synergic effect of antibiotics on E. coli and Listeria isolates. METHODS E. coli and Listeria specimens were isolated from bovine carcasses and slaughterhouses surfaces, respectively. Biofilm formation was analyzed with or without bLf, incubated for 48 h and spectrophotometry, cell viability was analyzed by colony-forming unit (CFU) and the synergistic effect of bLf with ampicillin, oxytetracycline, and streptomycin was evaluated through the fractional concentration index (FCI). RESULTS Our results show that a low bLf concentration (0.8 μM) can diminish the in vitro biofilm production in Listeria isolates; also improves the in vitro oxytetracycline and streptomycin activity against E. coli, and ampicillin activity against Listeria isolates. CONCLUSION bLf can affect the biofilm production in Listeria isolates from slaughterhouses surfaces and shown synergic effect with ampicillin. Also has a synergic effect with oxytetracycline and streptomycin against E. coli isolates from bovine carcasses.
Collapse
Affiliation(s)
| | - Ivonne Ceballos-Olvera
- Institute of Veterinary Science Research, Autonomous University of Baja California, Mexicali, Mexico
| | - Sarahí Luna-Castro
- Faculty of Veterinary Medicine, Autonomous University of Tamaulipas, Victoria, Mexico
| | - Yosahandy Peña-Avelino
- Institute of Veterinary Science Research, Autonomous University of Baja California, Mexicali, Mexico
| |
Collapse
|
11
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
12
|
Avalos-Gómez C, Reyes-López M, Ramírez-Rico G, Díaz-Aparicio E, Zenteno E, González-Ruiz C, de la Garza M. Effect of apo-lactoferrin on leukotoxin and outer membrane vesicles of Mannheimia haemolytica A2. Vet Res 2020; 51:36. [PMID: 32138772 PMCID: PMC7059318 DOI: 10.1186/s13567-020-00759-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/17/2020] [Indexed: 01/17/2023] Open
Abstract
Mannheimia haemolytica serotype A2 is the principal cause of pneumonic mannheimiosis in ovine and caprine livestock; this disease is a consequence of immune suppression caused by stress and associated viruses and is responsible for significant economic losses in farm production worldwide. Gram-negative bacteria such as M. haemolytica produce outer membrane (OM)-derived spherical structures named outer membrane vesicles (OMVs) that contain leukotoxin and other biologically active virulence factors. In the present study, the relationship between M. haemolytica A2 and bovine lactoferrin (BLf) was studied. BLf is an 80 kDa glycoprotein that possesses bacteriostatic and bactericidal properties and is part of the mammalian innate immune system. Apo-BLf (iron-free) showed a bactericidal effect against M. haemolytica A2, with an observed minimal inhibitory concentration (MIC) of 16 µM. Sublethal doses (2–8 µM) of apo-BLf increased the release of OMVs, which were quantified by flow cytometry. Apo-BLf modified the normal structure of the OM and OMVs, as observed through transmission electron microscopy. Apo-BLf also induced lipopolysaccharide (LPS) release from bacteria, disrupting OM permeability and functionality, as measured by silver staining and SDS and polymyxin B cell permeability assays. Western blot results showed that apo-BLf increased the secretion of leukotoxin in M. haemolytica A2 culture supernatants, possibly through its iron-chelating activity. In contrast, holo-BLf (with iron) did not have this effect, possibly due to differences in the tertiary structure between these proteins. In summary, apo-BLf affected the levels of several M. haemolytica virulence factors and could be evaluated for use in animals as an adjuvant in the treatment of ovine mannheimiosis.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), 04510, Coyoacán, CdMx, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico
| | - Gerardo Ramírez-Rico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), 54714, Cuautitlán Izcalli, Estado de México, Mexico
| | - Efrén Díaz-Aparicio
- Centro Nacional de Investigación Disciplinaria en Salud animal e inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), 05110, Cuajimalpa, CdMx, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Coyoacán, CdMx, Mexico
| | - Cynthia González-Ruiz
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), 54714, Cuautitlán Izcalli, Estado de México, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico.
