1
|
Chen Y, Tang Z, Liu J, Ren C, Zhang Y, Xu H, Li Q, Zhang Q. A multilocus-dendritic boronic acid functionalized magnetic nanoparticle for capturing circulating tumor cells in the peripheral blood of mice with metastatic breast cancer. Anal Chim Acta 2024; 1297:342381. [PMID: 38438224 DOI: 10.1016/j.aca.2024.342381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Dynamic fluctuation of circulating tumor cells (CTCs) can serve as an indicator of tumor progression. However, the sensitive isolation of CTCs remains extremely challenging due to their rarity and heterogeneity. Against this dilemma, dendritic boronic acid-modified magnetic nanoparticles (MNPs) were prepared in this study, and polyethyleneimine (PEI) was utilized as a scaffold to significantly increase the number of boronic acid moieties. Then the novel developed material was applied to monitor the number of CTCs in mice with metastatic breast cancer to evaluate the therapeutic effects of matrine (Mat), doxorubicin (Dox), and Mat in combination with Dox. RESULTS Compared to the low binding capacity of a single boronic acid ligand, dendritic boronic acid shows enhanced sensitivity in binding to sialic acid (SA), which is overexpressed in CTCs. The results showed that the capture efficiency of this modified material could achieve 94.7% and successfully captured CTCs in blood samples from mice with metastatic breast cancer. The CTC counts were consistent with the results of the pathologic examination, demonstrating the reliability and utility of the method. SIGNIFICANCE The dendritic boronic acid nanomaterials prepared in this study showed high specificity, sensitivity, and accuracy for cancer cell capture. The approach is expected to provide new insights into cancer diagnosis, personalized therapy, and optimization of treatment regimens.
Collapse
Affiliation(s)
- Yue Chen
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengkun Tang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiajia Liu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chuanyang Ren
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yiwen Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Zhang R, Cao S, Yang S, Tang X, Sun P, Mao Y, Chen G, Weng W, Zhu X. Metabolic Glycoengineering-Programmed Nondestructive Capture of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59236-59245. [PMID: 38096273 DOI: 10.1021/acsami.3c15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Circulating tumor cells (CTCs) are the "seeds" for malignant tumor metastasis, and they serve as an ideal target for minimally invasive tumor diagnosis. Abnormal glycolysis in tumor cells, characterized by glycometabolism disorder, has been reported as a universal phenomenon observed in various types of tumors. This provides a potential powerful tool for universal CTC capture. However, to the best of our knowledge, no metabolic glycoengineering-based CTC capture strategies have been reported. Here, we proposed a nondestructive CTC capture method based on metabolic glycoengineering and a nanotechnology-based proximity effect, allowing for highly specific, sensitive, and universal CTC capture. To achieve this goal, cells are first labeled with DNA tags through metabolic glycoengineering and then captured through a DNA tetrahedra-functionalized dual-tentacle magnetic nanodevice. Due to the difference in metabolic performance, only tumor cells are labeled with more densely packed DNA tags and captured through enhanced intermolecular interaction mediated by the proximity effect. In summary, we have constructed a versatile platform for nondestructive CTC capture, offering a novel perspective for the application of CTC liquid biopsy in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Runchi Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Shiqi Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Pei Sun
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhao Weng
- Department of Clinical Laboratory Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
3
|
Li C, He W, Wang N, Xi Z, Deng R, Liu X, Kang R, Xie L, Liu X. Application of Microfluidics in Detection of Circulating Tumor Cells. Front Bioeng Biotechnol 2022; 10:907232. [PMID: 35646880 PMCID: PMC9133555 DOI: 10.3389/fbioe.2022.907232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Tumor metastasis is one of the main causes of cancer incidence and death worldwide. In the process of tumor metastasis, the isolation and analysis of circulating tumor cells (CTCs) plays a crucial role in the early diagnosis and prognosis of cancer patients. Due to the rarity and inherent heterogeneity of CTCs, there is an urgent need for reliable CTCs separation and detection methods in order to obtain valuable information on tumor metastasis and progression from CTCs. Microfluidic technology is increasingly used in various studies of CTCs separation, identification and characterization because of its unique advantages, such as low cost, simple operation, less reagent consumption, miniaturization of the system, rapid detection and accurate control. This paper reviews the research progress of microfluidic technology in CTCs separation and detection in recent years, as well as the potential clinical application of CTCs, looks forward to the application prospect of microfluidic technology in the treatment of tumor metastasis, and briefly discusses the development prospect of microfluidic biosensor.
