1
|
Dietary Selenomethionine Reduce Mercury Tissue Levels and Modulate Methylmercury Induced Proteomic and Transcriptomic Alterations in Hippocampi of Adolescent BALB/c Mice. Int J Mol Sci 2022; 23:ijms232012242. [PMID: 36293098 PMCID: PMC9603801 DOI: 10.3390/ijms232012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Methylmercury (MeHg) is a well-known environmental contaminant, particularly harmful to the developing brain. The main human dietary exposure to MeHg occurs through seafood consumption. However, seafood also contains several nutrients, including selenium, which has been shown to interact with MeHg and potentially ameliorate its toxicity. The aim of this study was to investigate the combined effects of selenium (as selenomethionine; SeMet) and MeHg on mercury accumulation in tissues and the effects concomitant dietary exposure of these compounds exert on the hippocampal proteome and transcriptome in mice. Adolescent male BALB/c mice were exposed to SeMet and two different doses of MeHg through their diet for 11 weeks. Organs, including the brain, were sampled for mercury analyses. Hippocampi were collected and analyzed using proteomics and transcriptomics followed by multi-omics bioinformatics data analysis. The dietary presence of SeMet reduced the amount of mercury in several organs, including the brain. Proteomic and RNA-seq analyses showed that both protein and RNA expression patterns were inversely regulated in mice receiving SeMet together with MeHg compared to MeHg alone. Several pathways, proteins and RNA transcripts involved in conditions such as immune responses and inflammation, oxidative stress, cell plasticity and Alzheimer’s disease were affected inversely by SeMet and MeHg, indicating that SeMet can ameliorate several toxic effects of MeHg in mice.
Collapse
|
2
|
Kumar Rai R, Shankar Pati R, Islam A, Roy G. Detoxification of organomercurials by thiones and selones: A short review. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Tang Y, Liu L, Nong Q, Guo H, Zhou Q, Wang D, Yin Y, Shi J, He B, Hu L, Jiang G. Sensitive determination of metalloprotein in salt-rich matrices by size exclusion chromatography coupled with inductively coupled plasma-mass spectrometry. J Chromatogr A 2022; 1677:463303. [DOI: 10.1016/j.chroma.2022.463303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
|
4
|
Zeng HL, Zhang B, Wang X, Yang Q, Cheng L. Urinary trace elements in association with disease severity and outcome in patients with COVID-19. ENVIRONMENTAL RESEARCH 2021; 194:110670. [PMID: 33387537 PMCID: PMC7772999 DOI: 10.1016/j.envres.2020.110670] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND The dynamics of urinary trace elements in patients with COVID-19 still remains to be investigated. METHODS A retrospective study was performed on a cohort of 138 confirmed COVID-19 patients for their urinary levels of essential and/or toxic metals including chromium, manganese, copper, arsenic, selenium, cadmium, mercury, thallium and lead according to the different disease severity (severe or non-severe) and outcome (recovered or deceased). RESULTS Urinary concentrations of chromium, manganese, copper, selenium, cadmium, mercury and lead after creatinine adjustment were found to be higher in severe patients than the non-severe cases with COVID-19. And among the severe cases, these elements were also higher in the deceased group than the recovered group. When the weeks of the post-symptom onset were taken in account, the changes of these urinary elements were existed across the clinical course since the disease onset. These urinary elements were found to be mostly positively inter-correlated, and further positively correlated with other laboratory inflammatory parameters including serum cytokines (IL-1B, IL2R, IL6, IL8, IL10, TNFα), ferritin, and neutrophil count and white blood cell count. As a independently predictive factor, urinary creatinine-adjusted copper of ≥25.57 μg/g and ≥99.32 μg/g were associated with significantly increased risk of severe illness and fatal outcome in COVID-19, respectively. CONCLUSIONS These results suggest abnormities in urinary levels of the trace metals were tightly associated with the severe illness and fatal outcome of COVID-19.
