1
|
Majdi S, Lima AS, Ewing AG. Vesicle Collision Protocols for the Study of Quantum Size and Exocytotic Fraction Released. Methods Mol Biol 2023; 2565:223-237. [PMID: 36205898 DOI: 10.1007/978-1-0716-2671-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We review the methods of vesicle impact electrochemical cytometry, intracellular impact electrochemical cytometry, and single cell amperometry and their application to measuring the storage of neurotransmitters in cellular vesicles. We provide protocols to measure vesicle content, the release of catecholamines, and from there the fraction of transmitter released in each exocytosis event. The focus here has been a combination of methods to evaluate factors related to neuronal function at the cellular level and implications in, for example, cognition.
Collapse
Affiliation(s)
- Soodabeh Majdi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Alex S Lima
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Huang M, Dorta-Quiñones CI, Minch BA, Lindau M. On-Chip Cyclic Voltammetry Measurements Using a Compact 1024-Electrode CMOS IC. Anal Chem 2021; 93:8027-8034. [PMID: 34038637 PMCID: PMC8650766 DOI: 10.1021/acs.analchem.1c01132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complementary metal-oxide-semiconductor (CMOS) microelectrode arrays integrate amplifier arrays with on-chip electrodes, offering high-throughput platforms for electrochemical sensing with high spatial and temporal resolution. Such devices have been developed for highly parallel constant voltage amperometric detection of transmitter release from multiple cells with single-vesicle resolution. Cyclic voltammetry (CV) is an electrochemical method that applies voltage waveforms, which provides additional information about electrode properties and about the nature of analytes. A 16-channel, 64-electrode-per-channel CMOS integrated circuit (IC) fabricated in a 0.5 μm CMOS process for CV is demonstrated. Each detector consists of only 11 transistors and an integration capacitor with a unit dimension of 0.0015 mm2. The device was postfabricated using Pt as the working electrode material with a shifted electrode design, which makes it possible to redefine the size and the location of working electrodes. The system incorporating cell-sized (8 μm radius) microelectrodes was validated with dopamine injection tests and CV measurements of potassium ferricyanide at a 1 V/s scanning rate. The cyclic voltammograms were in excellent agreement with theoretical predictions. The technology enables rigorous characterization of electrode performance for the application of CMOS microelectrode arrays in low-noise amperometric measurements of quantal transmitter release as well as other biosensing applications.
Collapse
Affiliation(s)
- Meng Huang
- School of Applied & Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Carlos I Dorta-Quiñones
- School of Electrical & Computer Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Bradley A Minch
- Franklin W. Olin College of Engineering, Needham, Massachusetts 02492, United States
| | - Manfred Lindau
- School of Applied & Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Manzoor AA, Romita L, Hwang DK. A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmad Ali Manzoor
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Lauren Romita
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
4
|
Soucy JR, Bindas AJ, Koppes AN, Koppes RA. Instrumented Microphysiological Systems for Real-Time Measurement and Manipulation of Cellular Electrochemical Processes. iScience 2019; 21:521-548. [PMID: 31715497 PMCID: PMC6849363 DOI: 10.1016/j.isci.2019.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recent advancements in electronic materials and subsequent surface modifications have facilitated real-time measurements of cellular processes far beyond traditional passive recordings of neurons and muscle cells. Specifically, the functionalization of conductive materials with ligand-binding aptamers has permitted the utilization of traditional electronic materials for bioelectronic sensing. Further, microfabrication techniques have better allowed microfluidic devices to recapitulate the physiological and pathological conditions of complex tissues and organs in vitro or microphysiological systems (MPS). The convergence of these models with advances in biological/biomedical microelectromechanical systems (BioMEMS) instrumentation has rapidly bolstered a wide array of bioelectronic platforms for real-time cellular analytics. In this review, we provide an overview of the sensing techniques that are relevant to MPS development and highlight the different organ systems to integrate instrumentation for measurement and manipulation of cellular function. Special attention is given to how instrumented MPS can disrupt the drug development and fundamental mechanistic discovery processes.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Liu X, Tong Y, Fang PP. Recent development in amperometric measurements of vesicular exocytosis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Khan M, Mao S, Li W, Lin J. Microfluidic Devices in the Fast‐Growing Domain of Single‐Cell Analysis. Chemistry 2018; 24:15398-15420. [DOI: 10.1002/chem.201800305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