Collapse
Affiliation(s)
- Can Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei He
- Department of Clinical Medical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
CAO R, ZHANG M, YU H, QIN J. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system]. Se Pu 2022; 40:213-223. [PMID: 35243831 PMCID: PMC9404083 DOI: 10.3724/sp.j.1123.2021.07009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
The isolation and analysis of circulating tumor cells (CTCs) is an important issue in tumor research. CTCs in peripheral blood, which are important biomarkers of liquid biopsy, are closely related to the occurrence of cancer and are used to monitor the effect of treatment on cancer patients. However, the number of CTCs in the blood samples of cancer patients is very low, usually being present at only 0-10 CTCs/mL. Therefore, prior to the detection of CTCs, it is important to preprocess clinical blood samples for efficient separation and enrichment. With the advantages of low sample consumption, high separation efficiency, ease of automation and integration, microfluidic chips can be a suitable platform for the isolation of CTCs. In the last few years, CTC separation and detection using microfluidic chips have developed rapidly, and a variety of detection methods have been developed. According to the technical principle used, microfluidics for CTC separation can be divided into biological property-based methods and physical property-based methods. The biological property-based methods mainly depend on the interaction between the antigen and antibody, or the specific binding of the aptamer and target. These methods have high selectivity but low efficiency and recovery rates. Physical separation is based on the physical properties of CTCs such as their size, density, and dielectric properties. For example, CTCs can be blocked or captured by the microstructure in the channels of microfluidic chips, sorted by external physical fields (acoustic, electrical, magnetic), or screened by micro-scale hydrodynamics. Physical property-based methods generally have a higher flux but lower separation purity. However, the advantages of biological property-based methods and physical property-based methods can be integrated to provide microfluidic chips having better separation performance. In addition to the direct positive enrichment of CTCs, a negative enrichment strategy can also be adopted. The influence of direct screening on the activity of CTCs can be avoided by selectively removing white blood cells. In this paper, recent advances in microfluidics utilized in the isolation of CTCs, including physical and immune methods and positive and negative enrichment, are reviewed. We summarized the technical principles, detection methods, and research progress in CTC separation and detection using microfluidic chips. Developing trends in microfluidics for CTC separation and analysis are also discussed.
Collapse
|
5
|
Molinski J, Tadimety A, Burklund A, Zhang JXJ. Scalable Signature-Based Molecular Diagnostics Through On-chip Biomarker Profiling Coupled with Machine Learning. Ann Biomed Eng 2020; 48:2377-2399. [PMID: 32816167 PMCID: PMC7785517 DOI: 10.1007/s10439-020-02593-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Molecular diagnostics have traditionally relied on discrete biological substances as diagnostic markers. In recent years however, advances in on-chip biomarker screening technologies and data analytics have enabled signature-based diagnostics. Such diagnostics aim to utilize unique combinations of multiple biomarkers or diagnostic 'fingerprints' rather than discrete analyte measurements. This approach has shown to improve both diagnostic accuracy and diagnostic specificity. In this review, signature-based diagnostics enabled by microfluidic and micro-/nano- technologies will be reviewed with a focus on device design and data analysis pipelines and methodologies. With increasing amounts of data available from microfluidic biomarker screening, isolation, and detection platforms, advanced data handling and analytics approaches can be employed. Thus, current data analysis approaches including machine learning and recent advances with image processing, along with potential future directions will be explored. Lastly, the needs and gaps in current literature will be elucidated to inform future efforts towards development of molecular diagnostics and biomarker screening technologies.
Collapse
Affiliation(s)
- John Molinski
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Amogha Tadimety
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Alison Burklund
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA.
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
6
|
Chen L, Chen Y, Feng YL, Zhu Y, Wang LQ, Hu S, Cheng P. Tumor circulome in the liquid biopsies for digestive tract cancer diagnosis and prognosis. World J Clin Cases 2020; 8:2066-2080. [PMID: 32548136 PMCID: PMC7281040 DOI: 10.12998/wjcc.v8.i11.2066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
Digestive tract cancer is one of the main diseases that endanger human health. At present, the early diagnosis of digestive tract tumors mainly depends on serology, imaging, endoscopy, and so on. Although tissue specimens are the gold standard for cancer diagnosis, with the rapid development of precision medicine in cancer, the demand for dynamic monitoring of tumor molecular characteristics has increased. Liquid biopsy involves the collection of body fluids via non-invasive approaches, and analyzes biological markers such as circulating tumor cells, circulating tumor DNA, circulating cell-free DNA, microRNAs, and exosomes. In recent years, liquid biopsy has become more and more important in the diagnosis and prognosis of cancer in clinical practice due to its convenience, non-invasiveness, high specificity and it overcomes temporal-spatial heterogeneity. Therefore, this review summarizes the current evidence on liquid biopsies in digestive tract cancers in relation to diagnosis and prognosis.