Collapse
Affiliation(s)
- Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Spiller HA, Hays HL, Casavant MJ. Rethinking treatment of mercury poisoning: the roles of selenium, acetylcysteine, and thiol chelators in the treatment of mercury poisoning: a narrative review. TOXICOLOGY COMMUNICATIONS 2021. [DOI: 10.1080/24734306.2020.1870077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Henry A. Spiller
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Hannah L. Hays
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Departments of Emergency Medicine and Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marcel J. Casavant
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
6
|
Borowska M, Jankowski K. Sensitive determination of bioaccessible mercury in complex matrix samples by combined photochemical vapor generation and solid phase microextraction coupled with microwave induced plasma optical emission spectrometry. Talanta 2020; 219:121162. [PMID: 32887092 DOI: 10.1016/j.talanta.2020.121162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
The photochemical generation technique of mercury vapor (PCVG) coupled with headspace solid phase microextraction (SPME) and microwave induced plasma optical emission spectrometry (MIP-OES) has been developed and successfully applied for fast and sensitive determination of mercury in complex matrix samples. Mercury vapor was generated by UV photo-reduction of inorganic mercury and methylmercury to mercury vapor in 5% (v/v) formic acid with subsequent gas-liquid separation and preconcentration by solid phase microextraction. A stopped-flow mode of the PCVG-SPME unit was employed with the aim of increasing analyte preconcentration factor, thus improving both sensitivity of determination and detection limits for mercury. The calibration curves were linear up to 20 ng mL-1 with the limit of detection for inorganic mercury and methylmercury of 0.030 and 0.045 ng mL-1, respectively. This manifold allowed a repeatability, expressed as relative standard deviation, of below 5%. Due to differences in efficiency of Hg vapor generation for Hg2+ and CH3Hg+, the quantification was performed against external Hg2+ and CH3Hg+ aqueous standards, respectively. The method was validated by the analysis of two CRM materials of different matrix composition, i.e. estuarine sediment ERM CC580 for total mercury content and tuna fish ERM CE464 for methylmercury content, respectively. The results proved good accuracy of the method with recovery of 101% total mercury and 87.3% methylmercury and precision of 3.8% and 12.5%, respectively. Effect of concomitants in the stopped-flow generation of mercury vapor with the new manifold was also investigated. Next, the proposed method was successfully applied for monitoring of bioaccessible fraction of mercury during their incubation in simulated body fluid in the presence of selenium nanoparticles examined as a potential mercury detoxifying agent.
Collapse
Affiliation(s)
- Magdalena Borowska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Krzysztof Jankowski
- Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
7
|
Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JB, Michalke B, Skalnaya MG, Skalny AV, Butnariu M, Dadar M, Sarac I, Aaseth J, Bjørklund G. Sulfhydryl groups as targets of mercury toxicity. Coord Chem Rev 2020; 417:213343. [PMID: 32905350 PMCID: PMC7470069 DOI: 10.1016/j.ccr.2020.213343] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study addresses existing data on the affinity and conjugation of sulfhydryl (thiol; -SH) groups of low- and high-molecular-weight biological ligands with mercury (Hg). The consequences of these interactions with special emphasis on pathways of Hg toxicity are highlighted. Cysteine (Cys) is considered the primary target of Hg, and link its sensitivity with thiol groups and cellular damage. In vivo, Hg complexes play a key role in Hg metabolism. Due to the increased affinity of Hg to SH groups in Cys residues, glutathione (GSH) is reactive. The geometry of Hg(II) glutathionates is less understood than that with Cys. Both Cys and GSH Hg-conjugates are important in Hg transport. The binding of Hg to Cys mediates multiple toxic effects of Hg, especially inhibitory effects on enzymes and other proteins that contain free Cys residues. In blood plasma, albumin is the main Hg-binding (Hg2+, CH3Hg+, C2H5Hg+, C6H5Hg+) protein. At the Cys34 residue, Hg2+ binds to albumin, whereas other metals likely are bound at the N-terminal site and multi-metal binding sites. In addition to albumin, Hg binds to multiple Cys-containing enzymes (including manganese-superoxide dismutase (Mn-SOD), arginase I, sorbitol dehydrogenase, and δ-aminolevulinate dehydratase, etc.) involved in multiple processes. The affinity of Hg for thiol groups may also underlie the pathways of Hg toxicity. In particular, Hg-SH may contribute to apoptosis modulation by interfering with Akt/CREB, Keap1/Nrf2, NF-κB, and mitochondrial pathways. Mercury-induced oxidative stress may ensue from Cys-Hg binding and inhibition of Mn-SOD (Cys196), thioredoxin reductase (TrxR) (Cys497) activity, as well as limiting GSH (GS-HgCH3) and Trx (Cys32, 35, 62, 65, 73) availability. Moreover, Hg-thiol interaction also is crucial in the neurotoxicity of Hg by modulating the cytoskeleton and neuronal receptors, to name a few. However, existing data on the role of Hg-SH binding in the Hg toxicity remains poorly defined. Therefore, more research is needed to understand better the role of Hg-thiol binding in the molecular pathways of Hg toxicology and the critical role of thiols to counteract negative effects of Hg overload.
