1
|
Sahu P, Mandal SM, Biswas R, Chakraborty S, Natarajan R, Isab AA, Dinda J. Design, Synthesis and Bioactivity Evaluation of Ag(I)-, Au(I)- and Au(III)-Quinoxaline-Wingtip N-Heterocyclic Carbene Complexes Against Antibiotic Resistant Bacterial Pathogens. ChemMedChem 2024; 19:e202400236. [PMID: 38934210 DOI: 10.1002/cmdc.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Intending to homogenize the biological activities of both quinoxaline and imidazole moieties, the proligand, 1-methyl-3-quinoxaline-imidazolium hexaflurophosphate (1.HPF6), and [Ag(1)2][PF6], (2); [Au(1)2][PF6], (3); and [Au(1)Cl3], (4) NHC complexes were synthesized. All the synthesized compounds were characterized by elemental analysis, NMR, and UV-Vis spectroscopy. Finally, single crystal X-ray structures revealed a linear geometry for complex 2 whereas a square planar geometry for complex 4. The formation of complex 3 was confirmed and supported by its MS spectra. The antibacterial activities of all the synthesized complexes were investigated against gram-positive bacteria and gram-negative bacteria. The Au(III)-NHC complex, 4 showed the highest antibacterial activity with extremely low MIC values against both the bacterial strains (0.24 μg mL-1). Monitoring of zeta potential supports the higher activity of complex 4 compared to 2 and 3. ROS production by complex 4 has also been measured in vitro in the CT26 cancer cell lines, which is directly responsible for targetting and killing the bacterial pathogens. Cell cytotoxicity assay using 293T cell lines has been performed to investigate the biocompatibility nature of complex 4. Also, an excellent hemocompatibility was assigned to it from its hemolytic studies, which provide valuable insights into the design of novel antibacterial agents.
Collapse
Affiliation(s)
- Priyanka Sahu
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | - Santi M Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Raju Biswas
- CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal, 32, India
| | - Sourav Chakraborty
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ramalingam Natarajan
- CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal, 32, India
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Joydev Dinda
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| |
Collapse
|
2
|
Varna D, Geromichalos G, Gioftsidou DK, Tzimopoulos D, Hatzidimitriou AG, Dalezis P, Papi R, Trafalis D, Angaridis PA. N-heterocyclic-carbene vs diphosphine auxiliary ligands in thioamidato Cu(I) and Ag(I) complexes towards the development of potent and dual-activity antibacterial and apoptosis-inducing anticancer agents. J Inorg Biochem 2024; 252:112472. [PMID: 38215535 DOI: 10.1016/j.jinorgbio.2023.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Group 11 metal complexes exhibit promising antibacterial and anticancer properties which can be further enhanced by appropriate ligands. Herein, a series of mononuclear thioamidato Cu(I) and Ag(I) complexes bearing either a diphosphine (P^P) or a N-heterocyclic carbene (NHC) auxiliary ligand (L) was synthesized, and the impact of the co-ligand L on the in vitro antibacterial and anticancer properties of their complexes was assessed. All complexes effectively inhibited the growth of various bacterial strains, with the NHC-Cu(I) complex found to be particularly effective against the Gram (+) bacteria (IC50 = 1-4 μg mL-1). Cytotoxicity studies against various human cancer cells revealed their high anticancer potency and the superior activity of the NHC-Ag(I) complex (IC50 = 0.95-4.5 μΜ). Flow cytometric analysis on lung and breast cancer cells treated with the NHC-Ag(I) complex suggested an apoptotic cell-death pathway; molecular docking calculations provided mechanistic insights, proving the capacity of the complex to bind on apoptosis-regulating proteins and affect their functionalities.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Geromichalos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra K Gioftsidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Demetrios Tzimopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Ronga L, Varcamonti M, Tesauro D. Structure-Activity Relationships in NHC-Silver Complexes as Antimicrobial Agents. Molecules 2023; 28:molecules28114435. [PMID: 37298911 DOI: 10.3390/molecules28114435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Silver has a long history of antimicrobial activity and received an increasing interest in last decades owing to the rise in antimicrobial resistance. The major drawback is the limited duration of its antimicrobial activity. The broad-spectrum silver containing antimicrobial agents are well represented by N-heterocyclic carbenes (NHCs) silver complexes. Due to their stability, this class of complexes can release the active Ag+ cations in prolonged time. Moreover, the properties of NHC can be tuned introducing alkyl moieties on N-heterocycle to provide a range of versatile structures with different stability and lipophilicity. This review presents designed Ag complexes and their biological activity against Gram-positive, Gram-negative bacteria and fungal strains. In particular, the structure-activity relationships underlining the major requirements to increase the capability to induce microorganism death are highlighted here. Moreover, some examples of encapsulation of silver-NHC complexes in polymer-based supramolecular aggregates are reported. The targeted delivery of silver complexes to the infected sites will be the most promising goal for the future.
Collapse
Affiliation(s)
- Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Mario Varcamonti
- Department of Biology, University of Naples "Federico II", Via Cynthia, 80143 Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
4
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Beato Z, Ryan B, Müller-Bunz H, Baumann M, Tacke M. Synthesis and biological evaluation of fluoro-substituted cationic and neutral antibiotic NHC* silver derivatives of SBC3. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Piatek M, O'Beirne C, Beato Z, Tacke M, Kavanagh K. Exposure of Candida parapsilosis to the silver(I) compound SBC3 induces alterations in the proteome and reduced virulence. Metallomics 2022; 14:mfac046. [PMID: 35751649 PMCID: PMC9348618 DOI: 10.1093/mtomcs/mfac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022]
Abstract
The antimicrobial properties of silver have been exploited for many centuries and continue to gain interest in the fight against antimicrobial drug resistance. The broad-spectrum activity and low toxicity of silver have led to its incorporation into a wide range of novel antimicrobial agents, including N-heterocyclic carbene (NHC) complexes. The antimicrobial activity and in vivo efficacy of the NHC silver(I) acetate complex SBC3, derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*), have previously been demonstrated, although the mode(s) of action of SBC3 remains to be fully elucidated. Label-free quantitative proteomics was applied to analyse changes in protein abundance in the pathogenic yeast Candida parapsilosis in response to SBC3 treatment. An increased abundance of proteins associated with detoxification and drug efflux were indicative of a cell stress response, whilst significant decreases in proteins required for protein and amino acid biosynthesis offer potential insight into the growth-inhibitory mechanisms of SBC3. Guided by the proteomic findings and the prolific biofilm and adherence capabilities of C. parapsilosis, our studies have shown the potential of SBC3 in reducing adherence to epithelial cells and biofilm formation and hence decrease fungal virulence.
