1
|
Volpi M, Paradiso A, Walejewska E, Gargioli C, Costantini M, Swieszkowski W. Automated Microfluidics-Assisted Hydrogel-Based Wet-Spinning for the Biofabrication of Biomimetic Engineered Myotendinous Junction. Adv Healthc Mater 2024; 13:e2402075. [PMID: 39313990 DOI: 10.1002/adhm.202402075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The muscle-tendon junction (MTJ) plays a pivotal role in efficiently converting the muscular contraction into a controlled skeletal movement through the tendon. Given its complex biomechanical intricacy, the biofabrication of such tissue interface represents a significant challenge in the field of musculoskeletal tissue engineering. Herein, a novel method to produce MTJ-like hydrogel yarns using a microfluidics-assisted 3D rotary wet-spinning strategy is developed. Optimization of flow rates, rotational speed, and delivery time of bioinks enables the production of highly compartmentalized scaffolds that recapitulate the muscle, tendon, and the transient MTJ-like region. Additionally, such biofabrication parameters are validated in terms of cellular response by promoting an optimal uniaxial alignment for both muscle and tendon precursor cells. By sequentially wet-spinning C2C12 myoblasts and NIH 3T3 fibroblasts, a gradient-patterned cellular arrangement mirroring the intrinsic biological heterogeneity of the MTJ is successfully obtained. The immunofluorescence assessment further reveals the localized expression of tissue-specific markers, including myosin heavy chain and collagen type I/III, which demonstrate muscle and tenogenic tissue maturation, respectively. Remarkably, the muscle-tendon transition zone exhibits finger-like projection of the multinucleated myotubes in the tenogenic compartment, epitomizing the MTJ signature architecture.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Walejewska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
2
|
Nguyen ML, Demri N, Lapin B, Di Federico F, Gropplero G, Cayrac F, Hennig K, Gomes ER, Wilhelm C, Roman W, Descroix S. Studying the impact of geometrical and cellular cues on myogenesis with a skeletal muscle-on-chip. LAB ON A CHIP 2024; 24:4147-4160. [PMID: 39072529 DOI: 10.1039/d4lc00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In the skeletal muscle tissue, cells are organized following an anisotropic architecture, which is both required during myogenesis when muscle precursor cells fuse to generate myotubes and for its contractile function. To build an in vitro skeletal muscle tissue, it is therefore essential to develop methods to organize cells in an anisotropic fashion, which can be particularly challenging, especially in 3D. In this study, we present a versatile muscle-on-chip system with adjustable collagen hollow tubes that can be seeded with muscle precursor cells. The collagen acts both as a tube-shaped hollow mold and as an extracellular matrix scaffold that can house other cell types for co-culture. We found that the diameter of the channel affects the organization of the muscle cells and that proper myogenesis was obtained at a diameter of 75 μm. In these conditions, muscle precursor cells fused into long myotubes aligned along these collagen channels, resulting in a fascicle-like structure. These myotubes exhibited actin striations and upregulation of multiple myogenic genes, reflecting their maturation. Moreover, we showed that our chip allowed muscle tissue culture and maturation over a month, with the possibility of fibroblast co-culture embedding in the collagen matrix.
Collapse
Affiliation(s)
- M-L Nguyen
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - N Demri
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - B Lapin
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Di Federico
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - G Gropplero
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Cayrac
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - K Hennig
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - C Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - W Roman
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - S Descroix
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| |
Collapse
|
3
|
Fan SH, Li N, Huang KF, Chang YT, Wu CC, Chen SL. MyoD Over-Expression Rescues GST-bFGF Repressed Myogenesis. Int J Mol Sci 2024; 25:4308. [PMID: 38673893 PMCID: PMC11050597 DOI: 10.3390/ijms25084308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shen-Liang Chen
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan; (S.-H.F.); (N.L.); (K.-F.H.); (Y.-T.C.); (C.-C.W.)
| |
Collapse
|
4
|
Caron L, Testa S, Magdinier F. Induced Pluripotent Stem Cells for Modeling Physiological and Pathological Striated Muscle Complexity. J Neuromuscul Dis 2023; 10:761-776. [PMID: 37522215 PMCID: PMC10578229 DOI: 10.3233/jnd-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Leslie Caron
- Aix-Marseille Univ-INSERM, MMG, Marseille, France
| | | | | |
Collapse
|
5
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
6
|
Li Y, Chen W, Ogawa K, Koide M, Takahashi T, Hagiwara Y, Itoi E, Aizawa T, Tsuchiya M, Izumi R, Suzuki N, Aoki M, Kanzaki M. Feeder-supported in vitro exercise model using human satellite cells from patients with sporadic inclusion body myositis. Sci Rep 2022; 12:1082. [PMID: 35058512 PMCID: PMC8776910 DOI: 10.1038/s41598-022-05029-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
Contractile activity is a fundamental property of skeletal muscles. We describe the establishment of a “feeder-supported in vitro exercise model” using human-origin primary satellite cells, allowing highly-developed contractile myotubes to readily be generated by applying electrical pulse stimulation (EPS). The use of murine fibroblasts as the feeder cells allows biological responses to EPS in contractile human myotubes to be selectively evaluated with species-specific analyses such as RT-PCR. We successfully applied this feeder-supported co-culture system to myotubes derived from primary satellite cells obtained from sporadic inclusion body myositis (sIBM) patients who are incapable of strenuous exercise testing. Our results demonstrated that sIBM myotubes possess essentially normal muscle functions, including contractility development, de novo sarcomere formation, and contraction-dependent myokine upregulation, upon EPS treatment. However, we found that some of sIBM myotubes, but not healthy control myotubes, often exhibit abnormal cytoplasmic TDP-43 accumulation upon EPS-evoked contraction, suggesting potential pathogenic involvement of the contraction-inducible TDP-43 distribution peculiar to sIBM. Thus, our “feeder-supported in vitro exercise model” enables us to obtain contractile human-origin myotubes, potentially utilizable for evaluating exercise-dependent intrinsic and pathogenic properties of patient muscle cells. Our approach, using feeder layers, further expands the usefulness of the “in vitro exercise model”.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Weijian Chen
