1
|
Development of a Simple Spheroid Production Method Using Fluoropolymers with Reduced Chemical and Physical Damage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Establishing an in vitro–based cell culture system that can realistically simulate in vivo cell dynamics is desirable. It is thus necessary to develop a method for producing a large amount of cell aggregates (i.e., spheroids) that are uniform in size and quality. Various methods have been proposed for the preparation of spheroids; however, none of them satisfy all requirements, such as cost, size uniformity, and throughput. Herein, we successfully developed a new cell culture method by combining fluoropolymers and dot patterned extracellular matrix substrates to achieve size-controlled spheroids. First, the spheroids were spontaneously formed by culturing them two-dimensionally, after which the cells were detached with a weak liquid flow and cultured in suspension without enzyme treatment. Stable quality spheroids were easily produced, and it is expected that the introduction and running costs of the technique will be low; therefore, this method shows potential for application in the field of regenerative medicine.
Collapse
|
2
|
Liu J, Zheng H, Dai X, Poh PSP, Machens HG, Schilling AF. Transparent PDMS Bioreactors for the Fabrication and Analysis of Multi-Layer Pre-vascularized Hydrogels Under Continuous Perfusion. Front Bioeng Biotechnol 2020; 8:568934. [PMID: 33425863 PMCID: PMC7785876 DOI: 10.3389/fbioe.2020.568934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering in combination with stem cell technology has the potential to revolutionize human healthcare. It aims at the generation of artificial tissues that can mimic the original with complex functions for medical applications. However, even the best current designs are limited in size, if the transport of nutrients and oxygen to the cells and the removal of cellular metabolites waste is mainly dependent on passive diffusion. Incorporation of functional biomimetic vasculature within tissue engineered constructs can overcome this shortcoming. Here, we developed a novel strategy using 3D printing and injection molding technology to customize multilayer hydrogel constructs with pre-vascularized structures in transparent Polydimethysiloxane (PDMS) bioreactors. These bioreactors can be directly connected to continuous perfusion systems without complicated construct assembling. Mimicking natural layer-structures of vascular walls, multilayer vessel constructs were fabricated with cell-laden fibrin and collagen gels, respectively. The multilayer design allows functional organization of multiple cell types, i.e., mesenchymal stem cells (MSCs) in outer layer, human umbilical vein endothelial cells (HUVECs) the inner layer and smooth muscle cells in between MSCs and HUVECs layers. Multiplex layers with different cell types showed clear boundaries and growth along the hydrogel layers. This work demonstrates a rapid, cost-effective, and practical method to fabricate customized 3D-multilayer vascular models. It allows precise design of parameters like length, thickness, diameter of lumens and the whole vessel constructs resembling the natural tissue in detail without the need of sophisticated skills or equipment. The ready-to-use bioreactor with hydrogel constructs could be used for biomedical applications including pre-vascularization for transplantable engineered tissue or studies of vascular biology.