Collapse
Affiliation(s)
- Magdalena Piatek
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cillian O'Beirne
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Zoe Beato
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Matthias Tacke
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Kevin Kavanagh
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Duman Erbaş E, Gwokyalya R, Altuntaş H, Kutrup B. Screening the immunotoxicity of different food preservative agents on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. Drug Chem Toxicol 2022:1-11. [PMID: 35758106 DOI: 10.1080/01480545.2022.2091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immunotoxic effects of sodium benzoate (SB, E211), sodium nitrate (SNa, E251), and sodium nitrite (SNi, E250), a few of the most common food preservatives, on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae were investigated in this study. The last instar larvae were used for all experimental analyses. For this purpose, median lethal doses of SB, SNa, and SNi were applied to the larvae by the force-feeding method. We found that force-feeding G. mellonella larvae with SB, SNa, and SNi significantly reduced the larval total hemocyte counts, prohemocyte, and granulocyte ratios but increased plasmatocyte, spherulocyte, and oenocyte ratios, as well as the hemocyte mitotic indices and micronucleus frequency. The spreading ability of hemocytes and hemocyte-mediated immune responses were lower in the SB, SNa-, and SNi-treated larval groups compared to controls. Apoptotic indices were higher in all larval groups treated with food preservatives, but increments in necrotic indices were only significantly higher in SNi-treated larvae compared to controls. Our research shows that SB, SNa, and SNi have immunotoxic and cytotoxic potential on G. mellonella larvae. Thus, we suggest that G. mellonella larvae can be used as preliminary in vivo models to screen the immunotoxic effects of food preservative agents.
Collapse
Affiliation(s)
- Emine Duman Erbaş
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Hülya Altuntaş
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - Bilal Kutrup
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Selvam P, De S, Paira P, Kumar SKA, Kumar R S, Moorthy A, Ghosh A, Kuo YC, Banerjee S, Jenifer SK. In vitro studies on the selective cytotoxic effect of luminescent Ru( ii)- p-cymene complexes of imidazo-pyridine and imidazo quinoline ligands. Dalton Trans 2022; 51:17263-17276. [DOI: 10.1039/d2dt02237k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, Ru(ii) complexes have gained high importance in medicinal chemistry due to their significant anti-cancer activities, which are directly related to their DNA binding ability.
Collapse
Affiliation(s)
- Pravinkumar Selvam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Sourav De
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - S. K. Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Selva Kumar R
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai – 602105, Tamil Nadu, India
| | - Anbalagan Moorthy
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Arjita Ghosh
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences. Asansol-713301, West Bengal, India
| | - Shantha Kumar Jenifer
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600 036, India
| |
Collapse
|
9
|
Piatek M, Sheehan G, Kavanagh K. Galleria mellonella: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics (Basel) 2021; 10:antibiotics10121545. [PMID: 34943757 PMCID: PMC8698334 DOI: 10.3390/antibiotics10121545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Larvae of the greater wax moth, Galleria mellonella, are a convenient in vivo model for assessing the activity and toxicity of antimicrobial agents and for studying the immune response to pathogens and provide results similar to those from mammals. G. mellonella larvae are now widely used in academia and industry and their use can assist in the identification and evaluation of novel antimicrobial agents. Galleria larvae are inexpensive to purchase and house, easy to inoculate, generate results within 24–48 h and their use is not restricted by legal or ethical considerations. This review will highlight how Galleria larvae can be used to assess the efficacy of novel antimicrobial therapies (photodynamic therapy, phage therapy, metal-based drugs, triazole-amino acid hybrids) and for determining the in vivo toxicity of compounds (e.g., food preservatives, ionic liquids) and/or solvents (polysorbate 80). In addition, the disease development processes are associated with a variety of pathogens (e.g., Staphylococcus aureus, Listeria monocytogenes, Aspergillus fumigatus, Madurella mycotomatis) in mammals are also present in Galleria larvae thus providing a simple in vivo model for characterising disease progression. The use of Galleria larvae offers many advantages and can lead to an acceleration in the development of novel antimicrobials and may be a prerequisite to mammalian testing.
Collapse
|
10
|
Şahin-Bölükbaşı S, Cantürk-Kılıçkaya P, Kılıçkaya O. Silver(I)-N-heterocyclic carbene complexes challenge cancer; evaluation of their anticancer properties and in silico studies. Drug Dev Res 2021; 82:907-926. [PMID: 33978961 DOI: 10.1002/ddr.21822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
Because of the continuous need for efficient therapeutic agents against various kinds of cancers and infectious diseases, the pharmaceutical industry has to find new candidates and strategies to develop novel and efficient drugs. They increasingly use computational tools in R&D stages for screening extensive sets of drug candidates before starting pre-clinical and clinical trials. N-Heterocyclic carbenes (NHCs) can be evaluated as good drug candidates because they offer both anti-cancer and anti-inflammatory features with their general low-toxicity profiles. To date, different kinds of NHCs (Cu, Co, Ni, Au, Ag, Ru, etc.) have been synthesized and their therapeutic uses has been shown. Here, we have reviewed the recent studies focused on Ag(I)-NHC complexes and their anti-cancer activities. Also, existing examples of the usage of density functional theory and structure-activity relationship have been evaluated.