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Kazumi Ogawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Orthopaedic Surgery, Tohoku Rosai Hospital, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
7
|
Venter C, Myburgh KH, Niesler CU. Co-culture of pro-inflammatory macrophages and myofibroblasts: Evaluating morphological phenotypes and screening the effects of signaling pathway inhibitors. Physiol Rep 2021; 9:e14704. [PMID: 33463904 PMCID: PMC7814483 DOI: 10.14814/phy2.14704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle regeneration is a complex process influenced by non-myogenic macrophages and fibroblasts, which acquire different phenotypes in response to changes in the injury milieu or changes in experimental conditions. In vitro, serum stimulates the differentiation of fibroblasts into myofibroblasts, while lipopolysaccharide (LPS) stimulates the polarization of unstimulated (M0) macrophages to acquire an M1 pro-inflammatory phenotype. We characterized these phenotypes using morphology (with circularity as shape descriptor; perfect circularity = 1.0) and phenotype-specific markers. Myofibroblasts (high α-smooth muscle actin [SMA] expression) had high circularity (mean 0.60 ± 0.03). Their de-differentiation to fibroblasts (low α-SMA expression) significantly lessened circularity (0.47 ± 0.01 and 0.35 ± 0.02 in 2% or 0% serum culture media respectively (p < 0.05). Unstimulated (M0) macrophages (no CD86 expression) had high circularity (0.72 ± 0.02) which decreased when stimulated to M1 macrophages (CD86 expression) (LPS; 0.61 ± 0.02; p < 0.05). Utilizing these established conditions, we then co-cultured M1 macrophages with myofibroblasts or myoblasts. M1 macrophages significantly decreased relative myofibroblast numbers (from 223 ± 22% to 64 ± 7%), but not myoblast numbers. This pro-inflammatory co-culture model was used to rapidly screen the following four compounds for ability to prevent M1 macrophage-mediated decrease in myofibroblast numbers: L-NAME (inducible nitric oxide synthase inhibitor), SB203580 (p38 mitogen-activated protein kinase inhibitor), SP600125 (c-Jun N-terminal kinase inhibitor) and LY294002 (phosphoinositide 3-kinase [PI3K] inhibitor). We found that LY294002 rescued myofibroblasts and decreased macrophage numbers. Myofibroblast rescue did not occur with L-NAME, SB203580 or SP600125 incubation. In conclusion, these data suggest a PI3K-associated mechanism whereby myofibroblasts can be rescued, despite simulated pro-inflammatory conditions.
Collapse
Affiliation(s)
- Colin Venter
- Discipline of BiochemistrySchool of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| | - Kathryn H. Myburgh
- Department Physiological SciencesStellenbosch UniversityMatielandSouth Africa
| | - Carola U. Niesler
- Discipline of BiochemistrySchool of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| |
Collapse
|
8
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 410] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
10
|
Abstract
Organs-on-chips are broadly defined as microfabricated surfaces or devices designed to engineer cells into microscale tissues with native-like features and then extract physiologically relevant readouts at scale. Because they are generally compatible with patient-derived cells, these technologies can address many of the human relevance limitations of animal models. As a result, organs-on-chips have emerged as a promising new paradigm for patient-specific disease modeling and drug development. Because neuromuscular diseases span a broad range of rare conditions with diverse etiology and complex pathophysiology, they have been especially challenging to model in animals and thus are well suited for organ-on-chip approaches. In this Review, we first briefly summarize the challenges in neuromuscular disease modeling with animal models. Next, we describe a variety of existing organ-on-chip approaches for neuromuscular tissues, including a survey of cell sources for both muscle and nerve, and two- and three-dimensional neuromuscular tissue-engineering techniques. Although researchers have made tremendous advances in modeling neuromuscular diseases on a chip, the remaining challenges in cell sourcing, cell maturity, tissue assembly and readout capabilities limit their integration into the drug development pipeline today. However, as the field advances, models of healthy and diseased neuromuscular tissues on a chip, coupled with animal models, have vast potential as complementary tools for modeling multiple aspects of neuromuscular diseases and identifying new therapeutic strategies. Summary: Modeling neuromuscular diseases is challenging due to their complex etiology and pathophysiology. Here, we review the cell sources and tissue-engineering procedures that are being integrated as emerging neuromuscular disease models.
Collapse
Affiliation(s)
- Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Jiang L, Ivich F, Tahsin S, Tran M, Frank SB, Miranti CK, Zohar Y. Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. BIOMICROFLUIDICS 2019; 13:064116. [PMID: 31768202 PMCID: PMC6867939 DOI: 10.1063/1.5126714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/11/2019] [Indexed: 05/10/2023]
Abstract
The prostate is a walnut-sized gland that surrounds the urethra of males at the base of the bladder comprising a muscular portion, which controls the release of urine, and a glandular portion, which secretes fluids that nourish and protect sperms. Here, we report the development of a microfluidic-based model of a human prostate gland. The polydimethylsiloxane (PDMS) microfluidic device, consisting of two stacked microchannels separated by a polyester porous membrane, enables long-term in vitro cocultivation of human epithelial and stromal cells. The porous separation membrane provides an anchoring scaffold for long-term culturing of the two cell types on its opposite surfaces allowing paracrine signaling but not cell crossing between the two channels. The microfluidic device is transparent enabling high resolution bright-field and fluorescence imaging. Within this coculture model of a human epithelium/stroma interface, we simulated the functional development of the in vivo human prostate gland. We observed the successful differentiation of basal epithelial cells into luminal secretory cells determined biochemically by immunostaining with known differentiation biomarkers, particularly androgen receptor expression. We also observed morphological changes where glandlike mounds appeared with relatively empty centers reminiscent of prostatic glandular acini structures. This prostate-on-a-chip will facilitate the direct evaluation of paracrine and endocrine cross talk between these two cell types as well as studies associated with normal vs disease-related events such as prostate cancer.
