1
|
Wang S, Fang R, Wang H, Li X, Xing J, Li Z, Song N. The role of transcriptional regulators in metal ion homeostasis of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1360880. [PMID: 38529472 PMCID: PMC10961391 DOI: 10.3389/fcimb.2024.1360880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.
Collapse
Affiliation(s)
- Shuxian Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- Drug Innovation Research Center, SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Maunders EA, Giles MW, Ganio K, Cunningham BA, Bennett-Wood V, Cole GB, Ng D, Lai CC, Neville SL, Moraes TF, McDevitt CA, Tan A. Zinc acquisition and its contribution to Klebsiella pneumoniae virulence. Front Cell Infect Microbiol 2024; 13:1322973. [PMID: 38249299 PMCID: PMC10797113 DOI: 10.3389/fcimb.2023.1322973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Klebsiella pneumoniae is a World Health Organization priority pathogen and a significant clinical concern for infections of the respiratory and urinary tracts due to widespread and increasing resistance to antimicrobials. In the absence of a vaccine, there is an urgent need to identify novel targets for therapeutic development. Bacterial pathogens, including K. pneumoniae, require the d-block metal ion zinc as an essential micronutrient, which serves as a cofactor for ~6% of the proteome. During infection, zinc acquisition necessitates the use of high affinity uptake systems to overcome niche-specific zinc limitation and host-mediated nutritional immunity. Here, we report the identification of ZnuCBA and ZniCBA, two ATP-binding cassette permeases that are highly conserved in Klebsiella species and contribute to K. pneumoniae AJ218 zinc homeostasis, and the high-resolution structure of the zinc-recruiting solute-binding protein ZniA. The Znu and Zni permeases appear functionally redundant with abrogation of both systems required to reduce K. pneumoniae zinc accumulation. Disruption of both systems also exerted pleiotropic effects on the homeostasis of other d-block elements. Zinc limitation perturbed K. pneumoniae cell morphology and compromised resistance to stressors, such as salt and oxidative stress. The mutant strain lacking both systems showed significantly impaired virulence in acute lung infection models, highlighting the necessity of zinc acquisition in the virulence and pathogenicity of K. pneumoniae.
Collapse
Affiliation(s)
- Eve A. Maunders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew W. Giles
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Bliss A. Cunningham
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Gregory B. Cole
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Christine C. Lai
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Chen JW, Shih CJ, Wu LW, Wu YC, Chiang WF, Chen YL, Wu JH. Phocaeicola oris sp. nov., an anaerobic bacterium isolated from the saliva of a patient with oral squamous cell carcinoma. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749694 DOI: 10.1099/ijsem.0.005703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A Gram-stain-negative or -positive, strictly anaerobic, non-spore-forming and pleomorphic bacterium (designated 14-104T) was isolated from the saliva sample of a patient with oral squamous cell carcinoma. It was an acid-tolerant neutralophilic mesophile, growing at between 20 and 40 °C (with optimum growth at 30 °C) and pH between pH 3.0 and 7.0 (with optimum growth at pH 6.0-7.0). It contained anteiso-C15 : 0 and C15 : 0 as the major fatty acids. The genome size of strain 14-104T was 2.98 Mbp, and the G+C content was 39.6 mol%. It shared <87 % 16S rRNA sequence similarity, <71 % orthologous average nucleotide identity, <76 % average amino acid identity and <68 %% of conserved proteins with its closest relative, Phocaeicola abscessus CCUG 55929T. Reconstruction of phylogenetic and phylogenomic trees revealed that strain 14-104T and P. abscessus CCUG 55929T were clustered as a distinct clade without any other terminal node. The phylogenetic and phylogenomic analyses along with physiological and chemotaxonomic data indicated that strain 14-104T represents a novel species in the genus Phocaeicola, for which the name Phocaeicola oris sp. nov. is proposed. The type strain is 14-104T (=BCRC 81305T= NBRC 115041T).
Collapse
Affiliation(s)
- Jiung-Wen Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, ROC.,Present address: Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd, AL 35294, Birmingham, USA
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Yen-Chi Wu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Wei-Fan Chiang
- Department of Oral & Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Taiwan, ROC
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
4
|
Peng W, Yang X, Wang Y, Wang N, Li X, Chen H, Yuan F, Bei W. Mn uptake system affects the virulence of Streptococcus suis by mediating oxidative stress. Vet Microbiol 2022; 272:109518. [PMID: 35926476 DOI: 10.1016/j.vetmic.2022.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Manganese (Mn) is an important micronutrient that is not readily available to pathogens during infection. Hosts resist the invasion of pathogens through nutritional immunity and oxidative stress. To overcome this nutrient restriction, bacteria utilize high affinity transporters to compete with nutrient-binding proteins (e.g., calprotectin). Little is known about the role of Mn in the pathophysiology of Streptococcus suis. Here, we revealed that the tolerance of S. suis to calprotectin and oxidative stress was associated with Mn. Inactivation of Mn uptake system, TroABCD, in S. suis decreased the tolerance to calprotectin and oxidative stress. Furthermore, Mn uptake system mutant strains reduced capacity for bacterial cellular survival, and attenuated virulence in a mouse model. To explore the regulatory mechanism, we determined the transcriptional start site of troABCD using capping rapid amplification of cDNA ends. Furthermore, we revealed that TroR was a transcriptional regulatory repressor of troABCD. In the absence of troR, transcription levels of troA, troB, troC, and troD were not inhibited by low or high Mn levels, and intracellular Mn contents of mutant strains were higher than that of the wild-type strain. Finally, we used electrophoretic mobility shift assay to demonstrate that TroR bound the promoter region of troABCD. Collectively, this study revealed that Mn acquisition was essential for pathogenesis of S. suis and Mn uptake systems should be targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xia Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yanna Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ningning Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyue Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China; Guangxi Yangxiang Co., Ltd, China.
| |
Collapse
|
5
|
Akbari MS, Doran KS, Burcham LR. Metal Homeostasis in Pathogenic Streptococci. Microorganisms 2022; 10:1501. [PMID: 35893559 PMCID: PMC9331361 DOI: 10.3390/microorganisms10081501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are opportunistic pathogens that are capable of causing invasive disease in a wide range of populations. Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to survive across dynamic host environments, Streptococci have evolved complex systems to withstand metal stress and maintain metal homeostasis, especially during colonization and infection. There are many different types of transport systems that are used by bacteria to import or export metals that can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc, manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal homeostasis in pathogenic Streptococci, and their role in virulence.
Collapse
Affiliation(s)
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | |
Collapse
|
6
|
Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. mBio 2022; 13:e0098522. [PMID: 35658538 PMCID: PMC9239048 DOI: 10.1128/mbio.00985-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group B Streptococcus (GBS) is associated with severe infections in utero and in newborn populations, including pneumonia, sepsis, and meningitis. GBS vaginal colonization of the pregnant mother is an important prerequisite for transmission to the newborn and the development of neonatal invasive disease; however, our understanding of the factors required for GBS persistence and ascension in the female reproductive tract (FRT) remains limited. Here, we utilized a GBS mariner transposon (Krmit) mutant library previously developed by our group and identified underrepresented mutations in 535 genes that contribute to survival within the vaginal lumen and colonization of vaginal, cervical, and uterine tissues. From these mutants, we identified 47 genes that were underrepresented in all samples collected, including mtsA, a component of the mtsABC locus, encoding a putative manganese (Mn2+)-dependent ATP-binding cassette transporter. RNA sequencing analysis of GBS recovered from the vaginal tract also revealed a robust increase of mtsA expression during vaginal colonization. We engineered an ΔmtsA mutant strain and found by using inductively coupled plasma mass spectrometry that it exhibited decreased concentrations of intracellular Mn2+, confirming its involvement in Mn2+ acquisition. The ΔmtsA mutant was significantly more susceptible to the metal chelator calprotectin and to oxidative stressors, including both H2O2 and paraquat, than wild-type (WT) GBS. We further observed that the ΔmtsA mutant strain exhibited a significant fitness defect in comparison to WT GBS in vivo by using a murine model of vaginal colonization. Taken together, these data suggest that Mn2+ homeostasis is an important process contributing to GBS survival in the FRT.