Collapse
Affiliation(s)
- Juan Liu
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Huaiyuan Zheng
- Department of Hand Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai, China
| | - Patrina S P Poh
- Julius Wolff Institut, Charité - Universitätsmedizin, Berlin, Germany
| | - Hans-Günther Machens
- Department of Hand Surgery and Plastic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Arndt F Schilling
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Lopa S, Piraino F, Talò G, Mainardi VL, Bersini S, Pierro M, Zagra L, Rasponi M, Moretti M. Microfluidic Biofabrication of 3D Multicellular Spheroids by Modulation of Non-geometrical Parameters. Front Bioeng Biotechnol 2020; 8:366. [PMID: 32432090 PMCID: PMC7214796 DOI: 10.3389/fbioe.2020.00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) cell spheroids are being increasingly applied in many research fields due to their enhanced biological functions as compared to conventional two-dimensional (2D) cultures. 3D cell spheroids can replicate tissue functions, which enables their use both as in vitro models and as building blocks in tissue biofabrication approaches. In this study, we developed a perfusable microfluidic platform suitable for robust and reproducible 3D cell spheroid formation and tissue maturation. The geometry of the device was optimized through computational fluid dynamic (CFD) simulations to improve cell trapping. Experimental data were used in turn to generate a model able to predict the number of trapped cells as a function of cell concentration, flow rate, and seeding time. We demonstrated that tuning non-geometrical parameters it is possible to control the size and shape of 3D cell spheroids generated using articular chondrocytes (ACs) as cellular model. After seeding, cells were cultured under perfusion at different flow rates (20, 100, and 500 μl/min), which induced the formation of conical and spherical spheroids. Wall shear stress values on cell spheroids, computed by CFD simulations, increased accordingly to the flow rate while remaining under the chondroprotective threshold in all configurations. The effect of flow rate on cell number, metabolic activity, and tissue-specific matrix deposition was evaluated and correlated with fluid velocity and shear stress distribution. The obtained results demonstrated that our device represents a helpful tool to generate stable 3D cell spheroids which can find application both to develop advanced in vitro models for the study of physio-pathological tissue maturation mechanisms and to obtain building blocks for the biofabrication of macrotissues.
Collapse
Affiliation(s)
- Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Francesco Piraino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Valerio Luca Mainardi
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Laboratory for Biological Structures Mechanics, Chemistry, Material and Chemical Engineering Department "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Simone Bersini
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Margherita Pierro
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Luigi Zagra
- IRCCS Istituto Ortopedico Galeazzi, Hip Department, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy.,Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
4
|
Hagiwara M, Koh I. Engineering approaches to control and design the in vitro environment towards the reconstruction of organs. Dev Growth Differ 2020; 62:158-166. [PMID: 31925787 DOI: 10.1111/dgd.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 02/02/2023]
Abstract
In vitro experimental models pertaining to human cells are considered essential for most biological experiments, such as drug development and analysis of disease mechanisms, because of their genetic consistency and ease for detailed and long-term analysis. Recent development of organoid cultures, such as intestine, liver, and kidney cultures, greatly promotes the potential of in vitro experiments. However, conventional culture methods that use manual pipetting have limitations in regenerating complex biosystems. Our body autonomously organizes cells to form a specific tissue shape, and the self-organization process occurs in an extremely systematic manner. In order to emulate this sophisticated process in vitro; first, methodologies for cell culture and organization of in vitro systems need to be updated; second, understanding the self-organizing system is a crucial issue. In this review, recent advancements in engineering technologies to control the microenvironment during cell culture are introduced. Both static and dynamic control have been developed for decades in engineering fields, and the means by which such technologies can help to elucidate and design a biosystem is discussed.
Collapse
Affiliation(s)
- Masaya Hagiwara
- Cluster for Pioneering Research, RIKEN, Saitama, Japan.,Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Isabel Koh
- Cluster for Pioneering Research, RIKEN, Saitama, Japan
| |
Collapse
|
5
|
Hafeez S, Ooi HW, Morgan FLC, Mota C, Dettin M, Van Blitterswijk C, Moroni L, Baker MB. Viscoelastic Oxidized Alginates with Reversible Imine Type Crosslinks: Self-Healing, Injectable, and Bioprintable Hydrogels. Gels 2018; 4:E85. [PMID: 30674861 PMCID: PMC6318581 DOI: 10.3390/gels4040085] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Bioprinting techniques allow for the recreation of 3D tissue-like structures. By deposition of hydrogels combined with cells (bioinks) in a spatially controlled way, one can create complex and multiscale structures. Despite this promise, the ability to deposit customizable cell-laden structures for soft tissues is still limited. Traditionally, bioprinting relies on hydrogels comprised of covalent or mostly static crosslinks. Yet, soft tissues and the extracellular matrix (ECM) possess viscoelastic properties, which can be more appropriately mimicked with hydrogels containing reversible crosslinks. In this study, we have investigated aldehyde containing oxidized alginate (ox-alg), combined with different cross-linkers, to develop a small library of viscoelastic, self-healing, and bioprintable hydrogels. By using distinctly different imine-type dynamic covalent chemistries (DCvC), (oxime, semicarbazone, and hydrazone), rational tuning of rheological and mechanical properties was possible. While all materials showed biocompatibility, we observed that the nature of imine type crosslink had a marked influence on hydrogel stiffness, viscoelasticity, self-healing, cell morphology, and printability. The semicarbazone and hydrazone crosslinks were found to be viscoelastic, self-healing, and printable-without the need for additional Ca2+ crosslinking-while also promoting the adhesion and spreading of fibroblasts. In contrast, the oxime cross-linked gels were found to be mostly elastic and showed neither self-healing, suitable printability, nor fibroblast spreading. The semicarbazone and hydrazone gels hold great potential as dynamic 3D cell culture systems, for therapeutics and cell delivery, and a newer generation of smart bioinks.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Huey Wen Ooi
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Francis L C Morgan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy.