Collapse
Affiliation(s)
- L. Jiang
- Department of Aerospace & Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Author to whom correspondence should be addressed:
| | - F. Ivich
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | | | - M. Tran
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
12
|
Takahashi H, Shimizu T, Okano T. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology. Sci Rep 2018; 8:13932. [PMID: 30224737 PMCID: PMC6141563 DOI: 10.1038/s41598-018-32163-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle physiology and the mechanisms of muscle diseases can be effectively studied by an in-vitro tissue model produced by muscle tissue engineering. Engineered human cell-based tissues are required more than ever because of the advantages they bring as tissue models in research studies. This study reports on a production method of a human skeletal myofiber sheet that demonstrates biomimetic properties including the aligned structure of myofibers, basement membrane-like structure of the extracellular matrix, and unidirectional contractile ability. The contractile ability and drug responsibility shown in this study indicate that this engineered muscle tissue has potential as a human cell-based tissue model for clinically relevant in-vitro studies in muscle physiology and drug discovery. Moreover, this engineered tissue can be used to better understand the relationships between mechanical stress and myogenesis, including muscle growth and regeneration. In this study, periodic exercise induced by continuous electrical pulse stimulation enhanced the contractile ability of the engineered myofibers and the secretion of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) from the exercising myofibers. Since the physiology of skeletal muscle is directly related to mechanical stress, these features point to application as a tissue model and platform for future biological studies of skeletal muscle including muscle metabolism, muscle atrophy and muscle regeneration.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
13
|
Cellular alignment and fusion: Quantifying the effect of macrophages and fibroblasts on myoblast terminal differentiation. Exp Cell Res 2018; 370:542-550. [DOI: 10.1016/j.yexcr.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
|
14
|
Rivera-Mulia JC, Schwerer H, Besnard E, Desprat R, Trevilla-Garcia C, Sima J, Bensadoun P, Zouaoui A, Gilbert DM, Lemaitre JM. Cellular senescence induces replication stress with almost no affect on DNA replication timing. Cell Cycle 2018; 17:1667-1681. [PMID: 29963964 DOI: 10.1080/15384101.2018.1491235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Organismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression. Replication stress is a complex phenomenon, defined as the slowing or stalling of replication fork progression and/or DNA synthesis, which has serious implications for genome stability, and consequently in human diseases. Aberrant replication fork structures activate the replication stress response leading to the activation of dormant origins, which is thought to be a safeguard mechanism to complete DNA replication on time. However, the relationship between replicative stress and the changes in the spatiotemporal program of DNA replication in senescence progression remains unclear. Here, we studied the DNA replication program during senescence progression in proliferative and pre-senescent cells from donors of various ages by single DNA fiber combing of replicated DNA, origin mapping by sequencing short nascent strands and genome-wide profiling of replication timing (TRT). We demonstrate that, progression into RS leads to reduced replication fork rates and activation of dormant origins, which are the hallmarks of replication stress. However, with the exception of a delay in RT of the CREB5 gene in all pre-senescent cells, RT was globally unaffected by replication stress during entry into either oncogene-induced or RS. Consequently, we conclude that RT alterations associated with physiological and accelerated aging, do not result from senescence progression. Our results clarify the interplay between senescence, aging and replication programs and demonstrate that RT is largely resistant to replication stress.
Collapse
Affiliation(s)
| | - Hélène Schwerer
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Emilie Besnard
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Romain Desprat
- c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| | | | - Jiao Sima
- a Department of Biological Science , Florida State University , Tallahassee , FL , USA
| | - Paul Bensadoun
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Anissa Zouaoui
- c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| | - David M Gilbert
- a Department of Biological Science , Florida State University , Tallahassee , FL , USA.,d Center for Genomics and Personalized Medicine , Florida State University , Tallahassee , FL , USA
| | - Jean-Marc Lemaitre
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France.,c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| |
Collapse
|
15
|
Baudequin T, Tabrizian M. Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Adv Healthc Mater 2018; 7. [PMID: 29193897 DOI: 10.1002/adhm.201700734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Indexed: 12/11/2022]
Abstract
There is a growing interest in the regeneration of tissue in interfacial regions, where biological, physical, and chemical attributes vary across tissue type. The simultaneous use of distinct cell lineages can help in developing in vitro structures, analogous to native composite tissues. This literature review gathers the recent reports that have investigated multiple cell types of various sources and lineages in a coculture system for tissue-engineered constructs. Such studies aim at mimicking the native organization of tissues and their interfaces, and/or to improve the development of complex tissue substitutes. This paper thus distinguishes itself from those focusing on technical aspects of coculturing for a single specific tissue. The first part of this review is dedicated to variables of cocultured tissue engineering such as scaffold, cells, and in vitro culture environment. Next, tissue-specific coculture methods and approaches are covered for the most studied tissues. Finally, cross-analysis is performed to highlight emerging trends in coculture principles and to discuss how tissue-specific challenges can inspire new approaches for regeneration of different interfaces to improve the outcomes of various tissue engineering strategies.