Collapse
|
7
|
Liu Y, Yoo BB, Hwang CA, Martinez MR, Datta AR, Fratamico PM. Involvement of a putative ATP-Binding Cassette (ABC) Involved in manganese transport in virulence of Listeria monocytogenes. PLoS One 2022; 17:e0268924. [PMID: 35617277 PMCID: PMC9135185 DOI: 10.1371/journal.pone.0268924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen and the causative agent of listeriosis, a disease associated with high fatality (20–30%) and hospitalization rates (>95%). ATP-Binding Cassette (ABC) transporters have been demonstrated to be involved in the general stress response. In previous studies, in-frame deletion mutants of the ABC transporter genes, LMOf2365_1875 and LMOf2365_1877, were constructed and analyzed; however, additional work is needed to investigate the virulence potential of these deletion mutants. In this study, two in vitro methods and one in vivo model were used to investigate the virulence potential of in-frame deletion mutants of ABC transporter genes. First, the invasion efficiency in host cells was measured using the HT-29 human cell line. Second, cell-to-cell spread activity was measured using a plaque forming assay. Lastly, virulence potential of the mutants was tested in the Galleria mellonella wax moth model. Our results demonstrated that the deletion mutant, ⊿LMOf2365_1875, displayed decreased invasion and cell-to-cell spread efficiency in comparison to the wild-type, LMOf2365, indicating that LMOf2365_1875 may be required for virulence. Furthermore, the reduced virulence of these mutants was confirmed using the Galleria mellonella wax moth model. In addition, the expression levels of 15 virulence and stress-related genes were analyzed by RT-PCR assays using stationary phase cells. Our results showed that virulence-related gene expression levels from the deletion mutants were elevated (15/15 genes from ⊿LMOf2365_1877 and 7/15 genes from ⊿LMOf2365_1875) compared to the wild type LMOf2365, suggesting that ABC transporters may negatively regulate virulence gene expression under specific conditions. The expression level of the stress-related gene, clpE, also was increased in both deletion mutants, indicating the involvement of ABC transporters in the stress response. Taken together, our findings suggest that ABC transporters may be used as potential targets to develop new therapeutic strategies to control L. monocytogenes.
Collapse
Affiliation(s)
- Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
- * E-mail:
| | - Brian ByongKwon Yoo
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Cheng-An Hwang
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
| | - Mira Rakic Martinez
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Atin R. Datta
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
| |
Collapse
|
8
|
Rosen T, Nolan EM. S100A12 promotes Mn(II) binding to pneumococcal PsaA and staphylococcal MntC by Zn(II) sequestration. J Inorg Biochem 2022; 233:111862. [PMID: 35660119 PMCID: PMC9254665 DOI: 10.1016/j.jinorgbio.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Human S100A12 (calgranulin C, EN-RAGE) is a Zn(II)-sequestering host-defense protein that contributes to the metal-withholding innate immune response against microbial pathogens. S100A12 coordinates Zn(II) ions at two His3Asp sites with high affinity. A similar His3Asp site found in calprotectin (S100A8/S100A9, calgranulin A/B), a closely related human S100 protein, can sequester divalent metal ions from the solute-binding proteins (SBPs) pneumococcal PsaA (pneumococcal surface protein A) and staphylococcal MntC (manganese transport protein C). Both SBPs are components of Mn(II) transporters and capture extracellular Mn(II) ions for subsequent delivery into the bacterial cytosol. Nevertheless, PsaA and MntC exhibit a thermodynamic preference for Zn(II) over Mn(II), and Zn(II) binding can interfere with Mn(II) acquisition. In this work, we have used a biotinylated variant of S100A12 to show that S100A12 can sequester Zn(II) ions from PsaA and MntC. Moreover, electron paramagnetic resonance (EPR) spectroscopy indicates that by sequestering Zn(II) from Zn(II)-bound PsaA and MntC, S100A12 promotes Mn(II) binding to the SBPs. These results inform the function of S100A12 in Zn(II) sequestration, and further suggest that Zn(II)-sequestering S100 proteins may inadvertently protect bacterial pathogens during infection.
Collapse
|
9
|
Rosen T, Hadley RC, Bozzi AT, Ocampo D, Shearer J, Nolan EM. Zinc sequestration by human calprotectin facilitates manganese binding to the bacterial solute-binding proteins PsaA and MntC. Metallomics 2022; 14:6516941. [PMID: 35090019 PMCID: PMC8908208 DOI: 10.1093/mtomcs/mfac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 01/30/2023]
Abstract
Zinc is an essential transition metal nutrient for bacterial survival and growth but may become toxic when present at elevated levels. The Gram-positive bacterial pathogen Streptococcus pneumoniae is sensitive to zinc poisoning, which results in growth inhibition and lower resistance to oxidative stress. Streptococcus pneumoniae has a relatively high manganese requirement, and zinc toxicity in this pathogen has been attributed to the coordination of Zn(II) at the Mn(II) site of the solute-binding protein (SBP) PsaA, which prevents Mn(II) uptake by the PsaABC transport system. In this work, we investigate the Zn(II)-binding properties of pneumococcal PsaA and staphylococcal MntC, a related SBP expressed by another Gram-positive bacterial pathogen, Staphylococcus aureus, which contributes to Mn(II) uptake. X-ray absorption spectroscopic studies demonstrate that both SBPs harbor Zn(II) sites best described as five-coordinate, and metal-binding studies in solution show that both SBPs bind Zn(II) reversibly with sub-nanomolar affinities. Moreover, both SBPs exhibit a strong thermodynamic preference for Zn(II) ions, which readily displace bound Mn(II) ions from these proteins. We also evaluate the Zn(II) competition between these SBPs and the human S100 protein calprotectin (CP, S100A8/S100A9 oligomer), an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP can sequester Zn(II) from PsaA and MntC, which facilitates Mn(II) binding to the SBPs. These results demonstrate that CP can inhibit Zn(II) poisoning of the SBPs and provide molecular insight into how S100 proteins may inadvertently benefit bacterial pathogens rather than the host.
Collapse
Affiliation(s)
- Tomer Rosen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Rose C Hadley
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Aaron T Bozzi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | - Elizabeth M Nolan
- Correspondence: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA. Tel: +1-617-452-2495; E-mail:
| |
Collapse
|
10
|
Puccio T, Kunka KS, An SS, Kitten T. Contribution of a ZIP-family protein to manganese uptake and infective endocarditis virulence in Streptococcus sanguinis. Mol Microbiol 2021; 117:353-374. [PMID: 34855265 PMCID: PMC8844249 DOI: 10.1111/mmi.14853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
Streptococcus sanguinis is an important cause of infective endocarditis. In strain SK36, the ABC‐family manganese transporter, SsaACB, is essential for virulence. We have now identified a ZIP‐family protein, TmpA, as a secondary manganese transporter. A tmpA mutant had no phenotype, but a ΔssaACB ΔtmpA mutant was more attenuated for serum growth and for virulence in a rabbit model than its ΔssaACB parent. The growth of both mutants was restored by supplemental manganese, but the ΔssaACB ΔtmpA mutant required twenty‐fold more and accumulated less. Although ZIP‐family proteins are known for zinc and iron transport, TmpA‐mediated transport of either metal was minimal. While ssaACB appears ubiquitous in St. sanguinis, tmpA was present in a majority of strains and a mntH gene encoding an NRAMP‐family transporter was identified in relatively few, including VMC66. As in SK36, deletion of ssaACB greatly diminished VMC66 endocarditis virulence and serum growth, and deletion of tmpA from this mutant diminished virulence further. Virulence was not significantly altered by deletion of mntH from either VMC66 or its ΔssaACB mutant. This and the accompanying paper together suggest that SsaACB is of primary importance for endocarditis virulence while secondary transporters TmpA and MntH contribute to growth under differing conditions.