7
|
Li Y, Sella C, Lemaître F, Guille-Collignon M, Amatore C, Thouin L. Downstream Simultaneous Electrochemical Detection of Primary Reactive Oxygen and Nitrogen Species Released by Cell Populations in an Integrated Microfluidic Device. Anal Chem 2018; 90:9386-9394. [PMID: 29979582 DOI: 10.1021/acs.analchem.8b02039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An innovative microfluidic platform was designed to monitor electrochemically four primary reactive oxygen (ROS) and reactive nitrogen species (RNS) released by aerobic cells. Taking advantage of the space confinement and electrode performances under flow conditions, only a few experiments were sufficient to directly provide significant statistical data relative to the average behavior of cells during oxidative-stress bursts. The microfluidic platform comprised an upstream microchamber for cell culture and four parallel microchannels located downstream for separately detecting H2O2, ONOO-, NO·, and NO2-. Amperometric measurements were performed at highly sensitive Pt-black electrodes implemented in the microchannels. RAW 264.7 macrophage secretions triggered by a calcium ionophore were used as a way to assess the performance, sensitivity, and specificity of the integrated microfluidic device. In comparison with some previous evaluations achieved from single-cell measurements, reproducible and relevant determinations validated the proof of concept of this microfluidic platform for analyzing statistically significant oxidative-stress responses of various cell types.
Collapse
Affiliation(s)
- Yun Li
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Catherine Sella
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Frédéric Lemaître
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Manon Guille-Collignon
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Christian Amatore
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Laurent Thouin
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
8
|
Huang M, Delacruz JB, Ruelas JC, Rathore SS, Lindau M. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements. Pflugers Arch 2018; 470:113-123. [PMID: 28889250 PMCID: PMC5750066 DOI: 10.1007/s00424-017-2067-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.
Collapse
Affiliation(s)
- Meng Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Joannalyn B Delacruz
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - John C Ruelas
- ExoCytronics LLC, 1601 S Providence Rd, Columbia, MO, 65211, USA
| | - Shailendra S Rathore
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Gillis KD, Liu XA, Marcantoni A, Carabelli V. Electrochemical measurement of quantal exocytosis using microchips. Pflugers Arch 2017; 470:97-112. [PMID: 28866728 DOI: 10.1007/s00424-017-2063-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023]
Abstract
Carbon-fiber electrodes (CFEs) are the gold standard for quantifying the release of oxidizable neurotransmitters from single vesicles and single cells. Over the last 15 years, microfabricated devices have emerged as alternatives to CFEs that offer the possibility of higher throughput, subcellular spatial resolution of exocytosis, and integration with other techniques for probing exocytosis including microfluidic cell handling and solution exchange, optical imaging and stimulation, and electrophysiological recording and stimulation. Here we review progress in developing electrochemical electrode devices capable of resolving quantal exocytosis that are fabricated using photolithography.
Collapse
Affiliation(s)
- Kevin D Gillis
- Department of Bioengineering, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| | - Xin A Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Andrea Marcantoni
- Department of Drug Science and "NIS" Inter-departmental Centre, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and "NIS" Inter-departmental Centre, University of Torino, Torino, Italy
| |
Collapse
|
10
|
Xie S, Wu J, Tang B, Zhou G, Jin M, Shui L. Large-Area and High-Throughput PDMS Microfluidic Chip Fabrication Assisted by Vacuum Airbag Laminator. MICROMACHINES 2017; 8:E218. [PMID: 30400409 PMCID: PMC6190007 DOI: 10.3390/mi8070218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 01/13/2023]
Abstract
One of the key fabrication steps of large-area microfluidic devices is the flexible-to-hard sheet alignment and pre-bonding. In this work, the vacuum airbag laminator (VAL) which is commonly used for liquid crystal display (LCD) production has been applied for large-area microfluidic device fabrication. A straightforward, efficient, and low-cost method has been achieved for 400 × 500 mm² microfluidic device fabrication. VAL provides the advantages of precise alignment and lamination without bubbles. Thermal treatment has been applied to achieve strong PDMS⁻glass and PDMS⁻PDMS bonding with maximum breakup pressure of 739 kPa, which is comparable to interference-assisted thermal bonding method. The fabricated 152 × 152 mm² microfluidic chip has been successfully applied for droplet generation and splitting.
