1
|
Su CR, Yu SS, Zhao JM, Yang J, Dong LY, Wang XH. Fabrication of micron-sized boronate-decorated polyethyleneimine-grafted magnetic agarose beads for specific enrichment of ribonucleic acid. J Chromatogr A 2024; 1731:465198. [PMID: 39059303 DOI: 10.1016/j.chroma.2024.465198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Exploiting high-performance magnetic beads for specific enrichment of ribonucleic acid (RNA) has important significance in the biomedical research field. Herein, a simple strategy was proposed for fabricating boronate-decorated polyethyleneimine-grafted magnetic agarose beads (BPMAB), which can selectively isolate cis-diol-containing substances through boronate affinity. The size of the basic magnetic agarose beads was controlled through the emulsification of the water-in-oil emulsion with a high-speed shear machine, which enhanced the specific surface area of BPMAB. Subsequently, to modify more boronic acid ligands, branched PEI with excellent hydrophilicity and numerous reaction sites was grafted. 2,4-Difluoro-3-formylphenyl boronic acid (2,4-DFPBA) was covalently immobilized for selectively capturing cis-diol-containing substances under physiological condition (pH 7.4). The BPMAB with a diameter range from 1.86 μm to 11.60 μm possessed clearly spherical structure, and excellent magnetic responsiveness and suspension ability in aqueous solution. β-Nicotinamide adenine dinucleotide (β-NAD), a short-chain cis-diol carrying agent, was selected as a target molecule for evaluating the adsorption property of BPMAB and the maximum adsorption capacity of BPMAB for β-NAD could reach 205.11 mg g-1. In addition, the BPMAB as adsorbent was used to selectively enrich RNA from mammalian cells. The maximum adsorption capacity of BPMAB for RNA was 140.50 mg g-1. Under optimized conditions, the BPMAB-based MSPE successfully enriched the high-quality total RNA with 28S to 18S ribosomal RNA ratios ranging from 2.06 to 2.16. According to the PCR analysis of GADPH gene, the extracted total RNA was successfully reverse transcribed into cDNA. Therefore, we believe that the BPMAB-based MSPE could be applicable for the specific enrichment of RNA from complex biological systems.
Collapse
Affiliation(s)
- Chen-Ri Su
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Meng Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
2
|
Mukae K, Takei O, Imai F, Kamijo T. Development of RNA/DNA automated extraction and purification device for infectious disease diagnosis. Pract Lab Med 2023; 37:e00335. [PMID: 37693633 PMCID: PMC10492190 DOI: 10.1016/j.plabm.2023.e00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Genetic tests using RNA/DNA are the most accurate for diagnosing infectious diseases and assessing disease susceptibility, including COVID-19. However, manual specimen handling and the risk of secondary infections by medical staff highlight the need for automated equipment. Automation methods, such as bead purification, have limitations with high-viscosity specimens, while column purification requires complex equipment. This study aimed to develop an automated device using the column purification method for safe and reliable infectious disease diagnosis. We compared the yield and purification of three nucleic acid extraction methods (centrifugation, pressurization, and depressurization) and examined the adaptation of the extraction methods to automated device. Furthermore, we examined the feasibility of extracting SARS-CoV-2 RNA from COVID-19 patients and using qPCR analysis to determine whether the extraction method could be used as a clinical analyzer. Results varied with different columns and reagents, but pressurization method was selected for the automated device's RNA/DNA extraction. Using an automated device equipped with a pressurization method, RNA extracted from pharyngeal fluids from COVID-19 patients who had already been diagnosed with SARS-CoV-2 by qRT-PCR again tested positive. These findings demonstrate the device's effectiveness for nucleic acid extraction and virus-targeted diagnostics. Moreover, it holds potential for genetic testing in fields like food and environmental measurements. The automated device addresses specimen handling challenges and provides a reliable tool for infectious disease diagnosis.