Collapse
Affiliation(s)
- Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Pakize Cantürk-Kılıçkaya
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ozan Kılıçkaya
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
11
|
In-vitro and in-vivo investigations into the carbene-gold anticancer drug candidates NHC*-Au-SCSNMe2 and NHC*-Au-S-GLUC against advanced prostate cancer PC3. Anticancer Drugs 2021; 31:672-683. [PMID: 32282370 DOI: 10.1097/cad.0000000000000930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anticancer drug candidates 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative exhibited nanomolar in-vitro activity against prostate cancer cells advanced prostate cancer (PC3) and micromolar inhibition of mammalian thioredoxin reductase. Encouraging maximum tolerable dose experiments led to human prostate cancer subcutaneous xenograft experiments; 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative were applied twelve times at two doses in groups of n = 5 PC3 to tumor-bearing NMRI:nu/nu mice. 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative at the dose of 10 and 20 mg/kg showed good tolerability, while no significant body weight loss was seen in both groups. In particular, for the drug 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate the tumor growth inhibition suggested to be dose dependent, reflected by the respective optimal T/C values of 0.45 at the dose of 10 mg/kg and of 0.31 at the dose of 20 mg/kg. By contrast, the 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative treated groups showed no indication for dose-dependent antitumoral activity, as reflected by the optimal T/C values of 0.44 for the 10 mg/kg and for the 20 mg/kg treated mice. Immunohistochemical experiments involving Ki67 staining of tumor tissue showed that both compounds reduced PC3 cell proliferation against the difficult to treat advanced human prostate tumors derived from PC3.
Collapse
|
12
|
Evans A, Kavanagh KA. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens. J Med Microbiol 2021; 70:001363. [PMID: 33961541 PMCID: PMC8289199 DOI: 10.1099/jmm.0.001363] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest global health challenges of modern times and its prevalence is rising worldwide. AMR within bacteria reduces the efficacy of antibiotics and increases both the morbidity and the mortality associated with bacterial infections. Despite this growing risk, few antibiotics with a novel mode of action are being produced, leading to a lack of antibiotics that can effectively treat bacterial infections with AMR. Metals have a history of antibacterial use but upon the discovery of antibiotics, often became overlooked as antibacterial agents. Meanwhile, metal-based complexes have been used as treatments for other diseases, such as the gold-containing drug auranofin, used to treat rheumatoid arthritis. Metal-based antibacterial compounds have novel modes of action that provide an advantage for the treatment of bacterial infections with resistance to conventional antibiotics. In this review, the antibacterial activity, mode of action, and potential for systemic use of a number of metal-based antibacterial complexes are discussed. The current limitations of these compounds are highlighted to determine if metal-based agents are a potential solution for the treatment of bacterial infections, especially those resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Andris Evans
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin A. Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
13
|
Sheehan G, Margalit A, Sheehan D, Kavanagh K. Proteomic profiling of bacterial and fungal induced immune priming in Galleria mellonella larvae. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104213. [PMID: 33662378 DOI: 10.1016/j.jinsphys.2021.104213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Some insects display immunological priming as a result of elevated humoral and cellular responses which give enhanced survival against subsequent infection. The humoral immune response of Galleria mellonella larvae following pre-exposure to heat killed Staphylococcus aureus or Candida albicans cells was determined by quantitative mass spectrometry in order to assess the relationship between the humoral immune response and resistance to subsequent bacterial or fungal infection. Larvae pre-exposed to heat killed S. aureus showed increased resistance to subsequent bacterial and fungal infection. Larvae displayed an increased hemocyte density (14.08 ± 2.14 × 106 larva-1 (p < 0.05) compared to the PBS injected control [10.41 ± 1.67 × 106 larva-1]) and increased abundance of antimicrobial proteins (cecropin-D-like peptide (+22.23 fold), hdd11 (+12.61 fold) and prophenol oxidase activating enzyme 3 (+5.96 fold) in response to heat killed S. aureus. Larvae pre-exposed to heat killed C. albicans cells were resistant to subsequent fungal infection but not bacterial infection and showed a reduced hemocyte density (6.01 ± 1.63 × 106 larva-1 (p < 0.01) and increased abundance of hdd11 (+32.73 fold) and moricin-like peptide C1 (+16.76 fold). While immune priming is well recognised in G. mellonella larvae the results presented here indicate distinct differences in the response of larvae following exposure to heat killed bacterial and fungal cells.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Anatte Margalit
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
14
|
O'Beirne C, Piatek ME, Fossen J, Müller-Bunz H, Andes DR, Kavanagh K, Patil SA, Baumann M, Tacke M. Continuous flow synthesis and antimicrobial evaluation of NHC* silver carboxylate derivatives of SBC3 in vitro and in vivo. Metallomics 2020; 13:6055688. [PMID: 33595656 DOI: 10.1093/mtomcs/mfaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/24/2020] [Indexed: 11/14/2022]
Abstract
N-heterocyclic silver carbene compounds have been extensively studied and shown to be active agents against a host of pathogenic bacteria and fungi. By incorporating hypothesized virulence targeting substituents into NHC-silver systems via salt metathesis, an atom-efficient complexation process can be used to develop new complexes to target the passive and active systems of a microbial cell. The incorporation of fatty acids and an FtsZ inhibitor have been achieved, and creation of both the intermediate salt and subsequent silver complex has been streamlined into a continuous flow process. Biological evaluation was conducted with in vitro toxicology assays showing these novel complexes had excellent inhibition against Gram-negative strains E. coli, P. aeruginosa, and K. pneumoniae; further studies also confirmed the ability to inhibit biofilm formation in methicillin-resistant Staphylococcus aureus (MRSA) and C. Parapsilosis. In vivo testing using a murine thigh infection model showed promising inhibition of MRSA for the lead compound SBC3, which is derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*).