Collapse
Affiliation(s)
- Timothée Baudequin
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
| | - Maryam Tabrizian
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
- Faculty of Dentistry; McGill University; 3775 rue University, Room 313/308B Montréal QC H3A 2B4 Québec Canada
| |
Collapse
|
16
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
17
|
Jackman RW, Floro J, Yoshimine R, Zitin B, Eiampikul M, El-Jack K, Seto DN, Kandarian SC. Continuous Release of Tumor-Derived Factors Improves the Modeling of Cachexia in Muscle Cell Culture. Front Physiol 2017; 8:738. [PMID: 28993738 PMCID: PMC5622188 DOI: 10.3389/fphys.2017.00738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/11/2017] [Indexed: 01/23/2023] Open
Abstract
Cachexia is strongly associated with a poor prognosis in cancer patients but the biological trigger is unknown and therefore no therapeutics exist. The loss of skeletal muscle is the most deleterious aspect of cachexia and it appears to depend on secretions from tumor cells. Models for studying wasting in cell culture consist of experiments where skeletal muscle cells are incubated with medium conditioned by tumor cells. This has led to candidates for cachectic factors but some of the features of cachexia in vivo are not yet well-modeled in cell culture experiments. Mouse myotube atrophy measured by myotube diameter in response to medium conditioned by mouse colon carcinoma cells (C26) is consistently less than what is seen in muscles of mice bearing C26 tumors with moderate to severe cachexia. One possible reason for this discrepancy is that in vivo the C26 tumor and skeletal muscle share a circulatory system exposing the muscle to tumor factors in a constant and increasing way. We have applied Transwell®-adapted cell culture conditions to more closely simulate conditions found in vivo where muscle is exposed to the ongoing kinetics of constant tumor secretion of active factors. C26 cells were incubated on a microporous membrane (a Transwell® insert) that constitutes the upper compartment of wells containing plated myotubes. In this model, myotubes are exposed to a constant supply of cancer cell secretions in the medium but without direct contact with the cancer cells, analogous to a shared circulation of muscle and cancer cells in tumor-bearing animals. The results for myotube diameter support the idea that the use of Transwell® inserts serves as a more physiological model of the muscle wasting associated with cancer cachexia than the bolus addition of cancer cell conditioned medium. The Transwell® model supports the notion that the dose and kinetics of cachectic factor delivery to muscle play a significant role in the extent of pathology.
Collapse
Affiliation(s)
- Robert W Jackman
- Department of Health Sciences, Boston UniversityBoston, MA, United States
| | - Jess Floro
- Department of Health Sciences, Boston UniversityBoston, MA, United States
| | - Rei Yoshimine
- Department of Health Sciences, Boston UniversityBoston, MA, United States
| | - Brian Zitin
- Department of Health Sciences, Boston UniversityBoston, MA, United States
| | - Maythita Eiampikul
- Department of Health Sciences, Boston UniversityBoston, MA, United States
| | - Kahlid El-Jack
- Department of Health Sciences, Boston UniversityBoston, MA, United States
| | - Danielle N Seto
- Department of Health Sciences, Boston UniversityBoston, MA, United States
| | - Susan C Kandarian
- Department of Health Sciences, Boston UniversityBoston, MA, United States
| |
Collapse
|
18
|
Li MT, Ruehle MA, Stevens HY, Servies N, Willett NJ, Karthikeyakannan S, Warren GL, Guldberg RE, Krishnan L. * Skeletal Myoblast-Seeded Vascularized Tissue Scaffolds in the Treatment of a Large Volumetric Muscle Defect in the Rat Biceps Femoris Muscle. Tissue Eng Part A 2017; 23:989-1000. [PMID: 28372522 DOI: 10.1089/ten.tea.2016.0523] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High velocity impact injuries can often result in loss of large skeletal muscle mass, creating defects devoid of matrix, cells, and vasculature. Functional regeneration within these regions of large volumetric muscle loss (VML) continues to be a significant clinical challenge. Large cell-seeded, space-filling tissue-engineered constructs that may augment regeneration require adequate vascularization to maintain cell viability. However, the long-term effect of improved vascularization and the effect of addition of myoblasts to vascularized constructs have not been determined in large VMLs. Here, our objective was to create a new VML model, consisting of a full-thickness, single muscle defect, in the rat biceps femoris muscle, and evaluate the ability of myoblast-seeded vascularized collagen hydrogel constructs to augment VML regeneration. Adipose-derived microvessels were cultured with or without myoblasts to form vascular networks within collagen constructs. In the animal model, the VML injury was created in the left hind limb, and treated with the harvested autograft itself, constructs with microvessel fragments (MVF) only, constructs with microvessels and myoblasts (MVF+Myoblasts), or left empty. We evaluated the formation of vascular networks in vitro by light microscopy, and the capacity of vascularized constructs to augment early revascularization and muscle regeneration in the VML using perfusion angiography and creatine kinase activity, respectively. Myoblasts (Pax7+) were able to differentiate into myotubes (sarcomeric myosin MF20+) in vitro. The MVF+Myoblast group showed longer and more branched microvascular networks than the MVF group in vitro, but showed similar overall defect site vascular volumes at 2 weeks postimplantation by microcomputed tomography angiography. However, a larger number of small-diameter vessels were observed in the vascularized construct-treated groups. Yet, both vascularized implant groups showed primarily fibrotic tissue with adipose infiltration, poor maintenance of tissue volume within the VML, and little muscle regeneration. These data suggest that while vascularization may play an important supportive role, other factors besides adequate vascularity may determine the fate of regenerating volumetric muscle defects.