Collapse
Affiliation(s)
- Kyosuke Mukae
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Osamu Takei
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
- PMT Corporation, Fukuoka, 811-2115, Japan
| | - Fumi Imai
- Department of Clinical Laboratory Medicine, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| |
Collapse
|
3
|
Gaines D, Brodsky E, Kaur H, Nestorova GG. RNA capture pin technology: investigating long-term stability and mRNA purification specificity of oligonucleotide immobilization on gold and streptavidin surfaces. Anal Bioanal Chem 2023; 415:6077-6089. [PMID: 37516691 DOI: 10.1007/s00216-023-04882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Advancing biomedical studies necessitates the development of cutting-edge technologies for the rapid extraction of nucleic acid. We characterized an RNA capture pin (RCP) tool that is non-destructive to the sample and enables rapid purification and enrichment of mRNA for subsequent genetic analysis. At the core of this technology is a pin (200 µm × 3 cm) functionalized with dT15 capture sequences that hybridize to mRNA within 2 min of insertion in the specimen. Two methods for immobilizing the oligos on the surface of the RCPs were investigated: gold-thiol and biotin-streptavidin. The RNA capture efficiency of the RCPs was assessed using a radish plant. The average reverse transcription-quantitative polymerase chain reaction (RT-qPCR) cycle amplification values were 19.93 and 24.84 for gold- and streptavidin-coated pins, respectively. The amount of RNA present on the surface of the probes was measured using the Agilent 2100 Bioanalyzer. RNA sequencing was performed to determine the mRNA selectivity of the RNA capture pin. Gene read count analysis confirmed that the RNA purified via the gold-plated RCPs contained 70% messenger RNA, 10% ribosomal RNA, and 20% non-coding RNA. The long-term stability of the bond between the dT15 oligos and the surface of the RCPs was assessed over 4 months. A significant decrease in the dT15 surface coverage of the streptavidin-coated RCPs was observed after 2 weeks of storage at 4 °C. The gold-thiol RNA capture pins exhibited a retention rate of 40% of the oligos after 4 months of storage.
Collapse
Affiliation(s)
- Deriesha Gaines
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, LA, USA
| | | | | | - Gergana G Nestorova
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA.
| |
Collapse
|
4
|
Politza AJ, Liu T, Guan W. Programmable magnetic robot (ProMagBot) for automated nucleic acid extraction at the point of need. LAB ON A CHIP 2023; 23:3882-3892. [PMID: 37551930 PMCID: PMC11218199 DOI: 10.1039/d3lc00545c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Upstream sample preparation remains the bottleneck for point-of-need nucleic acid testing due to its complexity and time-consuming nature. Sample preparation involves extracting, purifying, and concentrating nucleic acids from various matrices. These processes are critical for ensuring the accuracy and sensitivity of downstream nucleic acid amplification and detection. However, current sample preparation methods are often laboratory-based, requiring specialized equipment, trained personnel, and several hours of processing time. As a result, sample preparation often limits the speed, portability, and cost-effectiveness of point-of-need nucleic acid testing. A universal, field-deployable sample preparation device is highly desirable for this critical need and unmet challenge. Here we reported a handheld, battery-powered, reconfigurable, and field-deployable nucleic acid sample preparation device. A programmable electromagnetic actuator was developed to drive a magnetic robot (ProMagBot) in X/Y 2D space, such that various magnetic bead-based sample preparations can be readily translated from the laboratory to point-of-need settings. The control of the electromagnetic actuator requires only a 3-phase unipolar voltage in X and Y directions, and therefore, the motion space is highly scalable. We validated the ProMagBot device with a model application by extracting HIV viral RNAs from plasma samples using two widely used magnetic bead kits: ChargeSwitch and MagMAX beads. In both cases, the ProMagBot could successfully extract viral RNAs from 50 μL plasma samples containing as low as 102 copies of viral RNAs in 20 minutes. Our results demonstrated the ability of ProMagBot to prepare samples from complex mediums at the point of need. We believe such a device would enable rapid and robust sample preparation in various settings, including resource-limited or remote environments, and accelerate the development of next-generation point-of-need nucleic acid testing.