Collapse
Affiliation(s)
- Cillian O'Beirne
- School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Republic of Ireland
| | - Magdalena E Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Republic of Ireland
| | - Jen Fossen
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI, USA
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Republic of Ireland
| | - David R Andes
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI, USA
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Republic of Ireland
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Bangalore, Karnataka, India
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Republic of Ireland
| | - Matthias Tacke
- School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Republic of Ireland
| |
Collapse
|
15
|
O'Loughlin J, Napolitano S, Alkhathami F, O'Beirne C, Marhöfer D, O'Shaughnessy M, Howe O, Tacke M, Rubini M. The Antibacterial Drug Candidate SBC3 is a Potent Inhibitor of Bacterial Thioredoxin Reductase. Chembiochem 2020; 22:1093-1098. [PMID: 33170522 DOI: 10.1002/cbic.202000707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Indexed: 01/06/2023]
Abstract
Antibiotic resistance is a growing problem for public health and associated with increasing economic costs and mortality rates. Silver and silver-related compounds have been used for centuries due to their antimicrobial properties. In this work, we show that 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate/NHC*-Ag-OAc (SBC3) is a reversible, high affinity inhibitor of E. coli thioredoxin reductase (TrxR; Ki =10.8±1.2 nM). Minimal inhibition concentration (MIC) tests with different E. coli and P. aeruginosa strains demonstrated that SBC3 can efficiently inhibit bacterial cell growth, especially in combination with established antibiotics like gentamicin. Our results show that SBC3 is a promising antibiotic drug candidate targeting bacterial TrxR.
Collapse
Affiliation(s)
- Jennie O'Loughlin
- School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Silvia Napolitano
- Department of Molecular Biology and Biophysics, ETH, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Fahad Alkhathami
- School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Cillian O'Beirne
- School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Daniel Marhöfer
- School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Megan O'Shaughnessy
- School of Biological and Health Sciences, Technical University Dublin, City Campus, Dublin, Ireland
| | - Orla Howe
- School of Biological and Health Sciences, Technical University Dublin, City Campus, Dublin, Ireland
| | - Matthias Tacke
- School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Marina Rubini
- School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Sheehan G, Farrell G, Kavanagh K. Immune priming: the secret weapon of the insect world. Virulence 2020; 11:238-246. [PMID: 32079502 PMCID: PMC7051127 DOI: 10.1080/21505594.2020.1731137] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Insects are a highly successful group of animals that inhabit almost every habitat and environment on Earth. Part of their success is due to a rapid and highly effective immune response that identifies, inactivates, and eliminates pathogens. Insects possess an immune system that shows many similarities to the innate immune system of vertebrates, but they do not possess an equivalent system to the antibody-mediated adaptive immune response of vertebrates. However, some insect do display a process known as immune priming in which prior exposure to a sublethal dose of a pathogen, or pathogen-derived material, leads to an elevation in the immune response rendering the insect resistant to a subsequent lethal infection a short time later. This process is mediated by an increase in the density of circulating hemocytes and increased production of antimicrobial peptides. Immune priming is an important survival strategy for certain insects while other insects that do not show this response may have colony-level behaviors that may serve to limit the success of pathogens. Insects are now widely used as in vivo models for studying microbial pathogens of humans and for assessing the in vivo efficacy of antimicrobial agents. Knowledge of the process of immune priming in insects is essential in these applications as it may operate and augment the perceived in vivo antimicrobial activity of novel compounds.Abbreviations: 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate; SBC3: antimicrobial peptides; AMPs: dorsal-related immunity factor; DIF: Down syndrome cell adhesion molecule; Dscam: Lipopolysaccharide; LPS: Pathogen-associated molecular patterns; PAMPS: Patterns recognition receptors; PRR: Prophenoloxidase; PO: Toll-like receptors; TLRs: Toll/IL-1R; TIR, Transgenerational Immune Priming; TgIP: Tumor necrosis factor-α; TNF-α.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gemma Farrell
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
17
|
Piatek M, Sheehan G, Kavanagh K. UtilisingGalleria mellonella larvae for studying in vivo activity of conventional and novel antimicrobial agents. Pathog Dis 2020; 78:5917982. [DOI: 10.1093/femspd/ftaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACTThe immune response of insects displays many structural and functional similarities to the innate immune response of mammals. As a result of these conserved features, insects may be used for evaluating microbial virulence or for testing the in vivo efficacy and toxicity of antimicrobial compounds and results show strong similarities to those from mammals. Galleria mellonella larvae are widely used in this capacity and have the advantage of being easy to use, inexpensive to purchase and house, and being free from the ethical and legal restrictions that relate to the use of mammals in these tests. Galleria mellonella larvae may be used to assess the in vivo toxicity and efficacy of novel antimicrobial compounds. A wide range of antibacterial and antifungal therapies have been evaluated in G. mellonella larvae and results have informed subsequent experiments in mammals. While insect larvae are a convenient and reproducible model to use, care must be taken in their use to ensure accuracy of results. The objective of this review is to provide a comprehensive account of the use of G. mellonella larvae for assessing the in vivo toxicity and efficacy of a wide range of antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Magdalena Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| | - Gerard Sheehan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| |
Collapse
|
18
|
Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020. [DOI: 10.3390/microorganisms8030390
expr 890942362 + 917555800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
|
19
|
Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E. Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020; 8:microorganisms8030390. [PMID: 32168839 PMCID: PMC7142887 DOI: 10.3390/microorganisms8030390] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
Affiliation(s)
- Sana Jemel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Jacques Guillot
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Kalthoum Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Françoise Botterel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Eric Dannaoui
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Hôpital Européen Georges Pompidou, APHP, Unité de Parasitologie-Mycologie, Service de Microbiologie, 75015 Paris, France
- Université René Descartes, Faculté de médecine, 75006 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
20
|
Tacke M, Marhöfer D, Althani H, Müller-Bunz H. Unexpected reactions of NHC*-Cu I and -Ag I bromides with potassium thio- or seleno-cyanate. Acta Crystallogr E Crystallogr Commun 2019; 75:1657-1663. [PMID: 31709086 PMCID: PMC6829722 DOI: 10.1107/s2056989019013719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/08/2019] [Indexed: 12/02/2022]
Abstract
The reactions of N-heterocyclic carbene CuI and AgI halides with potassium thio- or seleno-cyanate gave unexpected products. The attempted substitution reaction of bromido-(1,3-dibenzyl-4,5-di-phenyl-imidazol-2-yl-idene)silver (NHC*-Ag-Br) with KSCN yielded bis-[bis-(1,3-dibenzyl-4,5-di-phenyl-imidazol-2-yl-idene)silver(I)] tris-(thio-cyanato)-argentate(I) diethyl ether disolvate, [Ag(C29H24N2)2][Ag(NCS)3]·2C4H10O or [NHC*2Ag]2[Ag(SCN)3]·2Et2O, (1), while reaction with KSeCN led to bis-(μ-1,3-dibenzyl-4,5-diphenyl-2-seleno-imidazole-κ2 Se:Se)bis-[bromido-(1,3-dibenzyl-4,5-diphenyl-2-seleno-imid-azole-κSe)silver(I)] di-chloro-methane hexa-solvate, [Ag2Br2(C29H24N2Se)4]·6CH2Cl2 or (NHC*Se)4Ag2Br2·6CH2Cl2, (2), via oxidation of the NHC* fragment to 2-seleno-imidazole. This oxidation was observed again in the reaction of NHC*-Cu-Br with KSeCN, yielding catena-poly[[[(1,3-dibenzyl-4,5-diphenyl-2-seleno-imidazole-κSe)copper(I)]-μ-cyanido-κ2 C:N] aceto-nitrile monosolvate], {[Cu(CN)(C29H24N2Se)]·C2H3N} n or NHC*Se-CuCN·CH3CN, (3). Compound (1) represents an organic/inorganic salt with AgI in a linear coordination in each of the two cations and in a trigonal coordination in the anion, accompanied by diethyl ether solvent mol-ecules. The tri-blade boomerang-shaped complex anion [Ag(SCN)3]2- present in (1) is characterized by X-ray diffraction for the first time. Compound (2) comprises an isolated centrosymmetric mol-ecule with AgI in a distorted tetra-hedral BrSe3 coordination, together with di-chloro-methane solvent mol-ecules. Compound (3) exhibits a linear polymeric 1 ∞[Cu-C≡N-Cu-] chain structure with a seleno-imidazole moiety additionally coordinating to each CuI atom, and completed by aceto-nitrile solvent mol-ecules. Electron densities associated with an additional ether solvent mol-ecule in (1) and two additional di-chloro-methane solvent mol-ecules in (2) were removed with the SQUEEZE procedure [Spek (2015 ▸). Acta Cryst. C71, 9-18] in PLATON.
Collapse
Affiliation(s)
- Matthias Tacke
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Daniel Marhöfer
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hessah Althani
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
21
|
Suay-García B, Alemán-López PA, Bueso-Bordils JI, Falcó A, Antón-Fos G, Pérez-Gracia MT. New solvent options for in vivo assays in the Galleria mellonella larvae model. Virulence 2019; 10:776-782. [PMID: 31451073 PMCID: PMC6735471 DOI: 10.1080/21505594.2019.1659663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Experimentation in mammals is a long and expensive process in which ethical aspects must be considered, which has led the scientific community to develop alternative models such as that of Galleria mellonella. This model is a cost and time effective option to act as a filter in the drug discovery process. The main limitation of this model is the lack of variety in the solvents used to administer compounds, which limits the compounds that can be studied using this model. Five aqueous (DMSO, MeOH, acetic acid, HCl and NaOH) and four non-aqueous (olive oil, isopropyl myristate, benzyl benzoate and ethyl oleate) solvents was assessed to be used as vehicles for toxicity and antimicrobial activity in vivo assays. All the tested solvents were innocuous at the tested concentrations except for NaOH, which can be used at a maximum concentration of 0.5 M. The toxicity of two additional compounds, 5-aminosalicylic acid and DDT, was also assessed. The results obtained allow for the testing of a broader range of compounds using wax moth larvae. This model appears as an alternative to mammal models, by acting as a filter in the drug development process and reducing costs and time invested in new drugs.
Collapse
Affiliation(s)
- Beatriz Suay-García
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Pedro A Alemán-López
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - José Ignacio Bueso-Bordils
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Antonio Falcó
- ESI International Chair@CEU-UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Gerardo Antón-Fos
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - María Teresa Pérez-Gracia
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| |
Collapse
|
22
|
Wani F, Amaduddin, Aneja B, Sheehan G, Kavanagh K, Ahmad R, Abid M, Patel R. Synthesis of Novel Benzimidazolium Gemini Surfactants and Evaluation of Their Anti-Candida Activity. ACS OMEGA 2019; 4:11871-11879. [PMID: 31460297 PMCID: PMC6682078 DOI: 10.1021/acsomega.9b01056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/10/2019] [Indexed: 09/01/2023]
Abstract
Owing to the rise in antimicrobial and chemotherapeutic drug resistance, there is a desperate need to formulate newer as well as more effective agents. With this perspective, here we outline the synthesis of two novel gemini surfactants with different substitutions at the nitrogen atom of the benzimidazolium ring. Both the compounds induced significant reductions in Candida growth in various yeast strains. The reduction in Candida growth seemed likely through the reduction in ergosterol biosynthesis: a sterol constituent of yeast cell membranes. Different concentrations of both compounds were used to determine the cellular ergosterol content which indicates an important disordering of the ergosterol biosynthetic pathway. Cytotoxic studies were carried out using HEK 293 (human embryonic-kidney cells) and Galleria mellonella larvae (an in vivo model of antimicrobial studies). Administration of both the compounds to G. mellonella larvae diseased by the yeast Candida albicans resulted in increased survival indicating their in vivo activity.