| | - Clemens Van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
6
|
Directing fibroblast self-assembly to fabricate highly-aligned, collagen-rich matrices. Acta Biomater 2018; 81:70-79. [PMID: 30267883 DOI: 10.1016/j.actbio.2018.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022]
Abstract
Extracellular matrix composition and organization play a crucial role in numerous biological processes ranging from cell migration, differentiation, survival and metastasis. Consequently, there have been significant efforts towards the development of biomaterials and in vitro models that recapitulate the complexity of native tissue architecture. Here, we demonstrate an approach to fabricating highly aligned cell-derived tissue constructs via the self-assembly of human dermal fibroblasts. By optimizing mold geometry, cell seeding density, and media composition we can direct human dermal fibroblasts to adhere to one another around a non-adhesive agarose peg to facilitate the development of cell-mediated circumferential tension. By removing serum and adding ascorbic acid and l-proline, we tempered fibroblast contractility to enable the formation of stable tissue constructs. Similarly, we show that the alignment of cells and the ECM they synthesize can be modulated by changes to seeding density and that constructs seeded with the lowest number of cells have the highest degree of fibrillar collagen alignment. Finally, we show that this highly aligned, tissue engineered construct can be decellularized and that when re-seeded with fibroblasts, it provides instructive cues which enable cells to adhere to and align in the direction of the remaining collagen fiber network. STATEMENT OF SIGNIFICANCE: Cell and extracellular matrix organization is directly related to biological function including cell signaling and tissue mechanics. Changes to this organization are often associated with injury or disease. The majority of in vitro tissue engineering models investigating cell and matrix organization rely on the addition of stress-shielding exogenous proteins and polymers and, or the application of external forces to promote alignment. Here we present a completely cell-based approach that relies on the development of cell-mediated tension to direct anisotropic cellular alignment and matrix synthesis using human dermal fibroblasts. A major challenge with this approach is excessive cellular contractility that results in necking and failure of the tissue construct. While other groups have tried to overcome this challenge by simply adding more cells, here we show that matrix alignment is inversely related to cell seeding density. To engineer tissue constructs with the highest degree of alignment, we optimized media components to reduce cellular contractility and promote collagen synthesis such that fibroblast toroids remained stable for at least 28 days in culture. We subsequently showed that these collagen-rich tissue constructs could be decellularized while maintaining their collagen microstructure and that cells adhered to and responded to the decellularized cell-derived matrix by aligning and elongating along the collagen fibers. The complexity of cell-derived matrices has been shown to better recapitulate in vivo tissue architecture and composition. This study provides a straight-forward approach to fabricating instructive cell-derived matrices with a high degree of uniaxial alignment generated purely by cell-mediated tension.