Collapse
Affiliation(s)
- Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
5
|
Lin TT, Wang JW, Shi QN, Wang HF, Pan JZ, Fang Q. An automated, fully-integrated nucleic acid analyzer based on microfluidic liquid handling robot technique. Anal Chim Acta 2023; 1239:340698. [PMID: 36628766 DOI: 10.1016/j.aca.2022.340698] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
On-site nucleic acid testing (NAT) plays an important role for disease monitoring and pathogen diagnosis. In this work, we developed an automated and fully-integrated nucleic acid analyzer by combining the automated liquid handling robot technique with the microfluidic droplet-based real-time PCR assay technique. The present analyzer could achieve multiple operations including sample introduction, nucleic acid extraction based on magnetic solid-phase extraction, reverse transcription and, sample droplet generation, PCR amplification, real-time and dual fluorescence detection of droplet array. A strategy of constructing an integrated compact and low-cost system was adopted to minimize the analyzer size to 50 × 45 × 45 cm (length × width × height), and reduce the instrument cost to ca. $900 with a single analysis cost less than $5. A simple chip was also designed to pre-load reagents and carry oil-covered PCR reaction droplets. We applied the analyzer to identify eight types of influenza pathogens in human throat swabs, and the results were consistent with the colloidal gold method.
Collapse
Affiliation(s)
- Tong-Tong Lin
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Nuan Shi
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Schneider L, Cui F, Tripathi A. Isolation of target DNA using synergistic magnetic bead transport and electrokinetic flow. BIOMICROFLUIDICS 2021; 15:024104. [PMID: 33763161 PMCID: PMC7972524 DOI: 10.1063/5.0045307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/07/2021] [Indexed: 05/13/2023]
Abstract
The advent and dissemination of next-generation sequencing (NGS) technologies such as Illumina's sequencing platforms has brought forth vast reductions in the cost, time, and technical difficulties associated with DNA and RNA sequencing. Despite this trend, the workflow required to generate nucleic acid libraries for sequencing remains time-consuming and laborious. The following research proposes a method for simplifying and streamlining this process by replacing the manual washing steps of the common magnetic bead-based cleanup with a novel microfluidic method by integrating magnetic separation and electrokinetic purification (MSEP). Requiring no pumps, pipette mixing, vortexing, or centrifugation, MSEP relies on selective adsorption of target DNA onto the magnetic beads with subsequent transport of beads through a microchannel undergoing an antiparallel electroosmotic flow. The synergetic flow conditions were optimized using a simple electrohydrodynamic flow model. This work demonstrates that MSEP is as effective in eliminating adapter-dimers from the post-ligation library mix as the manual method while also greatly reducing the hands-on time and amount of pipetting required. Although MSEP has been applied specifically toward NGS library preparation at this time, it has the potential to be adapted and employed for any bead-based separation scheme, namely, solid phase extraction, sequence-specific hybridization, and immunoprecipitation on a microscale.
Collapse
Affiliation(s)
- Lindsay Schneider
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - Francis Cui
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
7
|
Lefebvre O, Cao HH, Cortés Francisco M, Woytasik M, Dufour-Gergam E, Ammar M, Martincic E. Reusable Embedded Microcoils for Magnetic Nano-Beads Trapping in Microfluidics: Magnetic Simulation and Experiments. MICROMACHINES 2020; 11:mi11030257. [PMID: 32121171 PMCID: PMC7143386 DOI: 10.3390/mi11030257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/22/2023]
Abstract
In this study, a microfluidic chip with integrated coil was designed and fabricated for the aim of effectively trapping magnetic nanobeads (Adembeads®, 300 nm) and measuring the chip's temperature during the working time. In addition, a reversible technique of bonding Polydimethylsiloxane (PDMS) channels was presented. This bonding process used a coating layer of CYTOPproduct as a protection, insulation and low-adhesion layer. The reversible packaging technique allows the bottom substrate to be reused, possibly equipped with sensors, and to use a disposable microchannels network. The FE method was employed to calculate the magnetic field and power consumption by the ANSYS® version 12.1 software. Merit factors were defined in order to synthetically represent the ability of the simulated coil to trap beads for a unit power consumption, i.e. a given heat generation. The simulation results propose a new approach to optimize the design criteria in fabricating planar microcoils. The optimal microcoils were fabricated and then used to realize a magnetic immunoassay in a microfluidic chip. The aim was to integrate these microcoils into a lab-on-chip and obtain a fast and highly sensitive biological element detection.
Collapse
Affiliation(s)
- Olivier Lefebvre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France; (M.C.F.); (M.W.); (E.D.-G.); (M.A.)