Collapse
Affiliation(s)
- Farooq
Ahmad Wani
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Amaduddin
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Gerard Sheehan
- Department
of Biology, Maynooth University, Co Kildare 045, Ireland
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Co Kildare 045, Ireland
| | - Rabia Ahmad
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| |
Collapse
|
23
|
O'Beirne C, Alhamad NF, Ma Q, Müller-Bunz H, Kavanagh K, Butler G, Zhu X, Tacke M. Synthesis, structures and antimicrobial activity of novel NHC∗- and Ph3P-Ag(I)-Benzoate derivatives. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Ude Z, Kavanagh K, Twamley B, Pour M, Gathergood N, Kellett A, Marmion CJ. A new class of prophylactic metallo-antibiotic possessing potent anti-cancer and anti-microbial properties. Dalton Trans 2019; 48:8578-8593. [DOI: 10.1039/c9dt00250b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A family of metallo-antibiotics of general formula [Cu(N,N)(CipA)Cl] where N,N is a phenanthrene ligand and CipA is a derivative of the clinically used fluoroquinolone antibiotic ciprofloxacin – targeting immunocompromised cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Ziga Ude
- Centre for Synthesis and Chemical Biology
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | | | - Brendan Twamley
- School of Chemistry
- Trinity College Dublin
- University of Dublin College Green
- Dublin 2
- Ireland
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry
- Faculty of Pharmacy
- Charles University
- 500 05 Hradec Kralove
- Czech Republic
| | - Nicholas Gathergood
- ERA Chair of Green Chemistry
- Division of Chemistry
- Department of Chemistry and Biotechnology
- School of Science
- Tallinn University of Technology
| | - Andrew Kellett
- School of Chemical Sciences and the National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Celine J. Marmion
- Centre for Synthesis and Chemical Biology
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| |
Collapse
|
25
|
Kavanagh K, Sheehan G. The Use of Galleria mellonella Larvae to Identify Novel Antimicrobial Agents against Fungal Species of Medical Interest. J Fungi (Basel) 2018; 4:jof4030113. [PMID: 30235800 PMCID: PMC6162640 DOI: 10.3390/jof4030113] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system of insects and the innate immune response of mammals share many similarities and, as a result, insects may be used to assess the virulence of fungal pathogens and give results similar to those from mammals. Larvae of the greater wax moth Galleria mellonella are widely used in this capacity and also for assessing the toxicity and in vivo efficacy of antifungal drugs. G. mellonella larvae are easy to use, inexpensive to purchase and house, and have none of the legal/ethical restrictions that are associated with use of mammals. Larvae may be inoculated by intra-hemocoel injection or by force-feeding. Larvae can be used to assess the in vivo toxicity of antifungal drugs using a variety of cellular, proteomic, and molecular techniques. Larvae have also been used to identify the optimum combinations of antifungal drugs for use in the treatment of recalcitrant fungal infections in mammals. The introduction of foreign material into the hemocoel of larvae can induce an immune priming effect which may operate independently with the activity of the antifungal drug. Procedures to identify this effect and limit its action are required.
Collapse
Affiliation(s)
- Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland.
| | - Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland.
| |
Collapse
|
26
|
Standardization of G. mellonella Larvae to Provide Reliable and Reproducible Results in the Study of Fungal Pathogens. J Fungi (Basel) 2018; 4:jof4030108. [PMID: 30200639 PMCID: PMC6162639 DOI: 10.3390/jof4030108] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
In the past decade, Galleria mellonella (wax moth) larvae have become widely used as a non-mammalian infection model. However, the full potential of this infection model has yet to be realised, limited by the variable quality of larvae used and the lack of standardised procedures. Here, we review larvae suitable for research, protocols for dosing larvae, and methods for scoring illness in larvae infected with fungal pathogens. The development of standardised protocols for carrying out our experimental work will allow high throughput screens to be developed, changing the way in which we evaluate panels of mutants and strains. It will also enable the in vivo screening of potential antimicrobials at an earlier stage in the research and development cycle.
Collapse
|
27
|
Liang X, Luan S, Yin Z, He M, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, Lv C, Zhang W. Recent advances in the medical use of silver complex. Eur J Med Chem 2018; 157:62-80. [DOI: 10.1016/j.ejmech.2018.07.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022]
|
28
|
O'Beirne C, Althani HT, Dada O, Cassidy J, Kavanagh K, Müller-Bunz H, Ortin Y, Zhu X, Tacke M. Novel derivatives of the antibiotic NHC–Ag(I) drug candidate SBC3: Synthesis, biological evaluation and 109Ag NMR studies. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Barrett S, Delaney S, Kavanagh K, Montagner D. Evaluation of in vitro and in vivo antibacterial activity of novel Cu(II)-steroid complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Rochford G, Molphy Z, Browne N, Surlis C, Devereux M, McCann M, Kellett A, Howe O, Kavanagh K. In-vivo evaluation of the response of Galleria mellonella larvae to novel copper(II) phenanthroline-phenazine complexes. J Inorg Biochem 2018; 186:135-146. [PMID: 29906780 DOI: 10.1016/j.jinorgbio.2018.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 01/28/2023]
Abstract
Herein we report the in-vivo characterisation and metabolic changes in Galleria mellonella larvae to a series of bis-chelate copper(II) phenanthroline-phenazine cationic complexes of [Cu(phen)2]2+ (Cu-Phen), [Cu(DPQ)(Phen)]2+ (Cu-DPQ-Phen) and [Cu(DPPZ)(Phen)]2+ (Cu-DPPZ-Phen) (where phen = 1,10-phenanthroline, DPQ = dipyrido[3,2-ƒ:2',3'-h]quinoxaline and DPPZ = dipyrido[3,2-a:2',3'-c]phenazine). Our aim was to investigate the influence of the systematic extension of the ligated phenazine ligand in the G. mellonella model as a first step towards assessing the in-vivo tolerance and mode of action of the complex series with respect to the well-studied oxidative chemical nuclease, Cu-Phen. The Lethal Dose50 (LD50) values were established over dose ranges of 2 - 30 μg at 4-, 24-, 48- and 72 h by mortality assessment, with Cu-Phen eliciting the highest mortality at 4 h (Cu-Phen, 12.62 μg < Cu-DPQ-Phen, 21.53 μg < Cu-DPPZ-Phen, 26.07 μg). At other timepoints, a similar profile was observed as the phenazine π-backbone within the complex scaffold was extended. Assessment of both cellular response and related gene expression demonstrated that the complexes did not initiate an immune response. However, Label-Free Quantification proteomic data indicated the larval response was associated with upregulation of key proteins such as Glutathione S-transferase, purine synthesis and glycolysis/gluconeogenesis (e.g. fructose-bisphosphate aldolase and glyceraldehyde-3-phosphate). Both Cu-Phen and Cu-DPQ-Phen elicited a similar in-vivo response in contrast to Cu-DPPZ-Phen, which displayed a substantial increase in nitrogen detoxification proteins and proteins with calcium binding sites. Overall, the response of G. mellonella larvae exposure to the complex series is dominated by detoxification and metabolic proteome response mechanisms.