Collapse
Affiliation(s)
- Mon-Tzu Li
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia .,2 Department of Biomedical Engineering, Emory University , Atlanta, Georgia
| | - Marissa A Ruehle
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia .,2 Department of Biomedical Engineering, Emory University , Atlanta, Georgia
| | - Hazel Y Stevens
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| | - Nick Servies
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| | - Nick J Willett
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia .,2 Department of Biomedical Engineering, Emory University , Atlanta, Georgia .,3 Department of Orthopaedics, Atlanta Veteran's Affairs Medical Center , Decatur, Georgia
| | - Sukhita Karthikeyakannan
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| | - Gordon L Warren
- 4 Department of Physical Therapy, Georgia State University , Atlanta, Georgia
| | - Robert E Guldberg
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| | - Laxminarayanan Krishnan
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| |
Collapse
|
19
|
Pizza FX, Martin RA, Springer EM, Leffler MS, Woelmer BR, Recker IJ, Leaman DW. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions. Sci Rep 2017; 7:5094. [PMID: 28698658 PMCID: PMC5506053 DOI: 10.1038/s41598-017-05283-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Francis X Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA.
| | - Ryan A Martin
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Evan M Springer
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Maxwell S Leffler
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Bryce R Woelmer
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Isaac J Recker
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Douglas W Leaman
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.,Wright State University, 4035 Colonel Glenn Hwy., Suite 300, Beavercreek, OH, 45431, USA
| |
Collapse
|
20
|
Rao N, Agmon G, Tierney MT, Ungerleider JL, Braden RL, Sacco A, Christman KL. Engineering an Injectable Muscle-Specific Microenvironment for Improved Cell Delivery Using a Nanofibrous Extracellular Matrix Hydrogel. ACS NANO 2017; 11:3851-3859. [PMID: 28323411 PMCID: PMC5576867 DOI: 10.1021/acsnano.7b00093] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Injection of skeletal muscle progenitors has the potential to be a minimally invasive treatment for a number of diseases that negatively affect vasculature and skeletal muscle, including peripheral artery disease. However, success with this approach has been limited because of poor transplant cell survival. This is primarily attributed to cell death due to extensional flow through the needle, the harsh ischemic environment of the host tissue, a deleterious immune cell response, and a lack of biophysical cues supporting exogenous cell viability. We show that engineering a muscle-specific microenvironment, using a nanofibrous decellularized skeletal muscle extracellular matrix hydrogel and skeletal muscle fibroblasts, improves myoblast viability and maturation in vitro. In vivo, this translates to improved cell survival and engraftment and increased perfusion as a result of increased vascularization. Our results indicate that a combinatorial delivery system, which more fully recapitulates the tissue microenvironment, can improve cell delivery to skeletal muscle.
Collapse
Affiliation(s)
- Nikhil Rao
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, 92037
| | - Gillie Agmon
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, 92037
| | - Matthew T. Tierney
- Graduate School of Biomedical Sciences, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA, 92037
| | - Jessica L. Ungerleider
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, 92037
| | - Rebecca L. Braden
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, 92037
| | - Alessandra Sacco
- Graduate School of Biomedical Sciences, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA, 92037
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA, 92037
| | - Karen L. Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, 92037
| |
Collapse
|
21
|
Jagla K, Kalman B, Boudou T, Hénon S, Batonnet-Pichon S. Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Semin Cell Dev Biol 2017; 64:171-180. [DOI: 10.1016/j.semcdb.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 01/23/2023]
|
22
|
Pawlikowski B, Vogler TO, Gadek K, Olwin BB. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn 2017; 246:359-367. [PMID: 28249356 DOI: 10.1002/dvdy.24495] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) are essential for self-renewal of skeletal muscle stem cells (satellite cells) and required for maintenance and repair of skeletal muscle. Satellite cells express high levels of FGF receptors 1 and 4, low levels of FGF receptor 3, and little or no detectable FGF receptor 2. Of the multiple FGFs that influence satellite cell function in culture, FGF2 and FGF6 are the only members that regulate satellite cell function in vivo by activating ERK MAPK, p38α/β MAPKs, PI3 kinase, PLCγ and STATs. Regulation of FGF signaling is complex in satellite cells, requiring Syndecan-4, a heparan sulfate proteoglycan, as well as ß1-integrin and fibronectin. During aging, reduced responsiveness to FGF diminishes satellite cell self-renewal, leading to impaired skeletal muscle regeneration and depletion of satellite cells. Mislocalization of ß1-integrin, reductions in fibronectin, and alterations in heparan sulfate content all contribute to reduced FGF responsiveness in satellite cells. How these cell surface proteins regulate satellite cell self-renewal is incompletely understood. Here we summarize the current knowledge, highlighting the role(s) for FGF signaling in skeletal muscle regeneration, satellite cell behavior, and age-induced muscle wasting. Developmental Dynamics 246:359-367, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley Pawlikowski
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Thomas Orion Vogler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Katherine Gadek
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| |
Collapse
|
23
|
Curtis A, Li DJ, DeVeale B, Onishi K, Kim MY, Blelloch R, Laird DJ, Hui EE. Patterning of sharp cellular interfaces with a reconfigurable elastic substrate. Integr Biol (Camb) 2017; 9:50-57. [PMID: 28001149 DOI: 10.1039/c6ib00203j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micropatterned cocultures are a useful experimental tool for the study of cell-cell interactions. Patterning methods often rely on sequential seeding of different cell types or removal of a barrier separating two populations, but it is difficult to pattern sharp interfaces between pure populations with low cross-contamination when using these approaches. Patterning by the use of reconfigurable substrates can overcome these limitations, but such methods can be costly and challenging to employ in a typical biology laboratory. Here, we describe a low-cost and simple-to-use reconfigurable substrate comprised of a transparent elastic material that is partially cut to form a slit that opens when the device is stretched. The slit seals back up when released, allowing two initially separate, adherent cell populations to be brought together to form a contact interface. Fluorescent imaging of patterned cocultures demonstrates the early establishment of a sharp cellular interface. As a proof of principle, we demonstrate the use of this device to study competition at the interface of two stem cell populations.