- Correspondence: ; +33-170-270-528
| | - Hong Ha Cao
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam; (H.H.C.); (E.M.)
| | - Meritxell Cortés Francisco
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France; (M.C.F.); (M.W.); (E.D.-G.); (M.A.)
| | - Marion Woytasik
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France; (M.C.F.); (M.W.); (E.D.-G.); (M.A.)
| | - Elisabeth Dufour-Gergam
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France; (M.C.F.); (M.W.); (E.D.-G.); (M.A.)
| | - Mehdi Ammar
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France; (M.C.F.); (M.W.); (E.D.-G.); (M.A.)
| | - Emile Martincic
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam; (H.H.C.); (E.M.)
| |
Collapse
|
8
|
Zhang J, Su X, Xu J, Wang J, Zeng J, Li C, Chen W, Li T, Min X, Zhang D, Zhang S, Ge S, Zhang J, Xia N. A point of care platform based on microfluidic chip for nucleic acid extraction in less than 1 minute. BIOMICROFLUIDICS 2019; 13:034102. [PMID: 31123534 PMCID: PMC6506337 DOI: 10.1063/1.5088552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/19/2019] [Indexed: 05/25/2023]
Abstract
In view of the complex procedure of nucleic acid extraction, there exists a huge challenge for the widespread use of point-of-care diagnostics for nucleic acid testing. To achieve point-of-care applications in a more rapid and cost-efficient manner, we designed a snake pipe-shaped microfluidic chip so as to accomplish reagents-prestored, time-saving, operation-simple nucleic acid extraction. All reagents needed for this process, including lysis buffer, wash buffer, elution buffer, and so on, were preloaded in the snake pipe and securely isolated by membrane valves, without the need for using any specialized equipment. By an integrated chip and a powerful ultrasonic, this device could complete virus nucleic acid extraction from sophisticated serum samples in less than 1 min. We used hepatitis B virus (HBV) and human immunodeficiency virus (HIV) mixed with different sources of serum as samples to be extracted. The coefficient of variation of HBV and HIV extraction on-chip was 1.32% and 2.74%, respectively, and there were no significant differences between on-chip and commercial instrument extraction (P > 0.05, α = 0.05) in different dilution ratios, which showed that the extraction device we established had excellent stability and sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shiyin Zhang
- Authors to whom correspondence should be addressed: and
| | - Shengxiang Ge
- Authors to whom correspondence should be addressed: and
| | | | | |
Collapse
|
9
|
Pham QN, Trinh KTL, Tran NKS, Park TS, Lee NY. Fabrication of 3D continuous-flow reverse-transcription polymerase chain reaction microdevice integrated with on-chip fluorescence detection for semi-quantitative assessment of gene expression. Analyst 2018; 143:5692-5701. [PMID: 30318528 DOI: 10.1039/c8an01739e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We fabricate a three-dimensional (3D) microdevice operated with minimal peripheral accessories, including a portable pump for semi-automated sample delivery and a single heater for temperature control, for performing reverse transcription polymerase chain reaction (RT-PCR) integrated with a downstream fluorescence detection module for semi-quantitative assessment of gene expression. The microdevice was fabricated by wrapping a polytetrafluoroethylene (PTFE) tube around a pre-designed polycarbonate mold to create a seamless microchannel for both the reverse transcription (RT) of RNA and the amplification of complementary DNA. In addition, a silicone tube, which underwent a two-step surface modification mediated by polyethyleneimine and glutaraldehyde coating, was connected at the outlet to capture amplicons downstream of the PTFE tube for on-site fluorescence detection. This fabrication method enabled continuous-flow RT-PCR (CF RT-PCR) using the 3D CF RT-PCR microdevice as a reactor, a single heater for the temperature control of both RT and PCR processes, and a disposable plastic syringe for semi-automated sample delivery. The microdevice was successfully implemented for the identification of the β-actin gene, a constitutively expressed gene in all cells, and the sphingosine-1-phosphate lyase 1 gene, a potential pharmacological target gene in the diagnosis of cancer, diabetes, and atherosclerosis. This portable integrated microdevice offers a potential approach towards preliminary studies of gene expression and identification of RNA viruses.
Collapse
Affiliation(s)
- Quang Nghia Pham
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | | | | | | | | |
Collapse
|
10
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
11
|
Basha IHK, Ho ETW, Yousuff CM, Hamid NHB. Towards Multiplex Molecular Diagnosis-A Review of Microfluidic Genomics Technologies. MICROMACHINES 2017; 8:E266. [PMID: 30400456 PMCID: PMC6190060 DOI: 10.3390/mi8090266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.