Collapse
|
7
|
Sun T, Shi Q, Huang Q, Wang H, Xiong X, Hu C, Fukuda T. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures. Acta Biomater 2018; 66:272-281. [PMID: 29196117 DOI: 10.1016/j.actbio.2017.11.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Traditional cell-encapsulating scaffolds may elicit adverse host responses and inhomogeneity in cellular distribution. Thus, fabrication techniques for cellular self-assembly with micro-scaffold incorporation have been used recently to generate toroidal cellular modules for the bottom-up construction of vascular-like structures. The micro-scaffolds show advantage in promoting tissue formation. However, owing to the lack of annular cell micro-scaffolds, it remains a challenge to engineer micro-scale toroidal cellular modules (micro-TCMs) to fabricate microvascular-like structures. Here, magnetic alginate microfibers (MAMs) are used as scaffolding elements, where a winding strategy enables them to be formed into micro-rings as annular cell micro-scaffolds. These micro-rings were investigated for NIH/3T3 fibroblast growth as a function of surface chemistry and MAM size. Afterwards, micro-TCMs were successfully fabricated with the formation of NIH/3T3 fibroblasts and extracellular matrix layers on the three-dimensional micro-ring surfaces. Simple non-contact magnetic assembly was used to stack the micro-TCMs along a micro-pillar, after which cell fusion rapidly connected the assembled micro-TCMs into a microvascular-like structure. Endothelial cells or drugs encapsulated in the MAMs could be included in the microvascular-like structures as in vitro cellular models for vascular tissue engineering, or as miniaturization platforms for pharmaceutical drug testing in the future. STATEMENT OF SIGNIFICANCE Magnetic alginate microfibers functioned as scaffolding elements for guiding cell growth in micro-scale toroidal cellular modules (micro-TCMs) and provided a magnetic functionality to the micro-TCMs for non-contact 3D assembly in external magnetic fields. By using the liquid/air interface, the non-contact spatial manipulation of the micro-TCMs in the liquid environment was performed with a cost-effective motorized electromagnetic needle. A new biofabrication paradigm of construct of microvascular-like structure. The micro-tubal-shaped structures allowed direct cell-to-cell contact that solved problems of cell-encapsulating scaffolds.
Collapse
|
8
|
Barisam M, Saidi MS, Kashaninejad N, Vadivelu R, Nguyen NT. Numerical Simulation of the Behavior of Toroidal and Spheroidal Multicellular Aggregates in Microfluidic Devices with Microwell and U-Shaped Barrier. MICROMACHINES 2017; 8:E358. [PMID: 30400548 PMCID: PMC6187926 DOI: 10.3390/mi8120358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
A microfluidic system provides an excellent platform for cellular studies. Most importantly, a three-dimensional (3D) cell culture model reconstructs more accurately the in vivo microenvironment of tissue. Accordingly, microfluidic 3D cell culture devices could be ideal candidates for in vitro cell culture platforms. In this paper, two types of 3D cellular aggregates, i.e., toroid and spheroid, are numerically studied. The studies are carried out for microfluidic systems containing U-shaped barrier as well as microwell structure. For the first time, we obtain oxygen and glucose concentration distributions inside a toroid aggregate as well as the shear stress on its surface and compare its performance with a spheroid aggregate of the same volume. In particular, we obtain the oxygen concentration distributions in three areas, namely, oxygen-permeable layer, multicellular aggregates and culture medium. Further, glucose concentration distributions in two regions of multicellular aggregates and culture medium are investigated. The results show that the levels of oxygen and glucose in the system containing U-shaped barriers are far more than those in the system containing microwells. Therefore, to achieve high levels of oxygen and nutrients, a system with U-shaped barriers is more suited than the conventional traps, but the choice between toroid and spheroid depends on their volume and orientation. The results indicate that higher oxygen and glucose concentrations can be achieved in spheroid with a small volume as well as in horizontal toroid with a large volume. The vertical toroid has the highest levels of oxygen and glucose concentration while the surface shear stress on its surface is also maximum. These findings can be used as guidelines for designing an optimum 3D microfluidic bioreactor based on the desired levels of oxygen, glucose and shear stress distributions.