Collapse
Affiliation(s)
- Shuting Xie
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics & Joint International Research Laboratory of Optical Information of the Chinese Ministry of Education, South China Normal University, Guangzhou 510006, China.
| | - Jun Wu
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics & Joint International Research Laboratory of Optical Information of the Chinese Ministry of Education, South China Normal University, Guangzhou 510006, China.
| | - Biao Tang
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics & Joint International Research Laboratory of Optical Information of the Chinese Ministry of Education, South China Normal University, Guangzhou 510006, China.
| | - Guofu Zhou
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics & Joint International Research Laboratory of Optical Information of the Chinese Ministry of Education, South China Normal University, Guangzhou 510006, China.
| | - Mingliang Jin
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics & Joint International Research Laboratory of Optical Information of the Chinese Ministry of Education, South China Normal University, Guangzhou 510006, China.
| | - Lingling Shui
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics & Joint International Research Laboratory of Optical Information of the Chinese Ministry of Education, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
12
|
Liu X, Bretou M, Lennon-Duménil AM, Lemaître F, Guille-Collignon M. Indium Tin Oxide Microsystem for Electrochemical Detection of Exocytosis of Migratory Dendritic Cells. ELECTROANAL 2016. [DOI: 10.1002/elan.201600360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoqing Liu
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06 CNRS; Département de Chimie PASTEUR; 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, ENS, CNRS, PASTEUR; 75005 Paris France
| | - Marine Bretou
- INSERM U932; Inst Curie; 12, rue Lhomond 75005 Paris France
| | | | - Frédéric Lemaître
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06 CNRS; Département de Chimie PASTEUR; 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, ENS, CNRS, PASTEUR; 75005 Paris France
| | - Manon Guille-Collignon
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06 CNRS; Département de Chimie PASTEUR; 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, ENS, CNRS, PASTEUR; 75005 Paris France
| |
Collapse
|
13
|
Amatore C, Delacotte J, Guille-Collignon M, Lemaître F. Vesicular exocytosis and microdevices - microelectrode arrays. Analyst 2016; 140:3687-95. [PMID: 25803190 DOI: 10.1039/c4an01932f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Among all the analytical techniques capable of monitoring exocytosis in real time at the single cell level, electrochemistry (particularly amperometry at a constant potential) using ultramicroelectrodes has been demonstrated to be an important and convenient tool for more than two decades. Indeed, because the electrochemical sensor is located in the close vicinity of the emitting cell ("artificial synapse" configuration), much data can be gathered from the whole cell activity (secretion frequency) to the individual vesicular release (duration, fluxes or amount of molecules released) with an excellent sensitivity. However, such a single cell analysis and its intrinsic benefits are at the expense of the spatial resolution and/or the number of experiments. The quite recent development of microdevices/microsystems (and mainly the microelectrode arrays (MEAs)) offers in some way a complementary approach either by combining spectroscopy-microscopy or by implementing a multianalysis. Such developments are described and discussed in the present review over the 2005-2014 period.
Collapse
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | |
Collapse
|
14
|
Lemaître F, Guille Collignon M, Amatore C. Recent advances in Electrochemical Detection of Exocytosis. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Ges IA, Brindley RL, Currie KPM, Baudenbacher FJ. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. LAB ON A CHIP 2013; 13:4663-73. [PMID: 24126415 PMCID: PMC3892771 DOI: 10.1039/c3lc50779c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.
Collapse
Affiliation(s)
- Igor A Ges
- Dept. of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235-1631, USA.
| | | | | | | |
Collapse
|