Collapse
Affiliation(s)
- Ismail Hussain Kamal Basha
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Eric Tatt Wei Ho
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Caffiyar Mohamed Yousuff
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Nor Hisham Bin Hamid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
12
|
Ma S, Murphy TW, Lu C. Microfluidics for genome-wide studies involving next generation sequencing. BIOMICROFLUIDICS 2017; 11:021501. [PMID: 28396707 PMCID: PMC5346105 DOI: 10.1063/1.4978426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 05/11/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.
Collapse
Affiliation(s)
- Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Travis W Murphy
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| |
Collapse
|
13
|
Ha ML, Zhang Y, Lee NY. A functionally integrated thermoplastic microdevice for one-step solid-phase-based nucleic acid purification and isothermal amplification for facile detection of foodborne pathogen. Biotechnol Bioeng 2016; 113:2614-2623. [DOI: 10.1002/bit.26027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/13/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Minh Luan Ha
- Department of BioNano Technology, Gachon University; 1342 Seongnam-daero, Sujeong-gu; Seongnam-si 461-701 Gyeonggi-do Republic of Korea
| | - Yu Zhang
- Department of BioNano Technology, Gachon University; 1342 Seongnam-daero, Sujeong-gu; Seongnam-si 461-701 Gyeonggi-do Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University; 1342 Seongnam-daero, Sujeong-gu; Seongnam-si 461-701 Gyeonggi-do Republic of Korea
- Gachon Medical Research Institute; Gil Medical Center; Inchon 405-760 Republic of Korea
| |
Collapse
|
14
|
Di Felice E, Mauroy A, Pozzo FD, Thiry D, Ceci C, Di Martino B, Marsilio F, Thiry E. Bovine noroviruses: A missing component of calf diarrhoea diagnosis. Vet J 2015; 207:53-62. [PMID: 26631944 PMCID: PMC7110452 DOI: 10.1016/j.tvjl.2015.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/27/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
Abstract
Noroviruses are RNA viruses that belong to the Genus Norovirus, Family Caliciviridae, and infect human beings and several animal species, including cattle. Bovine norovirus infections have been detected in cattle of a range of different ages throughout the world. Currently there is no suitable cell culture system for these viruses and information on their pathogenesis is limited. Molecular and serological tests have been developed, but are complicated by the high genetic and antigenic diversity of bovine noroviruses. Bovine noroviruses can be detected frequently in faecal samples of diarrhoeic calves, either alone or in association with other common enteric pathogens, suggesting a role for these viruses in the aetiology of calf enteritis.
Collapse
Affiliation(s)
| | - Axel Mauroy
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium.
| | - Fabiana Dal Pozzo
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| | - Damien Thiry
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| | - Chiara Ceci
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Etienne Thiry
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
15
|
Pandit KR, Nanayakkara IA, Cao W, Raghavan SR, White IM. Capture and Direct Amplification of DNA on Chitosan Microparticles in a Single PCR-Optimal Solution. Anal Chem 2015; 87:11022-9. [DOI: 10.1021/acs.analchem.5b03006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Weidong Cao
- Canon U.S. Life
Sciences, Inc., Rockville, Maryland, United States
| | | | | |
Collapse
|
16
|
Kalsi S, Valiadi M, Tsaloglou MN, Parry-Jones L, Jacobs A, Watson R, Turner C, Amos R, Hadwen B, Buse J, Brown C, Sutton M, Morgan H. Rapid and sensitive detection of antibiotic resistance on a programmable digital microfluidic platform. LAB ON A CHIP 2015; 15:3065-75. [PMID: 26086197 DOI: 10.1039/c5lc00462d] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The widespread dissemination of CTX-M extended spectrum β-lactamases among Escherichia coli bacteria, both in nosocomial and community environments, is a challenge for diagnostic bacteriology laboratories. We describe a rapid and sensitive detection system for analysis of DNA containing the blaCTX-M-15 gene using isothermal DNA amplification by recombinase polymerase amplification (RPA) on a digital microfluidic platform; active matrix electrowetting-on-dielectric (AM-EWOD). The devices have 16,800 electrodes that can be independently controlled to perform multiple and simultaneous droplet operations. The device includes an in-built impedance sensor for real time droplet position and size detection, an on-chip thermistor for temperature sensing and an integrated heater for regulating the droplet temperature. Automatic dispensing of droplets (45 nL) from reservoir electrodes is demonstrated with a coefficient of variation (CV) in volume of approximately 2%. The RPA reaction is monitored in real-time using exonuclease fluorescent probes. Continuous mixing of droplets during DNA amplification significantly improves target DNA detection by at least 100 times compared to a benchtop assay, enabling the detection of target DNA over four-order-of-magnitude with a limit of detection of a single copy within ~15 minutes.