Collapse
Affiliation(s)
- Maryam Barisam
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran.
| | - Mohammad Said Saidi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia.
| | - Raja Vadivelu
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia.
| |
Collapse
|
9
|
Liquid Marble as Bioreactor for Engineering Three-Dimensional Toroid Tissues. Sci Rep 2017; 7:12388. [PMID: 28959016 PMCID: PMC5620055 DOI: 10.1038/s41598-017-12636-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022] Open
Abstract
Liquid marble is a liquid droplet coated with hydrophobic powder that can be used as a bioreactor. This paper reports the three-dimensional self-assembly and culture of a cell toroid in a slow-releasing, non-adhesive and evaporation-reducing bioreactor platform based on a liquid marble. The bioreactor is constructed by embedding a hydrogel sphere containing growth factor into a liquid marble filled with a suspension of dissociated cells. The hydrogel maintains the water content and concurrently acts as a slow-release carrier. The concentration gradient of growth factor induces cell migration and assembly into toroidal aggregates. An optimum cell concentration resulted in the toroidal (doughnut-like) tissue after 12 hours. The harvested cell toroids showed rapid closure of the inner opening when treated with the growth factor. We also present a geometric growth model to describe the shape of the toroidal tissue over time. In analogy to the classical two-dimensional scratch assay, we propose that the cell toroids reported here open up new possibilities to screen drugs affecting cell migration in three dimensions.
Collapse
|
10
|
Kinoshita K, Iwase M, Yamada M, Yajima Y, Seki M. Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms. Biotechnol J 2016; 11:1415-1423. [DOI: 10.1002/biot.201600083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Keita Kinoshita
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| | - Masaki Iwase
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| | - Yuya Yajima
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| |
Collapse
|
11
|
Nakashima Y, Yamamoto Y, Hikichi Y, Nakanishi Y. Creation of cell micropatterns using a newly developed gel micromachining technique. Biofabrication 2016; 8:035006. [PMID: 27458788 DOI: 10.1088/1758-5090/8/3/035006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Creation of cell micropatterns comprising heterogeneous cell populations is an important technique for tissue engineering, medical transplantation, drug discovery, and regenerative medicine. This paper presents a novel gel patterning technique similar to general micromachining for creating cell micropatterns using alginate gel to inhibit cell adhesion. The alginate thin-film micropattern was formed on a glass plate by photolithography and wet etching. Cell micropatterns were subsequently created along the alginate micropattern on the glass plate. This technique permits the creation of cell micropatterns with arbitrary geometry because hydrogel materials promoting or inhibiting cell adhesion can be patterned precisely. Moreover, this technique permits processing of the culture surface during cultivation because none of the materials used such as hydrogels and hydrogel-etching solutions exhibit cytotoxicity. A cell micropattern comprising different cell types was successfully created using the presented technique. This technique will be conducive to further improvement of the fabrication of artificial tissues formed by heterogeneous cells.
Collapse
Affiliation(s)
- Yuta Nakashima
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|
12
|
Takei T, Kitazono J, Tanaka S, Nishimata H, Yoshida M. Necrotic regions are absent in fiber-shaped cell aggregates, approximately 100 μm in diameter. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:62-5. [PMID: 24813225 DOI: 10.3109/21691401.2014.909824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microscopic, fiber-shaped cell aggregates, have been used as building blocks for fabricating macroscopic three-dimensional tissue architectures, in the field of tissue engineering. In this study, we examined the occurrence of necrotic regions in the most widely used, fiber-shaped cell aggregates, approximately 100 μm in diameter. Alginate hydrogel hollow microfibers were used as templates for the cell aggregates. We demonstrated negligible necrotic region formation occurred in the cell aggregates formed in the hollow microfibers. Furthermore, we improved on previously-reported methods for preparing the hollow microfibers to avoid common microfiber tangling during the fiber preparation process.