Collapse
Affiliation(s)
- Allison Curtis
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| | - David J Li
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| | - Brian DeVeale
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Kento Onishi
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Monica Y Kim
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| | - Robert Blelloch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Diana J Laird
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Elliot E Hui
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| |
Collapse
|
24
|
Pellman J, Zhang J, Sheikh F. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. J Mol Cell Cardiol 2016; 94:22-31. [PMID: 26996756 DOI: 10.1016/j.yjmcc.2016.03.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/27/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Development of cardiac fibrosis and arrhythmias is controlled by the activity of and communication between cardiomyocytes and fibroblasts in the heart. Myocyte-fibroblast interactions occur via both direct and indirect means including paracrine mediators, extracellular matrix interactions, electrical modulators, mechanical junctions, and membrane nanotubes. In the diseased heart, cardiomyocyte and fibroblast ratios and activity, and thus myocyte-fibroblast interactions, change and are thought to contribute to the course of disease including development of fibrosis and arrhythmogenic activity. Fibroblasts have a developing role in modulating cardiomyocyte electrical and hypertrophic activity, however gaps in knowledge regarding these interactions still exist. Research in this field has necessitated the development of unique approaches to isolate and control myocyte-fibroblast interactions. Numerous methods for 2D and 3D co-culture systems have been developed, while a growing part of this field is in the use of better tools for in vivo systems including cardiomyocyte and fibroblast specific Cre mouse lines for cell type specific genetic ablation. This review will focus on (i) mechanisms of myocyte-fibroblast communication and their effects on disease features such as cardiac fibrosis and arrhythmias as well as (ii) methods being used and currently developed in this field.
Collapse
Affiliation(s)
- Jason Pellman
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jing Zhang
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Farah Sheikh
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Owens DJ, Sharples AP, Polydorou I, Alwan N, Donovan T, Tang J, Fraser WD, Cooper RG, Morton JP, Stewart C, Close GL. A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. Am J Physiol Endocrinol Metab 2015; 309:E1019-31. [PMID: 26506852 DOI: 10.1152/ajpendo.00375.2015] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is a direct target for vitamin D. Observational studies suggest that low 25[OH]D correlates with functional recovery of skeletal muscle following eccentric contractions in humans and crush injury in rats. However, a definitive association is yet to be established. To address this gap in knowledge in relation to damage repair, a randomised, placebo-controlled trial was performed in 20 males with insufficient concentrations of serum 25(OH)D (45 ± 25 nmol/l). Prior to and following 6 wk of supplemental vitamin D3 (4,000 IU/day) or placebo (50 mg of cellulose), participants performed 20 × 10 damaging eccentric contractions of the knee extensors, with peak torque measured over the following 7 days of recovery. Parallel experimentation using isolated human skeletal muscle-derived myoblast cells from biopsies of 14 males with low serum 25(OH)D (37 ± 11 nmol/l) were subjected to mechanical wound injury, which enabled corresponding in vitro studies of muscle repair, regeneration, and hypertrophy in the presence and absence of 10 or 100 nmol 1α,25(OH)2D3. Supplemental vitamin D3 increased serum 25(OH)D and improved recovery of peak torque at 48 h and 7 days postexercise. In vitro, 10 nmol 1α,25(OH)2D3 improved muscle cell migration dynamics and resulted in improved myotube fusion/differentiation at the biochemical, morphological, and molecular level together with increased myotube hypertrophy at 7 and 10 days postdamage. Together, these preliminary data are the first to characterize a role for vitamin D in human skeletal muscle regeneration and suggest that maintaining serum 25(OH)D may be beneficial for enhancing reparative processes and potentially for facilitating subsequent hypertrophy.
Collapse
Affiliation(s)
- Daniel J Owens
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Adam P Sharples
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ioanna Polydorou
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Nura Alwan
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Timothy Donovan
- Department of Sport and Exercise Sciences, Glyndwr University, Plas Coch Campus, Wrexham, United Kingdom
| | - Jonathan Tang
- Faculty of Medicine and Health Science, Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - William D Fraser
- Faculty of Medicine and Health Science, Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - Robert G Cooper
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, Liverpool, United Kingdom
| | - James P Morton
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Claire Stewart
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Graeme L Close
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom;
| |
Collapse
|
26
|
Dubois V, Simitsidellis I, Laurent MR, Jardi F, Saunders PTK, Vanderschueren D, Claessens F. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage. Endocrinology 2015; 156:4522-33. [PMID: 26393303 DOI: 10.1210/en.2015-1479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Androgens increase skeletal muscle mass, but their clinical use is hampered by a lack of tissue selectivity and subsequent side effects. Selective androgen receptor modulators elicit muscle-anabolic effects while only sparingly affecting reproductive tissues. The selective androgen receptor modulator, GTx-024 (enobosarm), is being investigated for cancer cachexia, sarcopenia, and muscle wasting diseases. Here we investigate the role of muscle androgen receptor (AR) in the anabolic effect of GTx-024. In mice lacking AR in the satellite cell lineage (satARKO), the weight of the androgen-sensitive levator ani muscle was lower but was decreased further upon orchidectomy. GTx-024 was as effective as DHT in restoring levator ani weights to sham levels. Expression of the muscle-specific, androgen-responsive genes S-adenosylmethionine decarboxylase and myostatin was decreased by orchidectomy and restored by GTx-024 and DHT in control mice, whereas the expression was low and unaffected by androgen status in satARKO. In contrast, insulin-like growth factor 1Ea expression was not different between satARKO and control muscle, decreased upon castration, and was restored by DHT and GTx-024 in both genotypes. These data indicate that GTx-024 does not selectively modulate AR in the satellite cell lineage and that cells outside this lineage remain androgen responsive in satARKO muscle. Indeed, residual AR-positive cells were present in satARKO muscle, coexpressing the fibroblast-lineage marker vimentin. AR positive, muscle-resident fibroblasts could therefore be involved in the indirect effects of androgens on muscle. In conclusion, both DHT and GTx-024 target AR pathways in the satellite cell lineage, but cells outside this lineage also contribute to the anabolic effects of androgens.