Collapse
Affiliation(s)
- Sumit Kalsi
- Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shi X, Chen CH, Gao W, Chao SH, Meldrum DR. Parallel RNA extraction using magnetic beads and a droplet array. LAB ON A CHIP 2015; 15:1059-65. [PMID: 25519439 PMCID: PMC4349128 DOI: 10.1039/c4lc01111b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleic acid extraction is a necessary step for most genomic/transcriptomic analyses, but it often requires complicated mechanisms to be integrated into a lab-on-a-chip device. Here, we present a simple, effective configuration for rapidly obtaining purified RNA from low concentration cell medium. This Total RNA Extraction Droplet Array (TREDA) utilizes an array of surface-adhering droplets to facilitate the transportation of magnetic purification beads seamlessly through individual buffer solutions without solid structures. The fabrication of TREDA chips is rapid and does not require a microfabrication facility or expertise. The process takes less than 5 minutes. When purifying mRNA from bulk marine diatom samples, its repeatability and extraction efficiency are comparable to conventional tube-based operations. We demonstrate that TREDA can extract the total mRNA of about 10 marine diatom cells, indicating that the sensitivity of TREDA approaches single-digit cell numbers.
Collapse
Affiliation(s)
- Xu Shi
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
| | - Chun-Hong Chen
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
- Department of Electrical Engineering , National Cheng Kung University Tainan , Taiwan
| | - Weimin Gao
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
| | - Shih-hui Chao
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
| | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
| |
Collapse
|
18
|
|
19
|
Reinholt SJ, Baeumner AJ. Microfluidic Isolation of Nucleic Acids. Angew Chem Int Ed Engl 2014; 53:13988-4001. [DOI: 10.1002/anie.201309580] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 01/03/2023]
|
20
|
A microfluidic immunomagnetic bead-based system for the rapid detection of influenza infections: from purified virus particles to clinical specimens. Biomed Microdevices 2014; 15:539-51. [PMID: 23420191 PMCID: PMC7087985 DOI: 10.1007/s10544-013-9753-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Seasonal and novel influenza infections have the potential to cause worldwide pandemics. In order to properly treat infected patients and to limit its spread, a rapid, accurate and automatic influenza diagnostic tool needs to be developed. This study therefore presents a new integrated microfluidic system for the rapid detection of influenza infections. It integrated a suction-type, pneumatic-driven microfluidic control module, a magnetic bead-based fluorescent immunoassay (FIA) and an end-point optical detection module. This new system can successfully distinguish between influenza A and B using a single chip test within 15 min automatically, which is faster than existing devices. By utilizing the micromixers to thoroughly wash out the sputum-like mucus, this microfluidic system could be used for the diagnosis of clinical specimens and reduced the required sample volume to 40 μL. Furthermore, the results of diagnostic assays from 86 patient specimens have demonstrated that this system has 84.8 % sensitivity and 75.0 % specificity. This developed system may provide a powerful platform for the fast screening of influenza infections.