| |
Collapse
|
13
|
Carrero JC, Reyes-López M, Serrano-Luna J, Shibayama M, Unzueta J, León-Sicairos N, de la Garza M. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int J Med Microbiol 2019; 310:151358. [PMID: 31587966 DOI: 10.1016/j.ijmm.2019.151358] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Amoebiasis is a parasitic disease caused by Entamoeba histolytica (E. histolytica), an extracellular enteric protozoan. This infection mainly affects people from developing countries with limited hygiene conditions, where it is endemic. Infective cysts are transmitted by the fecal-oral route, excysting in the terminal ileum and producing invasive trophozoites (amoebae). E. histolytica mainly lives in the large intestine without causing symptoms; however, possibly as a result of so far unknown signals, the amoebae invade the mucosa and epithelium causing intestinal amoebiasis. E. histolytica possesses different mechanisms of pathogenicity for the adherence to the intestinal epithelium and for degrading extracellular matrix proteins, producing tissue lesions that progress to abscesses and a host acute inflammatory response. Much information has been obtained regarding the virulence factors, metabolism, mechanisms of pathogenicity, and the host immune response against this parasite; in addition, alternative treatments to metronidazole are continually emerging. An accesible and low-cost diagnostic method that can distinguish E. histolytica from the most nonpathogenic amoebae and an effective vaccine are necessary for protecting against amoebiasis. However, research about the disease and its prevention has been a challenge due to the relationship between E. histolytica and the host during the distinct stages of the disease is multifaceted. In this review, we analyze the interaction between the parasite, the human host, and the colon microbiota or pathogenic microorganisms, which together give rise to intestinal amoebiasis.
Collapse
Affiliation(s)
- Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CdMx, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Juan Unzueta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Nidia León-Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa México, Unidad de Investigación, CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico.
| |
Collapse
|
14
|
Riol CD, Dietrich R, Märtlbauer E, Jessberger N. Consumed Foodstuffs Have a Crucial Impact on the Toxic Activity of Enteropathogenic Bacillus cereus. Front Microbiol 2018; 9:1946. [PMID: 30174669 PMCID: PMC6107707 DOI: 10.3389/fmicb.2018.01946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Enteropathogenic Bacillus cereus cause diarrhea due to the production of enterotoxins in the intestine. To start this process, spores have to be ingested together with contaminated food and survive the stomach passage. In this study, the influence of consumed foodstuffs on spore survival as well as on cytotoxicity toward colon epithelial cells was investigated. Spore survival of 20 enteropathogenic and apathogenic B. cereus strains during simulated stomach passage was highly strain-specific and did not correlate with the toxic potential. Survival of three tested strains was strain-specifically altered by milk products. Whereas milk, a follow-on formula and rice pudding had only little influence, spores seemed to be protected by milk products with high fat content such as whipped cream and mascarpone. Furthermore, tested milk products decreased the toxic activity of three B. cereus strains toward CaCo-2 cells. Investigating the individual components, lactoferrin, a skim milk powder and vitamins C, B5 and A showed the most inhibiting effects. On the other hand, biotin, vitamin B3 and another skim milk powder even enhanced cytotoxicity. Further studies suggested that these inhibiting effects result only partially from inhibiting cell binding, but rather from blocking the interaction between the single enterotoxin components.
Collapse
Affiliation(s)
- Claudia Da Riol
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Loera-Muro A, Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet Microbiol 2018; 217:66-75. [DOI: 10.1016/j.vetmic.2018.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
|
16
|
Acosta-Smith E, Viveros-Jiménez K, Canizalez-Román A, Reyes-Lopez M, Bolscher JGM, Nazmi K, Flores-Villaseñor H, Alapizco-Castro G, de la Garza M, Martínez-Garcia JJ, Velazquez-Roman J, Leon-Sicairos N. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species. Front Microbiol 2018; 8:2633. [PMID: 29375503 PMCID: PMC5768654 DOI: 10.3389/fmicb.2017.02633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.