Collapse
Affiliation(s)
- Tanya Puccio
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Karina S Kunka
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| |
Collapse
|
11
|
Analysis of the Manganese and MntR Regulon in Corynebacterium diphtheriae. J Bacteriol 2021; 203:e0027421. [PMID: 34370555 DOI: 10.1128/jb.00274-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae is the causative agent of a severe respiratory disease in humans. The bacterial systems required for infection are poorly understood, but the acquisition of metals such as manganese (Mn) is likely critical for host colonization. MntR is a Mn-dependent transcriptional regulator in C. diphtheriae that represses the expression of the mntABCD genes, which encode a putative ABC metal transporter. However, other targets of Mn and MntR regulation in C. diphtheriae have not been identified. In this study, we use comparisons between the gene expression profiles of wild-type C. diphtheriae strain 1737 grown without or with Mn supplementation and comparisons of gene expression between wild-type and an mntR deletion mutant to characterize the C. diphtheriae Mn and MntR regulon. MntR was observed to both repress and induce various target genes in a Mn-dependent manner. Genes induced by MntR include the Mn-superoxide dismutase, sodA, and the putative ABC transporter locus, iutABCD. DNA binding studies showed that MntR interacts with the promoter regions for several genes identified in the expression study, and a 17-bp consensus MntR DNA binding site was identified. We found that an mntR mutant displayed increased sensitivity to Mn and cadmium that could be alleviated by the additional deletion of the mntABCD transport locus, providing evidence that the MntABCD transporter functions as a Mn uptake system in C. diphtheriae. The findings in this study further our understanding of metal uptake systems and global metal regulatory networks in this important human pathogen. Importance Mechanisms for metal scavenging are critical to the survival and success of bacterial pathogens, including Corynebacterium diphtheriae. Metal import systems in pathogenic bacteria have been studied as possible vaccine components due to high conservation, critical functionality, and surface localization. In this study, we expand our understanding of the genes controlled by the global manganese regulator, MntR. We determined a role for the MntABCD transporter in manganese import using evidence from manganese and cadmium toxicity assays. Understanding the nutritional requirements of C. diphtheriae and the tools used to acquire essential metals will aid in the development of future vaccines.
Collapse
|
12
|
Bosma EF, Rau MH, van Gijtenbeek LA, Siedler S. Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiol Rev 2021; 45:6284802. [PMID: 34037759 PMCID: PMC8632737 DOI: 10.1093/femsre/fuab028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Manganese (Mn2+) is an essential trace element within organisms spanning the entire tree of life. In this review, we provide an overview of Mn2+ transport and the regulation of its homeostasis in bacteria, with a focus on its functions beyond being a cofactor for enzymes. Crucial differences in Mn2+ homeostasis exist between bacterial species that can be characterized to have an iron- or manganese-centric metabolism. Highly iron-centric species require minimal Mn2+ and mostly use it as a mechanism to cope with oxidative stress. As a consequence, tight regulation of Mn2+ uptake is required, while organisms that use both Fe2+ and Mn2+ need other layers of regulation for maintaining homeostasis. We will focus in detail on manganese-centric bacterial species, in particular lactobacilli, that require little to no Fe2+ and use Mn2+ for a wider variety of functions. These organisms can accumulate extraordinarily high amounts of Mn2+ intracellularly, enabling the nonenzymatic use of Mn2+ for decomposition of reactive oxygen species while simultaneously functioning as a mechanism of competitive exclusion. We further discuss how Mn2+ accumulation can provide both beneficial and pathogenic bacteria with advantages in thriving in their niches.
Collapse
Affiliation(s)
- Elleke F Bosma
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | - Martin H Rau
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | | | - Solvej Siedler
- Corresponding author: Boege Allé 10-12, 2970 Hoersholm, Denmark. Tel: +45 52 18 08 25; E-mail:
| |
Collapse
|
13
|
D'Mello A, Riegler AN, Martínez E, Beno SM, Ricketts TD, Foxman EF, Orihuela CJ, Tettelin H. An in vivo atlas of host-pathogen transcriptomes during Streptococcus pneumoniae colonization and disease. Proc Natl Acad Sci U S A 2020; 117:33507-33518. [PMID: 33318198 PMCID: PMC7777036 DOI: 10.1073/pnas.2010428117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae (Spn) colonizes the nasopharynx and can cause pneumonia. From the lungs it spreads to the bloodstream and causes organ damage. We characterized the in vivo Spn and mouse transcriptomes within the nasopharynx, lungs, blood, heart, and kidneys using three Spn strains. We identified Spn genes highly expressed at all anatomical sites and in an organ-specific manner; highly expressed genes were shown to have vital roles with knockout mutants. The in vivo bacterial transcriptome during colonization/disease was distinct from previously reported in vitro transcriptomes. Distinct Spn and host gene-expression profiles were observed during colonization and disease states, revealing specific genes/operons whereby Spn adapts to and influences host sites in vivo. We identified and experimentally verified host-defense pathways induced by Spn during invasive disease, including proinflammatory responses and the interferon response. These results shed light on the pathogenesis of Spn and identify therapeutic targets.
Collapse
Affiliation(s)
- Adonis D'Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashleigh N Riegler
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eriel Martínez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sarah M Beno
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tiffany D Ricketts
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ellen F Foxman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
14
|
Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood DLA, Gellatly SL, Shukla SD, Wood LG, Yang IA, Wark PA, Hugenholtz P, Hansbro PM. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun 2020; 11:5886. [PMID: 33208745 PMCID: PMC7676259 DOI: 10.1038/s41467-020-19701-0] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third commonest cause of death globally, and manifests as a progressive inflammatory lung disease with no curative treatment. The lung microbiome contributes to COPD progression, but the function of the gut microbiome remains unclear. Here we examine the faecal microbiome and metabolome of COPD patients and healthy controls, finding 146 bacterial species differing between the two groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and multiple members of the family Lachnospiraceae, also correlate with reduced lung function. Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic and 20% amino acid related metabolites. Furthermore, we describe a disease-associated network connecting Streptococcus parasanguinis_B with COPD-associated metabolites, including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our results suggest that the faecal microbiome and metabolome of COPD patients are distinct from those of healthy individuals, and may thus aid in the search for biomarkers for COPD. Chronic obstructive pulmonary disease (COPD) is a progressing disease, with lung but not gut microbiota implicated in its etiology. Here the authors compare the stool from patients with COPD and healthy controls to find specific gut bacteria and metabolites associated with active disease, thereby hinting at a potential role for the gut microbiome in COPD.
Collapse
Affiliation(s)
- Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Saima Firdous Rehman
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Annalicia Vaughan
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian A Yang
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia. .,Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Identification of Zinc-Dependent Mechanisms Used by Group B Streptococcus To Overcome Calprotectin-Mediated Stress. mBio 2020; 11:mBio.02302-20. [PMID: 33173000 PMCID: PMC7667036 DOI: 10.1128/mbio.02302-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract but is a common causative agent of meningitis. GBS meningitis is characterized by extensive infiltration of neutrophils carrying high concentrations of calprotectin, a metal chelator. To persist within inflammatory sites and cause invasive disease, GBS must circumvent host starvation attempts. Here, we identified global requirements for GBS survival during calprotectin challenge, including known and putative systems involved in metal ion transport. We characterized the role of zinc import in tolerating calprotectin stress in vitro and in a mouse model of infection. We observed that a global zinc uptake mutant was less virulent than the parental GBS strain and found calprotectin knockout mice to be equally susceptible to infection by wild-type (WT) and mutant strains. These findings suggest that calprotectin production at the site of infection results in a zinc-limited environment and reveals the importance of GBS metal homeostasis to invasive disease. Nutritional immunity is an elegant host mechanism used to starve invading pathogens of necessary nutrient metals. Calprotectin, a metal-binding protein, is produced abundantly by neutrophils and is found in high concentrations within inflammatory sites during infection. Group B Streptococcus (GBS) colonizes the gastrointestinal and female reproductive tracts and is commonly associated with severe invasive infections in newborns such as pneumonia, sepsis, and meningitis. Although GBS infections induce robust neutrophil recruitment and inflammation, the dynamics of GBS and calprotectin interactions remain unknown. Here, we demonstrate that disease and colonizing isolate strains exhibit susceptibility to metal starvation by calprotectin. We constructed a mariner transposon (Krmit) mutant library in GBS and identified 258 genes that contribute to surviving calprotectin stress. Nearly 20% of all underrepresented mutants following treatment with calprotectin are predicted metal transporters, including known zinc systems. As calprotectin binds zinc with picomolar affinity, we investigated the contribution of GBS zinc uptake to overcoming calprotectin-imposed starvation. Quantitative reverse transcriptase PCR (qRT-PCR) revealed a significant upregulation of genes encoding zinc-binding proteins, adcA, adcAII, and lmb, following calprotectin exposure, while growth in calprotectin revealed a significant defect for a global zinc acquisition mutant (ΔadcAΔadcAIIΔlmb) compared to growth of the GBS wild-type (WT) strain. Furthermore, mice challenged with the ΔadcAΔadcAIIΔlmb mutant exhibited decreased mortality and significantly reduced bacterial burden in the brain compared to mice infected with WT GBS; this difference was abrogated in calprotectin knockout mice. Collectively, these data suggest that GBS zinc transport machinery is important for combatting zinc chelation by calprotectin and establishing invasive disease.