Collapse
|
21
|
Reinholt SJ, Behrent A, Greene C, Kalfe A, Baeumner AJ. Isolation and amplification of mRNA within a simple microfluidic lab on a chip. Anal Chem 2014; 86:849-56. [PMID: 24328414 PMCID: PMC3923508 DOI: 10.1021/ac403417z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major modules for realizing molecular biological assays in a micro-total analysis system (μTAS) were developed for the detection of pathogenic organisms. The specific focus was the isolation and amplification of eukaryotic mRNA within a simple, single-channel device for very low RNA concentrations that could then be integrated with detection modules. The hsp70 mRNA from Cryptosporidium parvum was used as a model analyte. Important points of study were surface chemistries within poly(methyl methacrylate) (PMMA) microfluidic channels that enabled specific and sensitive mRNA isolation and amplification reactions for very low mRNA concentrations. Optimal conditions were achieved when the channel surface was carboxylated via UV/ozone treatment followed by the immobilization of polyamidoamine (PAMAM) dendrimers on the surface, thus increasing the immobilization efficiency of the thymidine oligonucleotide, oligo(dT)25, and providing a reliable surface for the amplification reaction, importantly, without the need for blocking agents. Additional chemical modifications of the remaining active surface groups were studied to avoid nonspecific capturing of nucleic acids and hindering of the mRNA amplification at low RNA concentrations. Amplification of the mRNA was accomplished using nucleic acid sequence-based amplification (NASBA), an isothermal, primer-dependent technique. Positive controls consisting of previously generated NASBA amplicons could be diluted 10(15) fold and still result in successful on-chip reamplification. Finally, the successful isolation and amplification of mRNA from as few as 30 C. parvum oocysts was demonstrated directly on-chip and compared to benchtop devices. This is the first proof of successful mRNA isolation and NASBA-based amplification of mRNA within a simple microfluidic device in relevant analytical volumes.
Collapse
Affiliation(s)
- Sarah J. Reinholt
- Department of Biological and Environmental Engineering, Ithaca, NY, 14853, USA
| | - Arne Behrent
- Department of Biological and Environmental Engineering, Ithaca, NY, 14853, USA
| | - Cassandra Greene
- Department of Biological and Environmental Engineering, Ithaca, NY, 14853, USA
| | - Ayten Kalfe
- Department of Biological and Environmental Engineering, Ithaca, NY, 14853, USA
| | - Antje J. Baeumner
- Department of Biological and Environmental Engineering, Ithaca, NY, 14853, USA
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Germany
| |
Collapse
|
22
|
Ríos Á, Ríos Á, Zougagh M, Zougagh M. Sample preparation for micro total analytical systems (μ-TASs). Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Zhang R, Gong HQ, Zeng X, Lou C, Sze C. A microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay. Anal Chem 2013; 85:1484-91. [PMID: 23272769 DOI: 10.1021/ac3026509] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purification of nucleic acids from a low quantity of bacterial cells in minute volume is important in many clinical and biological applications. We developed a novel microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from bacterial cells in the range of 5000 down to a single cell in the sample volume of 1 μl or 125 nl, which can be directly put through on-chip quantitative PCR assay. The aqueous phase bacterial lysate was isolated in an array of microwells, after which an immiscible organic (phenol-chloroform) phase was introduced in a headspace channel connecting the microwell array. Continuous flow of the organic phase increases the interfacial contact with the aqueous phase to achieve purification of target nucleic acid through phase partitioning. Significantly enhanced nucleic acid recovery yield, up to 10 fold higher, was achieved using the chip-based liquid phase nucleic acid purification technique compared to that obtained by the conventional column-based solid phase nucleic acid extraction method. One step vacuum-driven microfluidics allowed an on-chip quantitative PCR assay to be carried out in the same microwells within which bacterial nucleic acids were isolated, avoiding sample loss during liquid transfer. Using this nucleic acid purification device set in a two-dimensional (2D) array format of 900 microwells, it was demonstrated for the first time that high-throughput extraction of RNA couple with direct on-chip PCR analysis from single bacterial cells could be achieved. Our microfluidic platform offered a simple and effective solution for nucleic acid preparation, which can be integrated for automated bacterial pathogen detection and high throughput transcriptional profiling.