Collapse
Affiliation(s)
- Garret Rochford
- Centre for Biomimetics and Therapeutics and Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland.
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Niall Browne
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Carla Surlis
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Michael Devereux
- Centre for Biomimetics and Therapeutics and Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Malachy McCann
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Orla Howe
- Centre for Biomimetics and Therapeutics and Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
31
|
Parveen S, Govindarajan S, Puschmann H, Revathi R. Synthesis, crystal structure and biological studies of new hydrazone ligand, 2-(Methoxycarbonyl-hydrazono)-pentanedioic acid and its silver(I) complex. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Ether and coumarin–functionalized (benz)imidazolium salts and their silver(I)–N–heterocyclic carbene complexes: Synthesis, characterization, crystal structures and antimicrobial studies. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Sheehan G, Kavanagh K. Analysis of the early cellular and humoral responses of Galleria mellonella larvae to infection by Candida albicans. Virulence 2017; 9:163-172. [PMID: 28872999 PMCID: PMC5955201 DOI: 10.1080/21505594.2017.1370174] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Galleria mellonella larvae were administered an inoculum of Candida albicans and the response to infection over 24 hours was monitored. The yeast cell density in infected larvae declined initially but replication commenced six hours post-infection. The hemocyte density decreased from 5.2 × 106/ml to 2.5 × 106/ml at 2 hours but increased to 4.2 × 106 at 6 hours and decreased subsequently. Administration of β – glucan to larvae also caused a fluctuation in hemocyte density (5.1 ± 0.22 × 106/ml (0 hour) to 6.25 ± 0.25 × 106/ml (6 hour) (p < 0.05) to 5 ± 2.7 × 106 (24 hour)) and the population showed an increase in the density of small, granular cells at 24 hours (p < 0.05). Hemocytes from larvae inoculated with β – glucan for 6 or 24 hours showed faster killing of C. albicans cells (53 ± 4.1% (p < 0.01), 64 ± 3.7%, (p < 0.01), respectively) than hemocytes from control larvae (24 ± 11%) at 60 min. Proteomic analysis indicated increased abundance of immune related proteins cecropin-A (5 fold) and prophenoloxidase-activating proteinase-1 (5 fold) 6 hours post infection but by 24 hours there was elevated abundance of muscle (tropomyosin 2 (141 fold), calponin (66 fold), troponin I (62 fold)) and proteins indicative of cellular stress (glutathione-S-transferase-like protein (114 fold)), fungal dissemination (muscle protein 20-like protein (174 fold)) and tissue breakdown (mitochondrial cytochrome c (10 fold)). Proteins decreased in abundance at 24 hour included β – 1,3 – glucan recognition protein precursor (29 fold) and prophenoloxidase subunit 2 (25 fold).
Collapse
Affiliation(s)
- Gerard Sheehan
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| | - Kevin Kavanagh
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| |
Collapse
|
34
|
Recent Developments in the Medicinal Applications of Silver-NHC Complexes and Imidazolium Salts. Molecules 2017; 22:molecules22081263. [PMID: 28749425 PMCID: PMC6152056 DOI: 10.3390/molecules22081263] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 01/12/2023] Open
Abstract
Because of their great structural diversity and multitude of chemical properties, N-heterocyclic carbenes (NHCs) have been utilized in a variety of capacities. Most recently, NHCs have been utilized as carrier molecules for many transition metals in medicinal chemistry. Specifically, Ag(I)-NHCs have been investigated as potent antibacterial agents and chemotherapeutics and have shown great efficacy in both in vitro and in vivo studies. Ag(I)-NHC compounds have been shown to be effective against a wide range of both Gram-positive and Gram-negative bacterial strains. Many compounds have also shown great efficacy as antitumor agents demonstrating comparable or better antitumor activity than standard chemotherapeutics such as cisplatin and 5-fluorouracil. While these compounds have shown great promise, clinical use has remained an unattained goal. Current research has been focused upon synthesis of novel Ag(I)-NHC compounds and further investigations of their antibacterial and antitumor activity. This review will focus on recent advances of Ag(I)-NHCs in medicinal applications.
Collapse
|
35
|
Dada O, Curran D, O'Beirne C, Müller-Bunz H, Zhu X, Tacke M. Synthesis and cytotoxicity studies of novel NHC–Gold(I) pseudohalides and thiolates. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Vellé A, Maguire R, Kavanagh K, Sanz Miguel PJ, Montagner D. Steroid-AuI
-NHC Complexes: Synthesis and Antibacterial Activity. ChemMedChem 2017; 12:841-844. [DOI: 10.1002/cmdc.201700257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Alba Vellé
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
- Chemistry Department; Maynooth University; Maynooth Ireland
- Biology Department; Maynooth University; Maynooth Ireland
| | - Ronan Maguire
- Biology Department; Maynooth University; Maynooth Ireland
| | - Kevin Kavanagh
- Biology Department; Maynooth University; Maynooth Ireland
| | - Pablo J. Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | | |
Collapse
|
37
|
Maguire R, Kunc M, Hyrsl P, Kavanagh K. Analysis of the acute response of Galleria mellonella larvae to potassium nitrate. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:44-51. [PMID: 28232230 DOI: 10.1016/j.cbpc.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 01/04/2023]
Abstract
Potassium nitrate (E252) is widely used as a food preservative and has applications in the treatment of high blood pressure however high doses are carcinogenic. Larvae of Galleria mellonella were administered potassium nitrate to establish whether the acute effects in larvae correlated with those evident in mammals. Intra-haemocoel injection of potassium nitrate resulted in a significant increase in the density of circulating haemocytes and a small change in the relative proportions of haemocytes but haemocytes showed a reduced fungicidal ability. Potassium nitrate administration resulted in increased superoxide dismutase activity and in the abundance of a range of proteins associated with mitochondrial function (e.g. mitochondrial aldehyde dehydrogenase, putative mitochondrial Mn superoxide dismutase), metabolism (e.g. triosephosphate isomerase, glyceraldehyde 3 phosphate dehydrogenase) and nitrate metabolism (e.g. aliphatic nitrilase, glutathione S-transferase). A strong correlation exists between the toxicity of a range of food preservatives when tested in G. mellonella larvae and rats. In this work a correlation between the effect of potassium nitrate in larvae and mammals is shown and opens the way to the utilization of insects for studying the in vivo acute and chronic toxicity of xenobiotics.