Collapse
|
16
|
Puccio T, Kunka KS, Zhu B, Xu P, Kitten T. Manganese Depletion Leads to Multisystem Changes in the Transcriptome of the Opportunistic Pathogen Streptococcus sanguinis. Front Microbiol 2020; 11:592615. [PMID: 33250881 PMCID: PMC7674665 DOI: 10.3389/fmicb.2020.592615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus sanguinis is a primary colonizer of teeth and is typically considered beneficial due to its antagonistic relationship with the cariogenic pathogen Streptococcus mutans. However, S. sanguinis can also act as an opportunistic pathogen should it enter the bloodstream and colonize a damaged heart valve, leading to infective endocarditis. Studies have implicated manganese acquisition as an important virulence determinant in streptococcal endocarditis. A knockout mutant lacking the primary manganese import system in S. sanguinis, SsaACB, is severely attenuated for virulence in an in vivo rabbit model. Manganese is a known cofactor for several important enzymes in S. sanguinis, including superoxide dismutase, SodA, and the aerobic ribonucleotide reductase, NrdEF. To determine the effect of manganese depletion on S. sanguinis, we performed transcriptomic analysis on a ΔssaACB mutant grown in aerobic fermentor conditions after the addition of the metal chelator EDTA. Despite the broad specificity of EDTA, analysis of cellular metal content revealed a decrease in manganese, but not in other metals, that coincided with a drop in growth rate. Subsequent supplementation with manganese, but not iron, zinc, or magnesium, restored growth in the fermentor post-EDTA. Reduced activity of Mn-dependent SodA and NrdEF likely contributed to the decreased growth rate post-EDTA, but did not appear entirely responsible. With the exception of the Dps-like peroxide resistance gene, dpr, manganese depletion did not induce stress response systems. By comparing the transcriptome of ΔssaACB cells pre- and post-EDTA, we determined that manganese deprivation led to altered expression of diverse systems. Manganese depletion also led to an apparent induction of carbon catabolite repression in a glucose-independent manner. The combined results suggest that manganese limitation produces effects in S. sanguinis that are diverse and complex, with no single protein or system appearing entirely responsible for the observed growth rate decrease. This study provides further evidence for the importance of this trace element in streptococcal biology. Future studies will focus on determining mechanisms for regulation, as the multitude of changes observed in this study indicate that multiple regulators may respond to manganese levels.
Collapse
Affiliation(s)
| | | | | | | | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
17
|
Genome-Wide Assessment of Streptococcus agalactiae Genes Required for Survival in Human Whole Blood and Plasma. Infect Immun 2020; 88:IAI.00357-20. [PMID: 32747604 DOI: 10.1128/iai.00357-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus, or GBS) is a common cause of bacteremia and sepsis in newborns, pregnant women, and immunocompromised patients. The molecular mechanisms used by GBS to survive and proliferate in blood are not well understood. Here, using a highly virulent GBS strain and transposon-directed insertion site sequencing (TraDIS), we performed genome-wide screens to discover novel GBS genes required for bacterial survival in human whole blood and plasma. The screen identified 85 and 41 genes that are required for GBS growth in whole blood and plasma, respectively. A common set of 29 genes was required in both whole blood and plasma. Targeted gene deletion confirmed that (i) genes encoding methionine transporter (metP) and manganese transporter (mtsA) are crucial for GBS survival in whole blood and plasma, (ii) gene W903_1820, encoding a small multidrug export family protein, contributes significantly to GBS survival in whole blood, (iii) the shikimate pathway gene aroA is essential for GBS growth in whole blood and plasma, and (iv) deletion of srr1, encoding a fibrinogen-binding adhesin, increases GBS survival in whole blood. Our findings provide new insight into the GBS-host interactions in human blood.
Collapse
|
18
|
Murgas CJ, Green SP, Forney AK, Korba RM, An SS, Kitten T, Lucas HR. Intracellular Metal Speciation in Streptococcus sanguinis Establishes SsaACB as Critical for Redox Maintenance. ACS Infect Dis 2020; 6:1906-1921. [PMID: 32329608 DOI: 10.1021/acsinfecdis.0c00132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Streptococcus sanguinis is an oral commensal bacterium, but it can colonize pre-existing heart valve vegetations if introduced into the bloodstream, leading to infective endocarditis. Loss of Mn- or Fe-cofactored virulence determinants are thought to result in weakening of this bacterium. Indeed, intracellular Mn accumulation mediated by the lipoprotein SsaB, a component of the SsaACB transporter complex, has been shown to promote virulence for endocarditis and O2 tolerance. To delineate intracellular metal-ion abundance and redox speciation within S. sanguinis, we developed a protocol exploiting two spectroscopic techniques, Inductively coupled plasma-optical emission spectrometry (ICP-OES) and electron paramagnetic resonance (EPR) spectroscopy, to respectively quantify total intracellular metal concentrations and directly measure redox speciation of Fe and Mn within intact whole-cell samples. Addition of the cell-permeable siderophore deferoxamine shifts the oxidation states of accessible Fe and Mn from reduced-to-oxidized, as verified by magnetic moment calculations, aiding in the characterization of intracellular metal pools and metal sequestration levels for Mn2+ and Fe. We have applied this methodology to S. sanguinis and an SsaACB knockout strain (ΔssaACB), indicating that SsaACB mediates both Mn and Fe uptake, directly influencing the metal-ion pools available for biological inorganic pathways. Mn supplementation of ΔssaACB returns total intracellular Mn to wild-type levels, but it does not restore wild-type redox speciation or distribution of metal cofactor availability for either Mn or Fe. Our results highlight the biochemical basis for S. sanguinis oxidative resistance, revealing a dynamic role for SsaACB in controlling redox homeostasis by managing the intracellular Fe/Mn composition and distribution.
Collapse
Affiliation(s)
- Cody J. Murgas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Shannon P. Green
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Ashley K. Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Rachel M. Korba
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Heather R. Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
19
|
Rosen T, Nolan EM. Metal Sequestration and Antimicrobial Activity of Human Calprotectin Are pH-Dependent. Biochemistry 2020; 59:2468-2478. [PMID: 32491853 DOI: 10.1021/acs.biochem.0c00359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer) is an abundant innate immune protein that sequesters transition metal ions in the extracellular space to limit nutrient availability and the growth of invading microbial pathogens. Our current understanding of the metal-sequestering ability of CP is based on biochemical and functional studies performed at neutral or near-neutral pH. Nevertheless, CP can be present throughout the human body and is expressed at infection and inflammation sites that tend to be acidic. Here, we evaluate the metal binding and antimicrobial properties of CP in the pH range of 5.0-7.0. We show that Ca(II)-induced tetramerization, an important process for the extracellular functions of CP, is perturbed by acidic conditions. Moreover, a low pH impairs the antimicrobial activity of CP against some bacterial pathogens, including Staphylococcus aureus and Salmonella enterica serovar Typhimurium. At a mildly acidic pH, CP loses the ability to deplete Mn from microbial growth medium, indicating that Mn(II) sequestration is attenuated under acidic conditions. Evaluation of the Mn(II) binding properties of CP at pH 5.0-7.0 indicates that mildly acidic conditions decrease the Mn(II) binding affinity of the His6 site. Lastly, CP is less effective at preventing capture of Mn(II) by the bacterial solute-binding proteins MntC and PsaA at low pH. These results indicate that acidic conditions compromise the ability of CP to sequester Mn(II) and starve microbial pathogens of this nutrient. This work highlights the importance of considering the local pH of biological sites when describing the interplay between CP and microbes in host-pathogen interactions.
Collapse
Affiliation(s)
- Tomer Rosen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
O'Brien J, Pastora A, Stoner A, Spatafora G. The S. mutans mntE gene encodes a manganese efflux transporter. Mol Oral Microbiol 2020; 35:129-140. [PMID: 32129937 DOI: 10.1111/omi.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans is a colonizer of the human dentition, and under conditions of dysbiosis is the primary causative agent of dental caries. The pathogenic potential of S. mutans depends, in part, on its ability to regulate the transport of metal ions across the plasma membrane to maintain intracellular metal ion homeostasis. Research in our laboratory has focused on the Mn2+ -specific SloC lipoprotein importer and its regulator encoded by the S. mutans sloR gene. Herein, we used a bioinformatics approach to identify a gene on the S. mutans UA159 chromosome, SMU_1176, as a metal ion efflux transporter that contributes to S. mutans manganese ion homeostasis. Metal ion sensitivity assays performed with the wild-type S. mutans UA159 strain and an isogenic SMU_1176 insertion-deletion mutant, called GMS3000, revealed significantly heightened sensitivity of GMS3000 to MnSO4 challenge. 54 Mn uptake experiments support the accumulation of 54 Mn in GMS3000 cell pellets when compared to 54 Mn concentrations in UA159 or in a complemented strain of GMS3000, called GMS3001. Inductively coupled plasma mass spectrometry (ICP-MS) studies were performed in parallel to quantify intracellular manganese concentrations in these strains, the results of which corroborate the 54 Mn uptake studies, and support the SMU_1176 gene product as a Mn2+ efflux protein. Expression profiling experiments revealed de-repression of SMU_1176 gene transcription in the SloR-deficient GMS584 strain of S. mutans, especially under high manganese conditions. In conclusion, the S. mutans SMU_1176 gene, which we renamed mntE, is a manganese efflux transporter that contributes to essential metal ion homeostasis as part of the SloR regulon.