Collapse
Affiliation(s)
- Rui Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | |
Collapse
|
24
|
Modak N, Pal A, Datta A, Ganguly R. Bioseparation in a Microfluidic Channel Using Magnetic Field Flow Fractionation. ACTA ACUST UNITED AC 2012. [DOI: 10.1260/1759-3093.3.1-2.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Basore JR, Baker LA. Applications of microelectromagnetic traps. Anal Bioanal Chem 2012; 403:2077-88. [DOI: 10.1007/s00216-012-6040-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/30/2012] [Accepted: 04/10/2012] [Indexed: 11/28/2022]
|
26
|
Chia BT, Yang XY, Cheng MY, Lin CW, Yang YJ. An electromagnetically-driven microfluidic platform with indirect-heating thermo-pneumatic valves. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Xu G, Hsieh TM, Lee DYS, Ali EM, Xie H, Looi XL, Koay ESC, Li MH, Ying JY. A self-contained all-in-one cartridge for sample preparation and real-time PCR in rapid influenza diagnosis. LAB ON A CHIP 2010; 10:3103-3111. [PMID: 20865195 DOI: 10.1039/c005265e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Herein we present a fully automated system with pseudo-multiplexing capability for rapid infectious disease diagnosis. The all-in-one system was comprised of a polymer cartridge, a miniaturized thermal cycler, 1-color, 3-chamber fluorescence detectors for real-time reverse transcription polymerase chain reaction (RRT-PCR), and a pneumatic fluidic delivery unit consisting of two pinch-valve manifolds and two pneumatic pumps. The disposable, self-contained cartridge held all the necessary reagents for viral RNA purification and reverse transcription polymerase chain reaction (RT-PCR) detection, which took place all within the completely sealed cartridge. The operator only needed to pipette the patient's sample with lysis buffer into the cartridge, and the system would automatically perform the entire sample preparation and diagnosis within 2.5 h. We have successfully employed this system for seasonal influenza A H1N1 typing and sub-typing, obtaining comparable sensitivity as the experiments conducted using manual RNA extraction and commercial thermal cycler. A minimum detectable virus loading of 100 copies per μl has been determined by serial dilution experiments. This all-in-one desktop system would be suitable for decentralized disease diagnosis at immigration check points and outpatient clinics, and would not require highly skilled operators.
Collapse
Affiliation(s)
- Guolin Xu
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080;
| | - Samuel Kim
- Polymer Research Institute and National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea;
| |
Collapse
|
29
|
Ganguly R, Puri IK. Microfluidic transport in magnetic MEMS and bioMEMS. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:382-99. [DOI: 10.1002/wnan.92] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
31
|
Gijs MAM, Lacharme F, Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 2010; 110:1518-63. [PMID: 19961177 DOI: 10.1021/cr9001929] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland.
| | | | | |
Collapse
|
32
|
Mahalanabis M, Do J, ALMuayad H, Zhang JY, Klapperich CM. An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdevices 2010; 12:353-9. [PMID: 20066496 PMCID: PMC2998058 DOI: 10.1007/s10544-009-9391-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Here we report the demonstration of an integrated microfluidic chip that performs helicase dependent amplification (HDA) on samples containing live bacteria. Combined chip-based sample preparation and isothermal amplification are attractive for world health applications, since the need for instrumentation to control flow rate and temperature changes are reduced or eliminated. Bacteria lysis, nucleic acid extraction, and DNA amplification with a fluorescent reporter are incorporated into a disposable polymer cartridge format. Smart passive fluidic control using a flap valve and a hydrophobic vent (with a nanoporous PTFE membrane) with a simple on-chip mixer eliminates multiple user operations. The device is able to detect as few as ten colony forming units (CFU) of E. coli in growth medium.
Collapse
Affiliation(s)
| | - Jaephil Do
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hussam ALMuayad
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jane Y. Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Catherine M. Klapperich
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA, Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
33
|
Huang SB, Wu MH, Lee GB. A tunable micro filter modulated by pneumatic pressure for cell separation. SENSORS AND ACTUATORS B: CHEMICAL 2009; 142:389-399. [DOI: 10.1016/j.snb.2009.07.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
34
|
Corchero JL, Villaverde A. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 2009; 27:468-76. [PMID: 19564057 DOI: 10.1016/j.tibtech.2009.04.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/14/2009] [Accepted: 04/24/2009] [Indexed: 11/19/2022]
Abstract
Nano-sized magnetic particles are increasingly being used across a wide spectrum of biomedical fields. Upon functionalization to enable specific binding, magnetic particles and their targets can be conveniently positioned in vitro and in vivo by the distal application of magnetic fields. Furthermore, such particles can be magnetically heated after reaching their in vivo targets, thus inducing localized cell death that has a considerable therapeutic value in, for instance, cancer therapy. In this context, innovative biomedical research has produced novel applications that have exciting clinical potential. Such applications include magnetically enhanced transfection, magnetically assisted gene therapy, magnetically induced hyperthermia and magnetic-force-based tissue engineering, and the principles and utilities of these applications will be discussed here.
Collapse
Affiliation(s)
- José Luis Corchero
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08196 Barcelona, Spain
| | | |
Collapse
|