Collapse
Affiliation(s)
- Takayuki Takei
- a Department of Chemical Engineering , Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima , Japan
| | - Jyunpei Kitazono
- a Department of Chemical Engineering , Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima , Japan
| | - Sadao Tanaka
- b Department of Gastroenterology , Nanpuh Hospital , Kagoshima , Japan
| | | | - Masahiro Yoshida
- a Department of Chemical Engineering , Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima , Japan
| |
Collapse
|
13
|
Leferink A, Schipper D, Arts E, Vrij E, Rivron N, Karperien M, Mittmann K, van Blitterswijk C, Moroni L, Truckenmüller R. Engineered micro-objects as scaffolding elements in cellular building blocks for bottom-up tissue engineering approaches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2592-2599. [PMID: 24395427 DOI: 10.1002/adma.201304539] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/23/2013] [Indexed: 05/28/2023]
Abstract
A material-based bottom-up approach is proposed towards an assembly of cells and engineered micro-objects at the macroscale. We show how shape, size and wettability of engineered micro-objects play an important role in the behavior of cells on these objects. This approach can, among other applications, be used as a tool to engineer complex 3D tissues of clinically relevant size.
Collapse
Affiliation(s)
- A Leferink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522, NB, Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Iwase M, Yamada M, Yamada E, Seki M. Formation of Cell Aggregates Using Microfabricated Hydrogel Chambers for Assembly into Larger Tissues. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents a fabrication process for cell aggregates with controlled shapes that can be used as building units for constructing relatively large tissue models. Microfabricated hydrogel-based chambers with non-adhesive surface characteristics were prepared via a micromolding process. Alginate was used as the hydrogel matrix, which facilitated the efficient formation of aggregates from cells retained inside the microchamber. We employed several types of toroidal and lattice-shaped hydrogel microchambers with different geometries. We examined the effect of cell type on the aggregate formation process using NIH-3T3, C2C12, and HepG2 cells and clearly observed that aggregation behavior is highly dependent on cell type. In addition, we tried to construct 2-layered capillarylike tissues by stacking heterotypic toroidal cell aggregates, which mimic blood vessels. The presented cell aggregate-based tissue fabrication process could become a versatile approach for preparing complex and scaffold-free 3D tissue models.
Collapse
|
15
|
Chumtong P, Kojima M, Ohara K, Mae Y, Horade M, Akiyama Y, Yamato M, Arai T. Design and Fabrication of Changeable Cell Culture Mold. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the fabrication of engineered organs as replacements for damaged organs has been widely studied over the past decade, practical fabrication is very difficult because the engineered organ usually has a very complex structure and cannot be fabricated simply by using a fixed scaffold. Special attention has therefore been paid to methods of making engineered organs by assembling composite parts. Since structures of these individual parts are very different, fabrication using fixed scaffolds requires a lot of effort and time. The concept of a changeable scaffold offered by “changeable cell culture (C3) mold” is proposed in this paper as a means to simplify the fabrication of these parts. Using a thin PDMS membrane as an actuator layer enables various scaffold structures to be formed and altered, in turn enabling the fabrication of many different tissue structures.C3mold consists of a 3 × 3 microactuator array with a diameter of 500 µm and spacing of 650 µm. Plant oil is used as the working fluid enabling deformation of the actuator layer. Various micropatterned gel sheets are fabricated, in order to demonstrate the possibility of usingC3molds in future tissue fabrication.
Collapse
|
16
|
Masuda T, Yamagishi Y, Takei N, Owaki H, Matsusaki M, Akashi M, Arai F. Three-Dimensional Assembly of Multilayered Tissues Using Water Transfer Printing. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A rapid construction process is necessary to build up numerous cell modules into three-dimensional (3D) tissues that retain the tissue geometries and initial conditions of the cells. We propose a new 3D assembly technique using water transfer printing to fabricate a hollow tubular tissue structure. Utilizing this assembly technique, we discuss the relationship between the 3D transcriptional body of a gel matrix and the developed shape of transferred tissue. We then fabricate hollow tubular tissue. Simulation of the 3D environment in which tissues normally develop and function is crucial for the engineering of in vitro models that can be used for the formation of complex tissues. These artificial hollow tubular tissues could be used as in vitro simulators for drug efficiency evaluation and operative training.
Collapse
|
17
|
|