Collapse
Affiliation(s)
- Olga P. Ajsuvakova
- Yaroslavl State University, Yaroslavl, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - João B.T. Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Anatoly V. Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timișoara, Timişoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timișoara, Timişoara, Romania
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ioan Sarac
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timișoara, Timişoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timișoara, Timişoara, Romania
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
8
|
Methylmercury Poisoning Induces Cardiac Electrical Remodeling and Increases Arrhythmia Susceptibility and Mortality. Int J Mol Sci 2020; 21:ijms21103490. [PMID: 32429059 PMCID: PMC7279040 DOI: 10.3390/ijms21103490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Abstract
This study aims to investigate the cardiac electrical remodeling associated with intoxication by methylmercury (MeHg). We evaluated the chronic effects of MeHg on in vivo electrocardiograms and on ex vivo action potentials and depolarizing (ICa-L) and repolarizing (Ito) currents. The acute effect of MeHg was evaluated on HEK293 cells expressing human ERG, Kv4.3 and KCNQ1/KCNE1 channels. Chronic MeHg treatment increased QTc and Tpeak–Tend interval duration, prolonged action potential duration and decreased amplitude of Ito and ICa-L. In addition, heterologously expressed IhKv4.3, IhERG or IhKCNQ1/KCNE1 decreased after acute exposure to MeHg at subnanomolar range. The introduction of the in vitro effects of MeHg in a computer model of human ventricular action potentials triggered early afterdepolarizations and arrhythmia. In conclusion, cardiac electrical remodeling induced by MeHg poisoning is related to the reduction of Ito and ICa-L. The acute effect of MeHg on hKv4.3; hERG and hKCNQ1/KCNE1 currents and their transposition to in silico models show an association between MeHg intoxication and acquired Long QT Syndrome in humans. MeHg can exert its high toxicity either after chronic or acute exposure to concentrations as low as picomolar.
Collapse
|
9
|
Li Y, Ge Y, Wang R, Zhao J, Jing H, Lin X, Ma S, Gao Y, Li B, Chen C, Li YF. Nanoelemental selenium alleviated the mercury load and promoted the formation of high-molecular-weight mercury- and selenium-containing proteins in serum samples from methylmercury-poisoned rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:128-133. [PMID: 30445243 DOI: 10.1016/j.ecoenv.2018.10.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Selenite (Se4+) has been found to counteract the neurotoxicity of methylmercury (MeHg) in MeHg-poisoned rats. However, Se4+ has narrow range between its toxic and beneficial effects. Nanoelemental selenium (SeNPs) was found to be less toxic than other forms of Se such as Se4+. In this study, the effects of SeNPs on the load of mercury (Hg) in rats were investigated. Hyphenated technique based on size-exclusion chromatography coupled with UV and inductively coupled plasma mass spectrometry (SEC-ICP-MS) detection and synchrotron radiation X-ray fluorescence spectroscopy (SR-XRF) were used to analyze the Hg-Se-containing proteins in the serum from MeHg-poisoned rats. The Hg-Se-containing fractions monitored by UV and ICP-MS were further characterized by MALDI-TOF-MS. Elevated serum Hg and Se levels were found in MeHg-poisoned rats after SeNPs treatment. Three main Hg-containing bands with molecular weights (MWs) of 25, 62 and 140 kDa were detected in the control samples. Treatment with SeNPs increased the Hg content in proteins at 62 and 170 kDa and decreased the Hg content at 25 kDa. The fraction with 25 kDa was assigned to metallothioneins (MTs), and fractions with 40 and 75 kDa were assigned to albumin. This study showed that the low-toxicity SeNPs could reduce the Hg load in the tissues and promote the formation of high molecular weight Hg- and Se-containing proteins in MeHg-poisoned rats.
Collapse
Affiliation(s)
- Yunyun Li
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yunpeng Ge
- Department of Pediatrics, Linyi People's Hospital, Linyi 276003, Shandong, China
| | - Ru Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Jing
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoying Lin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Ma
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China; Medical Institute of Technology, Ningbo College of Health Science, Ningbo 315104, Zhejiang, China.