Collapse
Affiliation(s)
- Vanessa Dubois
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Ioannis Simitsidellis
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Michaël R Laurent
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Ferran Jardi
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Philippa T K Saunders
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Dirk Vanderschueren
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Frank Claessens
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
27
|
Cerino G, Gaudiello E, Grussenmeyer T, Melly L, Massai D, Banfi A, Martin I, Eckstein F, Grapow M, Marsano A. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors. Biotechnol Bioeng 2015; 113:226-36. [PMID: 26126766 DOI: 10.1002/bit.25688] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/20/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022]
Abstract
Conventional tissue engineering strategies often rely on the use of a single progenitor cell source to engineer in vitro biological models; however, multi-cellular environments can better resemble the complexity of native tissues. Previous described co-culture models used skeletal myoblasts, as parenchymal cell source, and mesenchymal or endothelial cells, as stromal component. Here, we propose instead the use of adipose tissue-derived stromal vascular fraction cells, which include both mesenchymal and endothelial cells, to better resemble the native stroma. Percentage of serum supplementation is one of the crucial parameters to steer skeletal myoblasts toward either proliferation (20%) or differentiation (5%) in two-dimensional culture conditions. On the contrary, three-dimensional (3D) skeletal myoblast culture often simply adopts the serum content used in monolayer, without taking into account the new cell environment. When considering 3D cultures of mm-thick engineered tissues, homogeneous and sufficient oxygen supply is paramount to avoid formation of necrotic cores. Perfusion-based bioreactor culture can significantly improve the oxygen access to the cells, enhancing the viability and the contractility of the engineered tissues. In this study, we first investigated the influence of different serum supplementations on the skeletal myoblast ability to proliferate and differentiate during 3D perfusion-based culture. We tested percentages of serum promoting monolayer skeletal myoblast-proliferation (20%) and differentiation (5%) and suitable for stromal cell culture (10%) with a view to identify the most suitable condition for the subsequent co-culture. The 10% serum medium composition resulted in the highest number of mature myotubes and construct functionality. Co-culture with stromal vascular fraction cells at 10% serum also supported the skeletal myoblast differentiation and maturation, hence providing a functional engineered 3D muscle model that resembles the native multi-cellular environment.
Collapse
Affiliation(s)
- Giulia Cerino
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Emanuele Gaudiello
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Thomas Grussenmeyer
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Ludovic Melly
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Banfi
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Friedrich Eckstein
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Martin Grapow
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Anna Marsano
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
28
|
Understanding Fibroblasts in Order to Comprehend the Osteopathic Treatment of the Fascia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:860934. [PMID: 26357524 PMCID: PMC4556860 DOI: 10.1155/2015/860934] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/11/2014] [Accepted: 09/29/2014] [Indexed: 12/29/2022]
Abstract
The osteopathic treatment of the fascia involves several techniques, each aimed at allowing the various layers of the connective system to slide over each other, improving the responses of the afferents in case of dysfunction. However, before becoming acquainted with a method, one must be aware of the structure and function of the tissue that needs treating, in order to not only better understand the manual approach, but also make a more conscious choice of the therapeutic technique to employ, in order to adjust the treatment to the specific needs of the patient. This paper examines the current literature regarding the function and structure of the fascial system and its foundation, that is, the fibroblasts. These connective cells have many properties, including the ability to contract and to communicate with one another. They play a key role in the transmission of the tension produced by the muscles and in the management of the interstitial fluids. They are a source of nociceptive and proprioceptive information as well, which is useful for proper functioning of the body system. Therefore, the fibroblasts are an invaluable instrument, essential to the understanding of the therapeutic effects of osteopathic treatment. Scientific research should make greater efforts to better understand their functioning and relationships.
Collapse
|
29
|
Pandurangan M, Kim DH. A novel approach for in vitro meat production. Appl Microbiol Biotechnol 2015; 99:5391-5. [PMID: 25971200 DOI: 10.1007/s00253-015-6671-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Abstract
The present review describes the possibility of in vitro meat production with the help of advanced co-culturing methods. In vitro meat production method could be a possible alternative for the conventional meat production. Originally, the research on in vitro meat production was initiated by the National Aeronautics and Space Administration (NASA) for space voyages. The required key qualities for accepting in vitro meat for consumption would be good efficiency ratio, increased protein synthesis rate in skeletal muscles, and mimicking the conventional meat qualities. In vitro culturing of meat is possible with the use of skeletal muscle tissue engineering, stem cell, cell co-culture, and tissue culture methods. Co-culture of myoblast and fibroblast is believed as one of the major techniques for in vitro meat production. In our lab, we have co-cultured myoblast and fibroblast. We believe that a billion pounds of in vitro meat could be produced from one animal for consumption. However, we require a great deal of research on in vitro meat production.
Collapse
|
30
|
Dolega ME, Wagh J, Gerbaud S, Kermarrec F, Alcaraz JP, Martin DK, Gidrol X, Picollet-D’hahan N. Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells. PLoS One 2014; 9:e99416. [PMID: 24945245 PMCID: PMC4063722 DOI: 10.1371/journal.pone.0099416] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/14/2014] [Indexed: 12/15/2022] Open
Abstract
We present a simple bench-top method to fabricate enclosed circular channels for biological experiments. Fabricating the channels takes less than 2 hours by using glass capillaries of various diameters (from 100 µm up to 400 µm) as a mould in PDMS. The inner surface of microchannels prepared in this way was coated with a thin membrane of either Matrigel or a layer-by-layer polyelectrolyte to control cellular adhesion. The microchannels were then used as scaffolds for 3D-confined epithelial cell culture. To show that our device can be used with several epithelial cell types from exocrine glandular tissues, we performed our biological studies on adherent epithelial prostate cells (non-malignant RWPE-1 and invasive PC3) and also on breast (non-malignant MCF10A) cells We observed that in static conditions cells adhere and proliferate to form a confluent layer in channels of 150 µm in diameter and larger, whereas cellular viability decreases with decreasing diameter of the channel. Matrigel and PSS (poly (sodium 4-styrenesulphonate)) promote cell adhesion, whereas the cell proliferation rate was reduced on the PAH (poly (allylamine hydrochloride))-terminated surface. Moreover infusing channels with a continuous flow did not induce any cellular detachment. Our system is designed to simply grow cells in a microchannel structure and could be easily fabricated in any biological laboratory. It offers opportunities to grow epithelial cells that support the formation of a light. This system could be eventually used, for example, to collect cellular secretions, or study cell responses to graduated hypoxia conditions, to chemicals (drugs, siRNA, …) and/or physiological shear stress.