Collapse
Affiliation(s)
- Joseph O'Brien
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, VT, USA
| | - Alexander Pastora
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, VT, USA
| | - Andrew Stoner
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, VT, USA
| | - Grace Spatafora
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, VT, USA
| |
Collapse
|
21
|
Roles of TroA and TroR in Metalloregulated Growth and Gene Expression in Treponema denticola. J Bacteriol 2020; 202:JB.00770-19. [PMID: 31932313 DOI: 10.1128/jb.00770-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The availability of divalent metal cations required as cofactors for microbial metabolism is severely limited in the host environment. Bacteria have evolved highly regulated uptake systems to maintain essential metal homeostasis to meet cellular demands while preventing toxicity. The Tro operon (troABCDR), present in all sequenced Treponema spp., is a member of a highly conserved family of ATP-binding cassette transporters involved in metal cation uptake whose expression is controlled by TroR, a DtxR-like cation-responsive regulatory protein. Transcription of troA responds to divalent manganese and iron (T. denticola) or manganese and zinc (T. pallidum), and metal-dependent TroR binding to the troA promoter represses troA transcription. We report here the construction and complementation of defined T. denticola ΔtroR and ΔtroA strains to characterize (i) the role of TroA in metal-dependent T. denticola growth and (ii) the role of TroR in T. denticola gene expression. We show that TroA expression is required for T. denticola growth under iron- and manganese-limited conditions. Furthermore, TroR is required for the transcriptional regulation of troA in response to iron or manganese, and deletion of troR results in significant differential expression of more than 800 T. denticola genes in addition to troA These results suggest that (i) TroA-mediated cation uptake is important in metal homeostasis in vitro and may be important for Treponema survival in the host environment and (ii) the absence of TroR results in significant dysregulation of nearly one-third of the T. denticola genome. These effects may be direct (as with troA) or indirect due to dysregulation of metal homeostasis.IMPORTANCE Treponema denticola is one of numerous host-associated spirochetes, a group including commensals, pathobionts, and at least one frank pathogen. While most T. denticola research concerns its role in periodontitis, its relative tractability for growth and genetic manipulation make it a useful model for studying Treponema physiology, metabolism, and host-microbe interactions. Metal micronutrient acquisition and homeostasis are highly regulated both in microbial cells and by host innate defense mechanisms that severely limit metal cation bioavailability. Here, we characterized the T. denticola troABCDR operon, the role of TroA-mediated iron and manganese uptake in growth, and the effects of TroR on global gene expression. This study contributes to our understanding of the mechanisms involved in cellular metal homeostasis required for survival in the host environment.
Collapse
|
22
|
Bacillus subtilis TerC Family Proteins Help Prevent Manganese Intoxication. J Bacteriol 2020; 202:JB.00624-19. [PMID: 31685536 DOI: 10.1128/jb.00624-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element and is required for the virulence of many pathogens. In Bacillus subtilis, Mn(II) homeostasis is regulated by MntR, a Mn(II)-responsive, DNA-binding protein. MntR serves as both a repressor of Mn(II) uptake transporters and as a transcriptional activator for expression of two cation diffusion facilitator Mn(II) efflux pumps, MneP and MneS. Mutants lacking either mntR or both mneP and mneS are extremely sensitive to Mn(II) intoxication. Using transposon mutagenesis to select suppressors of Mn(II) sensitivity, we identified YceF, a TerC family membrane protein, as capable of providing Mn(II) resistance. Another TerC paralog, YkoY, is regulated by a Mn(II)-sensing riboswitch and is partially redundant in function with YceF. YkoY is regulated in parallel with an unknown function protein YybP, also controlled by a Mn(II)-sensing riboswitch. Strains lacking between one and five of these known or putative Mn(II) tolerance proteins (MneP, MneS, YceF, YkoY, and YybP) were tested for sensitivity to Mn(II) in growth assays and for accumulation of Mn(II) using inductively coupled plasma mass spectrometry. Loss of YceF and, to a lesser extent, YkoY, sensitizes cells lacking the MneP and MneS efflux transporters to Mn(II) intoxication. This sensitivity correlates with elevated intracellular Mn(II), consistent with the suggestion that TerC proteins function in Mn(II) efflux.IMPORTANCE Manganese homeostasis is primarily regulated at the level of transport. Bacillus subtilis MntR serves as a Mn(II)-activated repressor of importer genes (mntH and mntABC) and an activator of efflux genes (mneP and mneS). Elevated intracellular Mn(II) also binds to Mn-sensing riboswitches to activate transcription of yybP and ykoY, which encodes a TerC family member. Here, we demonstrate that two TerC family proteins, YceF and YkoY, help prevent Mn(II) intoxication. TerC family proteins are widespread in bacteria and may influence host-pathogen interactions, but their effects on Mn(II) homeostasis are unclear. Our results suggest that TerC proteins work by Mn(II) export under Mn(II) overload conditions to help alleviate toxicity.
Collapse
|
23
|
Structure and Metal Binding Properties of Chlamydia trachomatis YtgA. J Bacteriol 2019; 202:JB.00580-19. [PMID: 31611288 DOI: 10.1128/jb.00580-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is a globally significant cause of sexually transmitted bacterial infections and the leading etiological agent of preventable blindness. The first-row transition metal iron (Fe) plays critical roles in chlamydial cell biology, and acquisition of this nutrient is essential for the survival and virulence of the pathogen. Nevertheless, how C. trachomatis acquires Fe from host cells is not well understood, since it lacks genes encoding known siderophore biosynthetic pathways, receptors for host Fe storage proteins, and the Fe acquisition machinery common to many bacteria. Recent studies have suggested that C. trachomatis directly acquires host Fe via the ATP-binding cassette permease YtgABCD. Here, we characterized YtgA, the periplasmic solute binding protein component of the transport pathway, which has been implicated in scavenging Fe(III) ions. The structure of Fe(III)-bound YtgA was determined at 2.0-Å resolution with the bound ion coordinated via a novel geometry (3 Ns, 2 Os [3N2O]). This unusual coordination suggested a highly plastic metal binding site in YtgA capable of interacting with other cations. Biochemical analyses showed that the metal binding site of YtgA was not restricted to interaction with only Fe(III) ions but could bind all transition metal ions examined. However, only Mn(II), Fe(II), and Ni(II) ions bound reversibly to YtgA, with Fe being the most abundant cellular transition metal in C. trachomatis Collectively, these findings show that YtgA is the metal-recruiting component of the YtgABCD permease and is most likely involved in the acquisition of Fe(II) and Mn(II) from host cells.IMPORTANCE Chlamydia trachomatis is the most common bacterial sexually transmitted infection in developed countries, with an estimated global prevalence of 4.2% in the 15- to 49-year age group. Although infection is asymptomatic in more than 80% of infected women, about 10% of cases result in serious disease. Infection by C. trachomatis is dependent on the ability to acquire essential nutrients, such as the transition metal iron, from host cells. In this study, we show that iron is the most abundant transition metal in C. trachomatis and report the structural and biochemical properties of the iron-recruiting protein YtgA. Knowledge of the high-resolution structure of YtgA will provide a platform for future structure-based antimicrobial design approaches.