Collapse
Affiliation(s)
- Ronan Maguire
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Martin Kunc
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Pavel Hyrsl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
38
|
Aher S, Das A, Muskawar P, Osborne J, Bhagat P. Silver (I) complexes of imidazolium based N-heterocyclic carbenes for antibacterial applications. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Achar G, V. C. R, K. U, Budagumpi S. Coumarin‐tethered (benz)imidazolium salts and their silver(I) N‐heterocyclic carbene complexes: Synthesis, characterization, crystal structure and antibacterial studies. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gautam Achar
- Centre for Nano and Material SciencesJain University Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562112 India
| | - Ramya V. C.
- Centre for Nano and Material SciencesJain University Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562112 India
| | - Upendranath K.
- Centre for Nano and Material SciencesJain University Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562112 India
| | - Srinivasa Budagumpi
- Centre for Nano and Material SciencesJain University Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562112 India
| |
Collapse
|
40
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|
41
|
Medici S, Peana M, Crisponi G, Nurchi VM, Lachowicz JI, Remelli M, Zoroddu MA. Silver coordination compounds: A new horizon in medicine. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Sangalli-Leite F, Scorzoni L, Alves de Paula E Silva AC, da Silva JDF, de Oliveira HC, de Lacorte Singulani J, Gullo FP, Moraes da Silva R, Regasini LO, Siqueira da Silva DH, da Silva Bolzani V, Fusco-Almeida AM, Soares Mendes-Giannini MJ. Synergistic effect of pedalitin and amphotericin B against Cryptococcus neoformans by in vitro and in vivo evaluation. Int J Antimicrob Agents 2016; 48:504-511. [PMID: 27742203 DOI: 10.1016/j.ijantimicag.2016.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/13/2016] [Accepted: 07/30/2016] [Indexed: 11/26/2022]
Abstract
Cryptococcosis is an opportunistic fungal infection responsible for high morbidity and mortality in immunocompromised patients. Combination of antifungal substances is a promising way to increase the percentage of successful treatment. Pedalitin (PED) is a natural substance obtained from Pterogyne nitens. The aim of this study was to verify the efficacy of PED alone and in combination with amphotericin B (AmB) in vitro and in vivo against Cryptococcus spp. In the in vitro assay, minimum inhibitory concentrations (MICs) of 0.125 mg/L for AmB and 3.9 mg/L for PED were found when the substances were tested alone, whilst in the combination treatment the active concentration of both decreased, with MICs of 0.03 mg/L for AmB and 1 mg/L for PED. In the survival assay, fungal burden study and histopathological assays it was possible to study the efficacy of the substances alone and in combination. The efficacy of combination therapy was considered better than monotherapy as evaluated in a Galleria mellonella model and a murine model. Thus, the combination of PED and AmB is an interesting alternative for anticryptococcal fungal treatment. Moreover, a correlation was observed between the invertebrate and murine models for this antifungal treatment combination.
Collapse
Affiliation(s)
- Fernanda Sangalli-Leite
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Ana Carolina Alves de Paula E Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Fernanda Patrícia Gullo
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Rosangela Moraes da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | | | | | | | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil.
| |
Collapse
|
43
|
Raf-kinase inhibitor GW5074 shows antibacterial activity against methicillin-resistant Staphylococcus aureus and potentiates the activity of gentamicin. Future Med Chem 2016; 8:1941-1952. [PMID: 27652456 DOI: 10.4155/fmc-2016-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Increasing antimicrobial resistance has compromised the effectiveness of many antibiotics, including those used to treat staphylococcal infections like methicillin-resistant Staphylococcus aureus. The development of combination therapies, where antimicrobial agents are used with compounds that inhibit resistance pathways is a promising strategy. Results/methodology: The Raf kinase inhibitor GW5074 exhibited selective in vitro activity against Gram-positive bacteria, including clinical isolates of S. aureus with a minimum inhibitory concentration (MIC) of 2-8 µg/ml. GW5074 was effective in vivo in the Galleria mellonella infection model. The compound showed synergy with gentamicin by lowering MIC by fourfold, compared with gentamicin MIC alone. CONCLUSION This work demonstrates the antimicrobial properties of GW5074 and supports further investigation of the kinase inhibitors as antibiotic adjuvants.
Collapse
|
44
|
Tsai CJY, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016; 7:214-29. [PMID: 26730990 PMCID: PMC4871635 DOI: 10.1080/21505594.2015.1135289] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galleria mellonella (greater wax moth or honeycomb moth) has been introduced as an alternative model to study microbial infections. G. mellonella larvae can be easily and inexpensively obtained in large numbers and are simple to use as they don't require special lab equipment. There are no ethical constraints and their short life cycle makes them ideal for large-scale studies. Although insects lack an adaptive immune response, their innate immune response shows remarkable similarities with the immune response in vertebrates. This review gives a current update of what is known about the immune system of G. mellonella and provides an extensive overview of how G. mellonella is used to study the virulence of Gram-positive and Gram-negative bacteria. In addition, the use of G. mellonella to evaluate the efficacy of antimicrobial agents and experimental phage therapy are also discussed. The review concludes with a critical assessment of the current limitatons of G. mellonella infection models.
Collapse
Affiliation(s)
- Catherine Jia-Yun Tsai
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Jacelyn Mei San Loh
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Thomas Proft
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| |
Collapse
|
45
|
Tacke M. Benzyl-substituted carbene–metal complexes: Potential for novel antibiotics and anticancer drugs? J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|