Collapse
Affiliation(s)
- Monika E. Dolega
- Univ. Grenoble Alpes, iRTSV-BGE, Grenoble, France
- CEA, iRTSV-BGE, Grenoble, France
- INSERM, BGE, Grenoble, France
| | - Jayesh Wagh
- Univ. Grenoble Alpes, iRTSV-BGE, Grenoble, France
- CEA, iRTSV-BGE, Grenoble, France
- INSERM, BGE, Grenoble, France
| | - Sophie Gerbaud
- Univ. Grenoble Alpes, iRTSV-BGE, Grenoble, France
- CEA, iRTSV-BGE, Grenoble, France
- INSERM, BGE, Grenoble, France
| | - Frederique Kermarrec
- Univ. Grenoble Alpes, iRTSV-BGE, Grenoble, France
- CEA, iRTSV-BGE, Grenoble, France
- INSERM, BGE, Grenoble, France
| | | | - Donald K. Martin
- UJF-Grenoble 1, CNRS, TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France
| | - Xavier Gidrol
- Univ. Grenoble Alpes, iRTSV-BGE, Grenoble, France
- CEA, iRTSV-BGE, Grenoble, France
- INSERM, BGE, Grenoble, France
| | - Nathalie Picollet-D’hahan
- Univ. Grenoble Alpes, iRTSV-BGE, Grenoble, France
- CEA, iRTSV-BGE, Grenoble, France
- INSERM, BGE, Grenoble, France
- * E-mail:
| |
Collapse
|
31
|
Hui EE, Li C, Agrawal A, Bhatia SN. A Macro-to-Micro Interface for the Control of Cellular Organization. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2014; 23:391-397. [PMID: 26167106 PMCID: PMC4495972 DOI: 10.1109/jmems.2013.2278813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The spatial organization of cellular communities plays a fundamental role in determining intercellular communication and emergent behavior. However, few tools exist to modulate tissue organization at the scale of individual cells, particularly in the case of dynamic manipulation. Micromechanical reconfigurable culture achieves dynamic control of tissue organization by culturing adherent cells on microfabricated plates that can be shifted to reorganize the arrangement of the cells. While biological studies utilizing this approach have been previously reported, this paper focuses on the engineering of the device, including the mechanism for translating manual manipulation to precise microscale position control, fault-tolerant design for manufacture, and the synthetic-to-living interface.
Collapse
Affiliation(s)
- Elliot E Hui
- Massachusetts Institute of Technology, Cambridge, MA 02139 USA. He is now with the Department of Biomedical Engineering, University of California, Irvine, CA 92697 USA (phone: 949-824-8723; fax: 949-824-1727; )
| | - Chun Li
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ( )
| | - Amit Agrawal
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ( )
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; the Howard Hughes Medical Institute, Cambridge, MA 02139, USA; and the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ( )
| |
Collapse
|
32
|
Grover GN, Rao N, Christman KL. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering. NANOTECHNOLOGY 2014; 25:014011. [PMID: 24334615 PMCID: PMC3914302 DOI: 10.1088/0957-4484/25/1/014011] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.
Collapse
|
33
|
Rao N, Grover GN, Vincent LG, Evans SC, Choi YS, Spencer KH, Hui EE, Engler AJ, Christman KL. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions. Integr Biol (Camb) 2013; 5:1344-54. [PMID: 24061208 PMCID: PMC3848881 DOI: 10.1039/c3ib40078f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Nikhil Rao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Improved tissue culture conditions for engineered skeletal muscle sheets. ScientificWorldJournal 2013; 2013:370151. [PMID: 23533347 PMCID: PMC3603544 DOI: 10.1155/2013/370151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 01/24/2013] [Indexed: 12/22/2022] Open
Abstract
The potential clinical utility of engineered muscle is currently restricted by limited in vitro capacity of expanded muscle precursor cells to fuse and form mature myofibers. The purpose of this study was to use isotropic skeletal muscle sheets to explore the impact of (1) fibroblast coculture and (2) fibroblast-conditioned media (fCM) on in vitro myogenesis. Muscle sheets were prepared by seeding varying ratios of skeletal myoblasts and fibroblasts on a biomimetic substrate and culturing the resulting tissue in either control media or fCM. Muscle sheets were prepared from two cell subpopulations, (1) C2C12 and NOR-10 and (2) primary neonatal rat skeletal muscle cells (nSKM). In C2C12/Nor-10 muscle sheets fCM conferred a myogenic advantage early in culture; at D1 a statistically significant 3.12 ± 0.8-fold increase in myofiber density was observed with fCM. A high purity satellite cell population was collected from an initially mixed population of nSKMs via cell sorting for positive α 7-integrin expression. On D6, tissue sheets with low fibroblast concentrations (0 & 10%) cultured in fCM had increased average myofiber density (4.8 ± 0.2 myofibers/field) compared to tissue sheets with high fibroblast concentrations (50%) cultured in control media (1.0 ± 0.1 myofibers/field). Additionally, fCM promoted longer, thicker myofibers with a mature phenotype.
Collapse
|