Collapse
|
24
|
Eijkelkamp BA, Morey JR, Neville SL, Tan A, Pederick VG, Cole N, Singh PP, Ong CLY, Gonzalez de Vega R, Clases D, Cunningham BA, Hughes CE, Comerford I, Brazel EB, Whittall JJ, Plumptre CD, McColl SR, Paton JC, McEwan AG, Doble PA, McDevitt CA. Dietary zinc and the control of Streptococcus pneumoniae infection. PLoS Pathog 2019; 15:e1007957. [PMID: 31437249 PMCID: PMC6705770 DOI: 10.1371/journal.ppat.1007957] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Human zinc deficiency increases susceptibility to bacterial infection. Although zinc supplementation therapies can reduce the impact of disease, the molecular basis for protection remains unclear. Streptococcus pneumoniae is a major cause of bacterial pneumonia, which is prevalent in regions of zinc deficiency. We report that dietary zinc levels dictate the outcome of S. pneumoniae infection in a murine model. Dietary zinc restriction impacts murine tissue zinc levels with distribution post-infection altered, and S. pneumoniae virulence and infection enhanced. Although the activation and infiltration of murine phagocytic cells was not affected by zinc restriction, their efficacy of bacterial control was compromised. S. pneumoniae was shown to be highly sensitive to zinc intoxication, with this process impaired in zinc restricted mice and isolated phagocytic cells. Collectively, these data show how dietary zinc deficiency increases sensitivity to S. pneumoniae infection while revealing a role for zinc as a component of host antimicrobial defences. Zinc deficiency affects one-third of the world’s population and is associated with an increased susceptibility to bacterial infection. Despite this, the molecular basis for how zinc deficiency compromises host control of infection remains to be understood. We show that dietary zinc deficiency impacts host tissue zinc abundances and its mobilization during infection by the major respiratory pathogen Streptococcus pneumoniae. Zinc acts as a direct antimicrobial against the pathogen, mobilized by phagocytic cells as a component of the innate immune response. Although immune activation and infiltration of phagocytic cells is unaffected by host zinc status, the lack of antimicrobial zinc compromises bacterial control in zinc deficient hosts. These findings highlight the importance of zinc sufficiency in resisting bacterial infection.
Collapse
Affiliation(s)
- Bart A Eijkelkamp
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Jacqueline R Morey
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Stephanie L Neville
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Victoria G Pederick
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Nerida Cole
- The Atomic Medicine Initiative, University of Technology, Broadway, Sydney, New South Wales, Australia.,ARC Training Centre in Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Prashina P Singh
- The Atomic Medicine Initiative, University of Technology, Broadway, Sydney, New South Wales, Australia
| | - Cheryl-Lynn Y Ong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Raquel Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology, Broadway, Sydney, New South Wales, Australia
| | - David Clases
- The Atomic Medicine Initiative, University of Technology, Broadway, Sydney, New South Wales, Australia
| | - Bliss A Cunningham
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine E Hughes
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Iain Comerford
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Erin B Brazel
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Jonathan J Whittall
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Charles D Plumptre
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Shaun R McColl
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Alastair G McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology, Broadway, Sydney, New South Wales, Australia
| | - Christopher A McDevitt
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Gagnon DM, Hadley RC, Ozarowski A, Nolan EM, Britt RD. High-Field EPR Spectroscopic Characterization of Mn(II) Bound to the Bacterial Solute-Binding Proteins MntC and PsaA. J Phys Chem B 2019; 123:4929-4934. [PMID: 31117618 DOI: 10.1021/acs.jpcb.9b03633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During infection, the bacterial pathogens Staphylococcus aureus and Streptococcus pneumoniae employ ATP-binding cassette (ABC) transporters to acquire Mn(II), an essential nutrient, from the host environment. Staphylococcal MntABC and streptococcal PsaABC attract the attention of the biophysical and bacterial pathogenesis communities because of their established importance during infection. Previous biophysical examination of Mn(II)-MntC and Mn(II)-PsaA using continuous-wave (≈9 GHz) electron paramagnetic resonance (EPR) spectroscopy revealed broad, difficult-to-interpret spectra (Hadley et al. J. Am. Chem. Soc. 2018, 140, 110-113). Herein, we employ high-frequency (>90 GHz), high-field (>3 T) EPR spectroscopy to investigate the Mn(II)-binding sites of these proteins and determine the spin Hamiltonian parameters. Our analyses demonstrate that the zero-field splitting (ZFS) is large for Mn(II)-MntC and Mn(II)-PsaA at +2.72 and +2.87 GHz, respectively. The measured 55Mn hyperfine coupling values for Mn(II)-MntC and Mn(II)-PsaA of 241 and 236 MHz, respectively, demonstrate a more covalent interaction between Mn(II) and the protein compared to Mn(II) in aqueous solution (≈265 MHz). These studies indicate that MntC and PsaA bind Mn(II) in a similar coordination geometry. Comparison of the ZFS values determined herein with those ascertained for other Mn(II) proteins suggests that the Mn(II)-MntC and Mn(II)-PsaA coordination spheres are not five-coordinate in solution.
Collapse
Affiliation(s)
- Derek M Gagnon
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| | - Rose C Hadley
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - R David Britt
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| |
Collapse
|
26
|
Genomic, Phenotypic, and Virulence Analysis of Streptococcus sanguinis Oral and Infective-Endocarditis Isolates. Infect Immun 2018; 87:IAI.00703-18. [PMID: 30396893 DOI: 10.1128/iai.00703-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus sanguinis, an abundant and benign inhabitant of the oral cavity, is an important etiologic agent of infective endocarditis (IE), particularly in people with predisposing cardiac valvular damage. Although commonly isolated from patients with IE, little is known about the factors that make any particular S. sanguinis isolate more virulent than another or, indeed, whether significant differences in virulence exist among isolates. In this study, we compared the genomes of a collection of S. sanguinis strains comprised of both oral isolates and bloodstream isolates from patients diagnosed with IE. Oral and IE isolates could not be distinguished by phylogenetic analyses, and we did not succeed in identifying virulence genes unique to the IE strains. We then investigated the virulence of these strains in a rabbit model of IE using a variation of the Bar-seq (barcode sequencing) method wherein we pooled the strains and used Illumina sequencing to count unique barcodes that had been inserted into each isolate at a conserved intergenic region. After we determined that several of the genome sequences were misidentified in GenBank, our virulence results were used to inform our bioinformatic analyses, identifying genes that may explain the heterogeneity in virulence. We further characterized these strains by assaying for phenotypes potentially contributing to virulence. Neither strain competition via bacteriocin production nor biofilm formation showed any apparent relationship with virulence. Increased cell-associated manganese was, however, correlated with blood isolates. These results, combined with additional phenotypic assays, suggest that S. sanguinis virulence is highly variable and results from multiple genetic factors.