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bai Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Centre for Nanoscience and Technology, Beijing 100191, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Liu Y, Zhang W, Zhao J, Lin X, Liu J, Cui L, Gao Y, Zhang TL, Li B, Li YF. Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats. J Trace Elem Med Biol 2018; 50:589-595. [PMID: 29704998 DOI: 10.1016/j.jtemb.2018.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 11/18/2022]
Abstract
Selenium (Se) has been found to promote weight gain, decrease hepatic damage, but redistribute mercury (Hg) in brains and livers in methylmercury (MeHg)-poisoned rats. The aims of the present work were to examine the effects of Se on the levels of Hg in serum and the role of serum selenoproteins in binding with Hg in MeHg-poisoned rats. The concentration of Se, Hg and MeHg were studied using ICP-MS and CVAFS. The Hg- and Se-binding selenoproteins were separated and quantified using affinity chromatography with post-column isotope dilution analysis using both enriched 78Se and 199Hg. It was found that Se treatment reduced Hg levels in serum in MeHg-poisoned rats. Among the three separated selenoproteins, the amounts of SelP-bound Hg and Se increased to 73% and 93.6%, from 64.4% and 89.3% of the total Hg and Se, respectively after Se treatment, suggesting that SelP acts as a major transporter for Hg and pool for Se in serum. Over 90% of the total Hg was MeHg in serum, and the molar ratios of MeHg to Se as 1:4 and 1:9 in the formed MeHg-Se-SelP complex in the control and the Se treatment group, respectively. The elevated Se level binding with SelP facilitated the Hg extraction from tissues and organs, as well as its redistribution in brains and livers through blood circulation in the MeHg-poisoned rats. Together, our findings provide direct evidence that serum SelP is the major Hg transporter in MeHg-poisoned rats.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; Institute of Basic Medical and Forensic Science, Baotou Medical College, Inner Mongolia University of Science& Technology, Baotou, 014010, China
| | - Wei Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiamei Liu
- Pingshang Branch, Linyi Animal Health Inspection, Linyi, 276624, China
| | - Liwei Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Lan Zhang
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Tan Q, Zhang M, Geng L, Xia Z, Li C, Usman M, Du Y, Wei L, Bi H. Hormesis of methylmercury-human serum albumin conjugate on N9 microglia via ERK/MAPKs and STAT3 signaling pathways. Toxicol Appl Pharmacol 2018; 362:59-66. [PMID: 30352208 DOI: 10.1016/j.taap.2018.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/18/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Methylmercury (MeHg+) is an extremely toxic organomercury cation that can induce severe neurological damage. Once it enters the body, methylmercury binds to amino acids or proteins containing free sulfhydryl groups. In particular, methylmercury is known to bind with human serum albumin (HSA) in human plasma; however, the effects of methylmercury-HSA conjugate (MeHg-HSA) on the central nervous system (CNS) are not fully understood. In the present study, we used the microglial cell line N9 as the target cells to evaluate the effect of MeHg-HSA on physiological function of the CNS preliminarily. The various factors in the cell culture were monitored by MTT assay, total lactate dehydrogenase assay, ELISA, qPCR, Western blot and flow cytometry techniques. The results showed that low-dose treatment with MeHg-HSA activated N9 cells, promoting cell proliferation and total cell number, enhancing NO and intracellular Ca2+ levels, and suppressing the release of TNFα and IL1β without cytotoxic effects; while high-dose MeHg-HSA exhibited cytotoxic effects on N9 cells, including promoting cell death and increasing the secretion of TNFα and IL1β. These results indicate that MeHg-HSA causes hormesis in microglia N9 cells. Furthermore, ERK/MAPKs and STAT3 signaling pathways related to the hormesis of MeHg-HSA on N9 cells. In addition, low dose of MeHg-HSA might be viewed as something very close to a lowest observed adverse effect level (LOAEL) for N9 cells. These findings will be useful for investigating the hormesis mechanism of MeHg+ and exploring the specific functions of MeHg-sulfhydryl conjugates on the central nervous system.
Collapse
Affiliation(s)
- Qiaozhu Tan
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lujing Geng
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghua Xia
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Muhammad Usman
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Yuzhi Du
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
| |
Collapse
|
12
|
Spiller HA. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clin Toxicol (Phila) 2017; 56:313-326. [DOI: 10.1080/15563650.2017.1400555] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Henry A. Spiller
- Central Ohio Poison Center, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA
| |
Collapse
|