Collapse
Affiliation(s)
- Erika Acosta-Smith
- Programa Regional Para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Karina Viveros-Jiménez
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Adrian Canizalez-Román
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Hospital de la Mujer, Servicios de Salud de Sinaloa, Culiacán, Mexico
| | - Magda Reyes-Lopez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, Mexico
| | - Jan G M Bolscher
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Hector Flores-Villaseñor
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio Estatal de Salud Pública de Sinaloa, Culiacán, Mexico
| | - Gerardo Alapizco-Castro
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, Mexico
| | - Jesús J Martínez-Garcia
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Departamento de Investigación, Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| | - Jorge Velazquez-Roman
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Nidia Leon-Sicairos
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Departamento de Investigación, Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| |
Collapse
|
17
|
Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg Dis 2017; 65 Suppl 1:72-90. [PMID: 29083117 DOI: 10.1111/tbed.12739] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/15/2022]
Abstract
Porcine pleuropneumonia, caused by the bacterial porcine respiratory tract pathogen Actinobacillus pleuropneumoniae, leads to high economic losses in affected swine herds in most countries of the world. Pigs affected by peracute and acute disease suffer from severe respiratory distress with high lethality. The agent was first described in 1957 and, since then, knowledge about the pathogen itself, and its interactions with the host, has increased continuously. This is, in part, due to the fact that experimental infections can be studied in the natural host. However, the fact that most commercial pigs are colonized by this pathogen has hampered the applicability of knowledge gained under experimental conditions. In addition, several factors are involved in development of disease, and these have often been studied individually. In a DISCONTOOLS initiative, members from science, industry and clinics exchanged their expertise and empirical observations and identified the major gaps in knowledge. This review sums up published results and expert opinions, within the fields of pathogenesis, epidemiology, transmission, immune response to infection, as well as the main means of prevention, detection and control. The gaps that still remain to be filled are highlighted, and present as well as future challenges in the control of this disease are addressed.
Collapse
Affiliation(s)
- E L Sassu
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - J T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, London, UK
| | - T J Tobias
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M Gottschalk
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - P R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, UK
| | - I Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| |
Collapse
|
18
|
Mannheimia haemolytica A2 secretes different proteases into the culture medium and in outer membrane vesicles. Microb Pathog 2017; 113:276-281. [PMID: 29051057 DOI: 10.1016/j.micpath.2017.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
Abstract
Respiratory diseases in ruminants have a significantly negative impact on the worldwide economy. The bacterium Mannheimia haemolytica is involved in pneumonic infections in bovine and ovine. In gram-negative bacteria, six secretion systems related to the colonization process and host tissue damage have been reported. In addition, in the last two decades, the production of outer membrane vesicles has been studied as a different bacterial strategy to release virulence factors, such as exotoxins, lipopolysaccharides, and proteases. However, in M. haemolytica serotype A2, protease secretion and release in vesicles have not been reported as virulence mechanisms. The aim of this work was to identify proteases released into the culture supernatant and in vesicles of M. haemolytica A2. Our results showed evident differences in the molecular mass and activity of proteases present in culture supernatants and outer membrane vesicles based on zymography assays. The biochemical characterization of M. haemolytica proteases revealed that the main types were cysteine and metalloproteases. A specific metalloprotease of 100 kDa was active in the culture supernatants, but it was not active and was found in low quantities in vesicles. Proteases could be an important virulence factor during the infectious pneumonic process led by M. haemolytica.
Collapse
|
19
|
Martínez-Castillo M, Cárdenas-Guerra RE, Arroyo R, Debnath A, Rodríguez MA, Sabanero M, Flores-Sánchez F, Navarro-Garcia F, Serrano-Luna J, Shibayama M. Nf-GH, a glycosidase secreted by Naegleria fowleri, causes mucin degradation: an in vitro and in vivo study. Future Microbiol 2017; 12:781-799. [PMID: 28608712 DOI: 10.2217/fmb-2016-0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM The aim of this work was to identify, characterize and evaluate the pathogenic role of mucinolytic activity released by Naegleria fowleri. MATERIALS & METHODS Zymograms, protease inhibitors, anion exchange chromatography, MALDI-TOF-MS, enzymatic assays, Western blot, and confocal microscopy were used to identify and characterize a secreted mucinase; inhibition assays using antibodies, dot-blots and mouse survival tests were used to evaluate the mucinase as a virulence factor. RESULTS A 94-kDa protein with mucinolytic activity was inducible and abolished by p-hydroxymercuribenzoate. MALDI-TOF-MS identified a glycoside hydrolase. Specific antibodies against N. fowleri-glycoside hydrolase inhibit cellular damage and MUC5AC degradation, and delay mouse mortality. CONCLUSION Our findings suggest that secretory products from N. fowleri play an important role in mucus degradation during the invasion process.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Rosa Elena Cárdenas-Guerra
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Rossana Arroyo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Anjan Debnath
- Center for Discovery & Innovation in Parasitic Diseases, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mario Alberto Rodríguez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Myrna Sabanero
- Department of Biology, University of Guanajuato, Noria Alta S/N, Noria Alta, Guanajuato 36050, Mexico
| | - Fernando Flores-Sánchez
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
20
|
Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci 2017; 18:E501. [PMID: 28257033 PMCID: PMC5372517 DOI: 10.3390/ijms18030501] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Collapse
Affiliation(s)
- Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco (UAM-X), CdMx 04960, Mexico.