Collapse
|
27
|
Colomer-Winter C, Flores-Mireles AL, Baker SP, Frank KL, Lynch AJL, Hultgren SJ, Kitten T, Lemos JA. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathog 2018; 14:e1007102. [PMID: 30235334 PMCID: PMC6147510 DOI: 10.1371/journal.ppat.1007102] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient that is not readily available to pathogens during infection due to an active host defense mechanism known as nutritional immunity. To overcome this nutrient restriction, bacteria utilize high-affinity transporters that allow them to compete with host metal-binding proteins. Despite the established role of Mn in bacterial pathogenesis, little is known about the relevance of Mn in the pathophysiology of E. faecalis. Here, we identified and characterized the major Mn acquisition systems of E. faecalis. We discovered that the ABC-type permease EfaCBA and two Nramp-type transporters, named MntH1 and MntH2, work collectively to promote cell growth under Mn-restricted conditions. The simultaneous inactivation of EfaCBA, MntH1 and MntH2 (ΔefaΔmntH1ΔmntH2 strain) led to drastic reductions (>95%) in cellular Mn content, severe growth defects in body fluids (serum and urine) ex vivo, significant loss of virulence in Galleria mellonella, and virtually complete loss of virulence in rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI) models. Despite the functional redundancy of EfaCBA, MntH1 and MntH2 under in vitro or ex vivo conditions and in the invertebrate model, dual inactivation of efaCBA and mntH2 (ΔefaΔmntH2 strain) was sufficient to prompt maximal sensitivity to calprotectin, a Mn- and Zn-chelating host antimicrobial protein, and for the loss of virulence in mammalian models. Interestingly, EfaCBA appears to play a prominent role during systemic infection, whereas MntH2 was more important during CAUTI. The different roles of EfaCBA and MntH2 in these sites could be attributed, at least in part, to the differential expression of efaA and mntH2 in cells isolated from hearts or from bladders. Collectively, this study demonstrates that Mn acquisition is essential for the pathogenesis of E. faecalis and validates Mn uptake systems as promising targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Ana L. Flores-Mireles
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shannon P. Baker
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kristi L. Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aaron J. L. Lynch
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
28
|
Disruption of a Novel Iron Transport System Reverses Oxidative Stress Phenotypes of a dpr Mutant Strain of Streptococcus mutans. J Bacteriol 2018; 200:JB.00062-18. [PMID: 29735760 DOI: 10.1128/jb.00062-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 01/30/2023] Open
Abstract
The Dps-like peroxide resistance protein (Dpr) is essential for H2O2 stress tolerance and aerobic growth of the oral pathogen Streptococcus mutans Dpr accumulates during oxidative stress, protecting the cell by sequestering iron ions and thereby preventing the generation of toxic hydroxyl radicals that result from the interaction of iron with H2O2 Previously, we reported that the SpxA1 and SpxA2 regulators positively regulate expression of dpr in S. mutans Using an antibody raised against S. mutans Dpr, we confirmed at the protein level the central and cooperative nature of SpxA1 and SpxA2 regulation in Dpr production. During phenotypic characterization of the S. mutans Δdpr strain, we observed the appearance of distinct colony variants, which sometimes lost the oxidative stress sensitivity typical of Δdpr strains. Whole-genome sequencing of these phenotypically distinct Δdpr isolates revealed that a putative iron transporter operon, smu995-smu998, was a genomic hot spot with multiple single nucleotide polymorphisms identified within the different isolates. Deletion of smu995 or the entire smu995-smu998 operon in the Δdpr background strain completely reversed the oxidative stress-sensitive phenotypes associated with dpr inactivation. Conversely, inactivation of genes encoding the ferrous iron transport system FeoABC did not alleviate phenotypes of the Δdpr strain. Preliminary characterization of strains lacking smu995-smu998, feoABC, and the iron/manganese transporter gene sloABC revealed the interactive nature of these three systems in iron transport but also indicated that there may be additional iron uptake systems in S. mutansIMPORTANCE The dental caries-associated pathogen Streptococcus mutans routinely encounters oxidative stress within the human plaque biofilm. Previous studies revealed that the iron-binding protein Dpr confers protection toward oxidative stress by limiting free iron availability, which is associated with the generation of toxic hydroxyl radicals. Here, we report the identification of spontaneously occurring mutations within Δdpr strains. Several of those mutations were mapped to the operon smu995-smu998, revealing a previously uncharacterized system that appears to be important in iron acquisition. Disruption of the smu995-smu998 operon resulted in reversion of the stress-sensitive phenotype typical of a Δdpr strain. Our data suggest that the Smu995-Smu998 system works along with other known metal transport systems of S. mutans, i.e., FeoABC and SloABC, to coordinate iron uptake.
Collapse
|
29
|
Eijkelkamp BA, Begg SL, Pederick VG, Trapetti C, Gregory MK, Whittall JJ, Paton JC, McDevitt CA. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis. Front Microbiol 2018; 9:813. [PMID: 29867785 PMCID: PMC5958418 DOI: 10.3389/fmicb.2018.00813] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections.
Collapse
Affiliation(s)
- Bart A Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephanie L Begg
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Victoria G Pederick
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Claudia Trapetti
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Melissa K Gregory
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jonathan J Whittall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
30
|
Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae. J Bacteriol 2018; 200:JB.00051-18. [PMID: 29507090 DOI: 10.1128/jb.00051-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, a Gram-positive, aerobic bacterium, is the causative agent of diphtheria and cutaneous infections. While mechanisms required for heme iron acquisition are well known in C. diphtheriae, systems involved in the acquisition of other metals such as zinc and manganese remain poorly characterized. In this study, we identified a genetic region that encodes an ABC-type transporter (iutBCD) and that is flanked by two genes (iutA and iutE) encoding putative substrate binding proteins of the cluster 9 family, a related group of transporters associated primarily with the import of Mn and Zn. We showed that IutA and IutE are both membrane proteins with comparable Mn and Zn binding abilities. We demonstrated that the iutABCD genes are cotranscribed and repressed in response to iron by the iron-responsive repressor DtxR. Transcription of iutE was positively regulated in response to iron availability in a DtxR-dependent manner and was repressed in response to Zn by the Zn-dependent repressor Zur. Electrophoretic mobility shift assays showed that DtxR does not bind to the iutE upstream region, which indicates that DtxR regulation of iutE is indirect and that other regulatory factors controlled by DtxR are likely responsible for the iron-responsive regulation. Analysis of the iutE promoter region identified a 50-bp sequence at the 3' end of the iutD gene that is required for the DtxR-dependent and iron-responsive activation of the iutE gene. These findings indicate that transcription of iutE is controlled by a complex mechanism that involves multiple regulatory factors whose activity is impacted by both Zn and Fe.IMPORTANCE Vaccination against diphtheria prevents toxin-related symptoms but does not inhibit bacterial colonization of the human host by the bacterium. Thus, Corynebacterium diphtheriae remains an important human pathogen that poses a significant health risk to unvaccinated individuals. The ability to acquire iron, zinc, and manganese is critical to the pathogenesis of many disease-causing organisms. Here, we describe a gene cluster in C. diphtheriae that encodes a metal importer that is homologous to broadly distributed metal transport systems, some with important roles in virulence in other bacterial pathogens. Two metal binding components of the gene cluster encode surface exposed proteins, and studies of such proteins may guide the development of second-generation vaccines for C. diphtheriae.
Collapse
|
31
|
Hadley RC, Gagnon DM, Brophy MB, Gu Y, Nakashige TG, Britt RD, Nolan EM. Biochemical and Spectroscopic Observation of Mn(II) Sequestration from Bacterial Mn(II) Transport Machinery by Calprotectin. J Am Chem Soc 2018; 140:110-113. [PMID: 29211955 PMCID: PMC5762273 DOI: 10.1021/jacs.7b11207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer) is a metal-sequestering host-defense protein that prevents bacterial acquisition of Mn(II). In this work, we investigate Mn(II) competition between CP and two solute-binding proteins that Staphylococcus aureus and Streptococcus pneumoniae, Gram-positive bacterial pathogens of significant clinical concern, use to obtain Mn(II) when infecting a host. Biochemical and electron paramagnetic resonance (EPR) spectroscopic analyses demonstrate that CP outcompetes staphylococcal MntC and streptococcal PsaA for Mn(II). This behavior requires the presence of excess Ca(II) ions, which enhance the Mn(II) affinity of CP. This report presents new spectroscopic evaluation of two Mn(II) proteins important for bacterial pathogenesis, direct observation of Mn(II) sequestration from bacterial Mn(II) acquisition proteins by CP, and molecular insight into the extracellular battle for metal nutrients that occurs during infection.
Collapse
Affiliation(s)
- Rose C. Hadley
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Derek M. Gagnon
- Department of Chemistry, University of California Davis, Davis, CA 95616, United States
| | - Megan Brunjes Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Yu Gu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis, CA 95616, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
32
|
Tong Y, Zhai Q, Lu W, Tian F, Zhao J, Zhang H, Chen W. New insights in integrated response mechanism of Lactobacillus plantarum under excessive manganese stress. Food Res Int 2017; 102:323-332. [DOI: 10.1016/j.foodres.2017.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
33
|
Quantum chemical calculations of the active site of the solute-binding protein PsaA from Streptococcus pneumoniae explain electronic selectivity of metal binding. Struct Chem 2017. [DOI: 10.1007/s11224-017-1036-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Association of Metal Homeostasis and (p)ppGpp Regulation in the Pathophysiology of Enterococcus faecalis. Infect Immun 2017; 85:IAI.00260-17. [PMID: 28483855 DOI: 10.1128/iai.00260-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 01/30/2023] Open
Abstract
In Enterococcus faecalis, the regulatory nucleotides pppGpp and ppGpp, collectively, (p)ppGpp, are required for growth in blood, survival within macrophages, and virulence. However, a clear understanding of how (p)ppGpp promotes virulence in E. faecalis and other bacterial pathogens is still lacking. In the host, the essential transition metals iron (Fe) and manganese (Mn) are not readily available to invading pathogens because of a host-driven process called nutritional immunity. Considering its central role in adaptation to nutritional stresses, we hypothesized that (p)ppGpp mediates E. faecalis virulence through regulation of metal homeostasis. Indeed, supplementation of serum with either Fe or Mn restored growth and survival of the Δrel ΔrelQ [(p)ppGpp0] strain to wild-type levels. Using a chemically defined medium, we found that (p)ppGpp accumulates in response to either Fe depletion or Mn depletion and that the (p)ppGpp0 strain has a strong growth requirement for Mn that is alleviated by Fe supplementation. Although inactivation of the nutrient-sensing regulator codY restored some phenotypes of the (p)ppGpp0 strain, transcriptional analysis showed that the (p)ppGpp/CodY network does not promote transcription of known metal transporters. Interestingly, physiologic and enzymatic investigations suggest that the (p)ppGpp0 strain requires higher levels of Mn in order to cope with high levels of endogenously produced reactive oxygen species (ROS). Because (p)ppGpp mediates antibiotic persistence and virulence in several bacteria, our findings have broad implications and provide new leads for the development of novel therapeutic and preventive strategies against E. faecalis and beyond.