Collapse
Affiliation(s)
- Long Chen
- Department of Radiotherapy, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Yu Chen
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou 511400, Guangdong Province, China
| | - Yuan-Ling Feng
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yan Zhu
- Department of Respiratory, Shulan Hospital, Hangzhou 310004, Zhejiang Province, China
| | - Li-Quan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
7
|
Burklund A, Petryk JD, Hoopes PJ, Zhang JXJ. Microfluidic enrichment of bacteria coupled to contact-free lysis on a magnetic polymer surface for downstream molecular detection. BIOMICROFLUIDICS 2020; 14:034115. [PMID: 32642021 PMCID: PMC7316515 DOI: 10.1063/5.0011908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 05/02/2023]
Abstract
We report on a microsystem that couples high-throughput bacterial immunomagnetic capture to contact-free cell lysis using an alternating current magnetic field (AMF) to enable downstream molecular characterization of bacterial nucleic acids. Traditional methods for cell lysis rely on either dilutive chemical methods, expensive biological reagents, or imprecise physical methods. We present a microchip with a magnetic polymer substrate (Mag-Polymer microchip), which enables highly controlled, on-chip heating of biological targets following exposure to an AMF. First, we present a theoretical framework for the quantitation of power generation for single-domain magnetic nanoparticles embedded in a polymer matrix. Next, we demonstrate successful bacterial DNA recovery by coupling (1) high-throughput, sensitive microfluidic immunomagnetic capture of bacteria to (2) on-chip, contact-free bacterial lysis using an AMF. The bacterial capture efficiency exceeded 76% at 50 ml/h at cell loads as low as ∼10 CFU/ml, and intact DNA was successfully recovered at starting bacterial concentrations as low as ∼1000 CFU/ml. Using the presented methodology, cell lysis becomes non-dilutive, temperature is precisely controlled, and potential contamination risks are eliminated. This workflow and substrate modification could be easily integrated in a range of micro-scale diagnostic systems for infectious disease.
Collapse
Affiliation(s)
- Alison Burklund
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - James D. Petryk
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
8
|
Sun S, Wang R, Huang Y, Xu J, Yao K, Liu W, Cao Y, Qian K. Design of Hierarchical Beads for Efficient Label-Free Cell Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902441. [PMID: 31237759 DOI: 10.1002/smll.201902441] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Defined hierarchical materials promise cell analysis and call for application-driven design in practical use. The further issue is to develop advanced materials and devices for efficient label-free cell capture with minimum instrumentation. Herein, the design of hierarchical beads is reported for efficient label-free cell capture. Silica nanoparticles (size of ≈15 nm) are coated onto silica spheres (size of ≈200 nm) to achieve nanoscale surface roughness, and then the rough silica spheres are combined with microbeads (≈150-1000 µm in diameter) to assemble hierarchical structures. These hierarchical beads are built via electrostatic interaction, covalent bonding, and nanoparticle adherence. Further, after functionalization by hyaluronic acid (HA), the hierarchical beads display desirable surface hydrophilicity, biocompatibility, and chemical/structural stability. Due to the controlled surface topology and chemistry, HA-functionalized hierarchical beads afford high cell capture efficiency up to 98.7% in a facile label-free manner. This work guides the development of label-free cell capture techniques and contributes to the construction of smart interfaces in bio-systems.
Collapse
Affiliation(s)
- Shiyu Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ruimin Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yida Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kuan Yao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wanshan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yimei Cao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kun Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
9
|
Chen M, Liu A, Chen B, Zhu DM, Xie W, Deng FF, Ji LW, Chen LB, Huang HM, Fu YR, Liu W, Wang FB. Erythrocyte-derived vesicles for circulating tumor cell capture and specific tumor imaging. NANOSCALE 2019; 11:12388-12396. [PMID: 31215952 DOI: 10.1039/c9nr01805k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The precise diagnosis of cancer remains a great challenge; therefore, it is our research interest to develop safe, tumor-specific reagents. In this study, we designed nanovesicles derived from erythrocyte membranes; the nanovesicles are capable of recognizing tumor cells for both circulating tumor cell (CTC) capture and tumor imaging. The tumor-targeting molecules folic acid (FA) and fluorescein Cy5 were modified on the nanovesicle surface. The developed nanovesicles exhibit excellent tumor targeting ability both in vitro and in vivo for CTC capture and in tumor imaging. Compared with traditional immunomagnetic beads, the proposed nanovesicles are capable of avoiding non-specific adsorption as a derivative of red blood cells. Combined with a non-invasive means of micromanipulation, the nanometer-sized vesicles show a high purity of CTC capture (over 90%). In vivo, the nanovesicles can also be employed for efficient tumor imaging without obvious toxicity and side effects. In brief, the nanovesicles prepared herein show potential clinical application for integrated diagnosis in vitro and in vivo.
Collapse
Affiliation(s)
- Ming Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ao Liu
- Huazhong Agricultural University, College of Plant Science and Technology, Wuhan, China
| | - Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Dao-Ming Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Wei Xie
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Fang-Fang Deng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Li-Wei Ji
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Li-Ben Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Hui-Ming Huang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - You-Rong Fu
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|