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), CdMx 11340, Mexico.
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), CdMx 70228, Mexico.
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CdMx 07360, Mexico.
| |
Collapse
|
21
|
Samaniego-Barrón L, Luna-Castro S, Piña-Vázquez C, Suárez-Güemes F, de la Garza M. Two outer membrane proteins are bovine lactoferrin-binding proteins in Mannheimia haemolytica A1. Vet Res 2016; 47:93. [PMID: 27599994 PMCID: PMC5013584 DOI: 10.1186/s13567-016-0378-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/14/2016] [Indexed: 11/10/2022] Open
Abstract
Mannheimia haemolytica is a Gram negative bacterium that is part of the bovine respiratory disease, which causes important economic losses in the livestock industry. In the present work, the interaction between M. haemolytica A1 and bovine lactoferrin (BLf) was studied. This iron-chelating glycoprotein is part of the mammalian innate-immune system and is present in milk and mucosal secretions; Lf is also contained in neutrophils secondary granules, which release this glycoprotein at infection sites. It was evidenced that M. haemolytica was not able to use iron-charged BLf (BholoLf) as a sole iron source; nevertheless, iron-lacked BLf (BapoLf) showed a bactericidal effect against M. haemolytica with MIC of 4.88 ± 1.88 and 7.31 ± 1.62 μM for M. haemolytica strain F (field isolate) and M. haemolytica strain R (reference strain), respectively. Through overlay assays and 2-D electrophoresis, two OMP of 32.9 and 34.2 kDa with estimated IP of 8.18 and 9.35, respectively, were observed to bind both BapoLf and BholoLf; these OMP were identified by Maldi-Tof as OmpA (heat-modifiable OMP) and a membrane protein (porin). These M. haemolytica BLf binding proteins could be interacting in vivo with both forms of BLf depending on the iron state of the bovine.
Collapse
Affiliation(s)
- Luisa Samaniego-Barrón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, CP 07360 Ciudad de México, Mexico
| | - Sarahí Luna-Castro
- Facultad de Medicina Veterinaria y Zootecnia Dr. Norberto Treviño Zapata, Universidad Autónoma de Tamaulipas, Carretera a Cd. Mante Km 5, CP 87000 Ciudad Victoria, Tamaulipas Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, CP 07360 Ciudad de México, Mexico
| | - Francisco Suárez-Güemes
- Departamento de Microbiología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Cd. Universitaria, Coyoacán, CP 04510 Ciudad de México, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, CP 07360 Ciudad de México, Mexico
| |
Collapse
|
22
|
Affiliation(s)
- Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy,
| | | |
Collapse
|
23
|
Ramírez-Rico G, Martínez-Castillo M, de la Garza M, Shibayama M, Serrano-Luna J. Acanthamoeba castellanii
Proteases are Capable of Degrading Iron-Binding Proteins as a Possible Mechanism of Pathogenicity. J Eukaryot Microbiol 2015; 62:614-22. [PMID: 25737266 DOI: 10.1111/jeu.12215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/09/2014] [Accepted: 01/19/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Gerardo Ramírez-Rico
- Departamento de Biología Celular; Centro de Investigación y de Estudios Avanzados del IPN; Av. Instituto Politécnico Nacional 2508 07360 México Distrito Federal México
| | - Moisés Martínez-Castillo
- Departamento de Infectómica y Patogénesis Molecular; Centro de Investigación y de Estudios Avanzados del IPN; Av. Instituto Politécnico Nacional 2508 07360 México Distrito Federal México
| | - Mireya de la Garza
- Departamento de Biología Celular; Centro de Investigación y de Estudios Avanzados del IPN; Av. Instituto Politécnico Nacional 2508 07360 México Distrito Federal México
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular; Centro de Investigación y de Estudios Avanzados del IPN; Av. Instituto Politécnico Nacional 2508 07360 México Distrito Federal México
| | - Jesús Serrano-Luna
- Departamento de Biología Celular; Centro de Investigación y de Estudios Avanzados del IPN; Av. Instituto Politécnico Nacional 2508 07360 México Distrito Federal México
| |
Collapse
|