Collapse
|
35
|
Hassan KA, Pederick VG, Elbourne LDH, Paulsen IT, Paton JC, McDevitt CA, Eijkelkamp BA. Zinc stress induces copper depletion in Acinetobacter baumannii. BMC Microbiol 2017; 17:59. [PMID: 28284195 PMCID: PMC5346208 DOI: 10.1186/s12866-017-0965-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
Background The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. Results We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Conclusions Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0965-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karl A Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Victoria G Pederick
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Bart A Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
36
|
Chen Z, Wang X, Yang F, Hu Q, Tong H, Dong X. Molecular Insights into Hydrogen Peroxide-sensing Mechanism of the Metalloregulator MntR in Controlling Bacterial Resistance to Oxidative Stresses. J Biol Chem 2017; 292:5519-5531. [PMID: 28223356 DOI: 10.1074/jbc.m116.764126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/28/2017] [Indexed: 11/06/2022] Open
Abstract
Manganese contributes to anti-oxidative stress particularly in catalase-devoid bacteria, and DtxR family metalloregulators, through sensing cellular Mn2+ content, regulate its homeostasis. Here, we show that metalloregulator MntR (So-MntR) functions dually as Mn2+ and H2O2 sensors in mediating H2O2 resistance by an oral streptococcus. H2O2 disrupted So-MntR binding to Mn2+ transporter mntABC promoter and induced disulfide-linked dimerization of the protein. Mass spectrometry identified Cys-11/Cys-156 and Cys-11/Cys-11 disulfide-linked peptides in H2O2-treated So-MntR. Site mutagenesis of Cys-11 and Cys-156 and particularly Cys-11 abolished H2O2-induced disulfide-linked dimers and weakened H2O2 damage on So-MntR binding, indicating that H2O2 inactivates So-MntR via disulfide-linked dimerization. So-MntR C123S mutant was extremely sensitive to H2O2 oxidization in dimerization/oligomerization, probably because the mutagenesis caused a conformational change that facilitates Cys-11/Cys-156 disulfide linkage. Intermolecular Cys-11/Cys-11 disulfide was detected in C123S/C156S double mutant. Redox Western blot detected So-MntR oligomers in air-exposed cells but remarkably decreased upon H2O2 pulsing, suggesting a proteolysis of the disulfide-linked So-MntR oligomers. Remarkably, elevated C11S and C156S but much lower C123S proteins were detected in H2O2-pulsed cells, confirming Cys-11 and Cys-156 contributed to H2O2-induced oligomerization and degradation. Accordingly, in the C11S and C156S mutants, expression of mntABC and cellular Mn2+ decreased, but H2O2 susceptibility increased. In the C123S mutant, increased mntABC expression, cellular Mn2+ content, and manganese-mediated H2O2 survival were determined. Given the wide distribution of Cys-11 in streptococcal DtxR-like metalloregulators, the disclosed redox regulatory function and mechanism of So-MntR can be employed by the DtxR family proteins in bacterial resistance to oxidative stress.
Collapse
Affiliation(s)
- Zhaoyuan Chen
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,School of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China, and
| | - Xinhui Wang
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,School of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China, and
| | - Fan Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingqing Hu
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,School of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China, and
| | - Huichun Tong
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China, .,School of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China, and
| | - Xiuzhu Dong
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China, .,School of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China, and
| |
Collapse
|
37
|
Lewinson O, Livnat-Levanon N. Mechanism of Action of ABC Importers: Conservation, Divergence, and Physiological Adaptations. J Mol Biol 2017; 429:606-619. [PMID: 28104364 DOI: 10.1016/j.jmb.2017.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
The past decade has seen a remarkable surge in structural characterization of ATP binding cassette (ABC) transporters, which have spurred a more focused functional analysis of these elaborate molecular machines. As a result, it has become increasingly apparent that there is a substantial degree of mechanistic variation between ABC transporters that function as importers, which correlates with their physiological roles. Here, we summarize recent advances in ABC importers' structure-function studies and provide an explanation as to the origin of the different mechanisms of action.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, 31096 Haifa, Israel.
| | - Nurit Livnat-Levanon
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, 31096 Haifa, Israel
| |
Collapse
|
38
|
Tong Y, Zhai Q, Wang G, Zhang Q, Liu X, Tian F, Zhao J, Zhang H, Chen W. System-wide analysis of manganese starvation-induced metabolism in key elements of Lactobacillus plantarum. RSC Adv 2017. [DOI: 10.1039/c7ra00072c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To analyze the response mechanisms of Lactobacillus plantarum against manganese starvation stress, different metabolisms from physiology, proteomics and transporters aspects in L. plantarum CCFM 436 were systematically investigated.
Collapse
Affiliation(s)
- Yanjun Tong
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| |
Collapse
|
39
|
Huang X, Shin JH, Pinochet-Barros A, Su TT, Helmann JD. Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems. Mol Microbiol 2016; 103:253-268. [PMID: 27748968 DOI: 10.1111/mmi.13554] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2016] [Indexed: 01/01/2023]
Abstract
The Bacillus subtilis MntR metalloregulatory protein senses manganese, an essential element required for central metabolism, oxidative stress resistance and replication. An mntR null mutant is highly sensitive to Mn(II) intoxication, which is attributed in part to the constitutive expression of two importers: the proton-dependent NRAMP family transporter MntH and the ABC transporter MntABCD. Here, we show that an mntR null mutant is still sensitive to Mn(II) intoxication even if both of the import systems are absent. This Mn(II) sensitivity results from the requirement for MntR to activate the transcription of two genes encoding cation diffusion facilitator (CDF) family efflux pumps. Physiological studies indicate that MneP (formerly YdfM) serves as the primary Mn(II) efflux pump with MneS (formerly YeaB) playing a secondary role. Mutant strains lacking mneP are Mn(II) sensitive and accumulate elevated levels of Mn(II), and these effects are exacerbated in a mneP mneS double mutant. DNA-binding and in vitro transcription studies demonstrate that MntR binds to both the mneP and mneS regulatory regions and directly activates transcription in response to levels of Mn(II) several-fold higher than required for repression of import genes. These results highlight the delicate balance of Mn(II) uptake and efflux systems controlled by MntR.
Collapse
Affiliation(s)
- Xiaojuan Huang
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | - Jung-Ho Shin
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | | | - Tina T Su
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | - John D Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| |
Collapse
|
40
|
Scheepers GH, Lycklama A Nijeholt JA, Poolman B. An updated structural classification of substrate-binding proteins. FEBS Lett 2016; 590:4393-4401. [PMID: 27714801 DOI: 10.1002/1873-3468.12445] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/25/2016] [Indexed: 01/29/2023]
Abstract
Substrate-binding proteins (SBPs) play an important role in solute uptake and signal transduction. In 2010, Berntsson et al. classified the 114 organism-specific SBP structures available at that time and defined six protein clusters, based on their structural similarity. Since then, the number of unique SBP structures has increased almost fivefold, whereas the number of protein entries in the Protein Data Bank (PDB) nearly doubled. On the basis of the much larger dataset, we now subclassify the SBPs within the original clusters. Moreover, we propose a 7th cluster based on a small group of SBPs with structural features significantly different from those observed in the other proteins.
Collapse
Affiliation(s)
- Giel H Scheepers
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Jelger A Lycklama A Nijeholt
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
41
|
Tong Y, Wang G, Zhang Q, Tian F, Liu X, Zhao J, Zhang H, Chen W. Systematic understanding of the potential manganese-adsorption components of a screened Lactobacillus plantarum CCFM436. RSC Adv 2016. [DOI: 10.1039/c6ra23877g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Manganese (Mn) is a toxic heavy metal that has a variety of adverse effects on human health under excess exposure.
Collapse
Affiliation(s)
- Yanjun Tong
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| |
Collapse
|