1
|
Muenzer J, Ho C, Lau H, Dant M, Fuller M, Boulos N, Dickson P, Ellinwood NM, Jones SA, Zanelli E, O'Neill C. Community consensus for Heparan sulfate as a biomarker to support accelerated approval in Neuronopathic Mucopolysaccharidoses. Mol Genet Metab 2024; 142:108535. [PMID: 39018614 DOI: 10.1016/j.ymgme.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Mucopolysaccharidoses (MPS) disorders are a group of ultra-rare, inherited, lysosomal storage diseases caused by enzyme deficiencies that result in accumulation of glycosaminoglycans (GAGs) in cells throughout the body including the brain, typically leading to early death. Current treatments do not address the progressive cognitive impairment observed in patients with neuronopathic MPS disease. The rarity and clinical heterogeneity of these disorders as well as pre-existing brain disease in clinically diagnosed patients make the development of new therapeutics utilizing a traditional regulatory framework extremely challenging. Children with neuronopathic MPS disorders will likely sustain irreversible brain damage if randomized to a placebo or standard-of-care treatment arm that does not address brain disease. The United States Food and Drug Administration (FDA) recognized these challenges, and, in 2020, issued final guidance for industry on slowly progressive, low-prevalence, rare diseases with substrate deposition that result from single enzyme defects, outlining a path for generating evidence of effectiveness to support accelerated approval based on reduction of substrate accumulation [1]. Neuronopathic MPS disorders, which are characterized by the accumulation of the GAG heparan sulfate (HS) in the brain, fit the intended disease characteristics for which this guidance was written, but to date, this guidance has not yet been applied to any therapeutic candidate for MPS. In February 2024, the Reagan-Udall Foundation for the FDA convened a public workshop for representatives from the FDA, patient advocacy groups, clinical and basic science research, and industry to explore a case study of using cerebrospinal fluid (CSF) HS as a relevant biomarker to support accelerated approval of new therapeutics for neuronopathic MPS disorders. This review provides a summary of the MPS presentations at the workshop and perspective on the path forward for neuronopathic MPS disorders.
Collapse
Affiliation(s)
- Joseph Muenzer
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Carole Ho
- Denali Therapeutics, 161 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| | - Heather Lau
- Ultragenyx Pharmaceutical, Inc., 60 Leveroni Court, Novato, CA 94949. USA.
| | - Mark Dant
- The Ryan Foundation, Inc., 5309 McPherson Blvd. 105 #284, Fort Worth, Texas 76123, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School and School of Biological Sciences, University of Adelaide, Adelaide, 5005, SA, Australia.
| | | | - Patricia Dickson
- Washington University School of Medicine, 4444 Forest Park, Suite 5400, St. Louis, MO 63108, USA.
| | | | - Simon A Jones
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Eric Zanelli
- Allievex Corp., PO Box 1056, Marblehead, MA 01945, USA.
| | - Cara O'Neill
- Cure Sanfilippo Foundation, PO Box 6901, Columbia, SC 29260, USA.
| |
Collapse
|
2
|
Abstract
The possibility of reprogramming human somatic cells to pluripotency has opened unprecedented opportunities for creating genuinely human experimental models of disease. Inborn errors of metabolism (IEMs) constitute a greatly heterogeneous class of diseases that appear, in principle, especially suited to be modeled by iPSC-based technology. Indeed, dozens of IEMs have already been modeled to some extent using patient-specific iPSCs. Here, we review the advantages and disadvantages of iPSC-based disease modeling in the context of IEMs, as well as particular challenges associated to this approach, together with solutions researchers have proposed to tackle them. We have structured this review around six lessons that we have learnt from those previous modeling efforts, and that we believe should be carefully considered by researchers wishing to embark in future iPSC-based models of IEMs.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raquel Ferrer-Lorente
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain.
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
3
|
Bekiari C, Grivas I, Tsingotjidou A, Papadopoulos GC. Adult neurogenesis and gliogenesis in the dorsal and ventral canine hippocampus. J Comp Neurol 2019; 528:1216-1230. [PMID: 31743444 DOI: 10.1002/cne.24818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Dentate gyrus (DG) of the mammalian hippocampus gives rise to new neurons and astrocytes all through adulthood. Canine hippocampus presents many similarities in fetal development, anatomy, and physiology with human hippocampus, establishing canines as excellent animal models for the study of adult neurogenesis. In the present study, BrdU-dated cells of the structurally and functionally dissociated dorsal (dDG) and ventral (vDG) adult canine DG were comparatively examined over a period of 30 days. Each part's neurogenic potential, radial glia-like neural stem cells (NSCs) proliferation and differentiation, migration, and maturation of their progenies were evaluated at 2, 5, 14, and 30 days post BrdU administration, with the use of selected markers (glial fibrillary acidic protein, doublecortin, calretinin and calbindin). Co-staining of BrdU+ cells with NeuN or S100B permitted the parallel study of the ongoing neurogenesis and gliogenesis. Our findings reveal the comparatively higher populations of residing granule cells, proliferating NSCs and BrdU+ neurons in the dDG, whereas newborn neurons of the vDG showed a prolonged differentiation, migration, and maturation. Newborn astrocytes were found all along the dorso-ventral axis, counting however for only 11% of newborn cell population. Comparative evaluation of adult canine and rat neurogenesis revealed significant differences in the distribution of resident and newborn granule cells along the dorso-ventral axis, division pattern of adult NSCs, maturation time plan of newborn neurons, and ongoing gliogenesis. Concluding, spatial and temporal features of adult canine neurogenesis are similar to that of other gyrencephalic species, including humans, and justify the comparative examination of adult neurogenesis across mammalian species.
Collapse
Affiliation(s)
- Chryssa Bekiari
- Laboratory of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Grivas
- Laboratory of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios C Papadopoulos
- Laboratory of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Bowden J, Beausoleil NJ, Stafford KJ, Gieseg MA, Bridges J. A prospective study of breed differences in the thermal pain sensitivity of dogs. Vet Anaesth Analg 2018; 45:82-91. [DOI: 10.1016/j.vaa.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
|
5
|
Ricca A, Gritti A. Perspective on innovative therapies for globoid cell leukodystrophy. J Neurosci Res 2017; 94:1304-17. [PMID: 27638612 DOI: 10.1002/jnr.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a lysosomal storage disorder resulting from deficiency of the lysosomal hydrolase galactosylceramidase. The infantile forms are characterized by a unique relentless and aggressive progression with a wide range of neurological symptoms and complications. Here we review and discuss the basic concepts and the novel mechanisms identified as key contributors to the peculiar GLD pathology, highlighting their therapeutic implications. Then, we evaluate evidence from extensive experimental studies on GLD animal models that have highlighted fundamental requirements to obtain substantial therapeutic benefit, including early and timely intervention, high levels of enzymatic reconstitution, and global targeting of affected tissues. Continuous efforts in understanding GLD pathophysiology, the interplay between various therapies, and the mechanisms of disease correction upon intervention may allow advancing research with innovative approaches and prioritizing treatment strategies to develop more efficacious treatments. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Rajakumar T, Munkacsi AB, Sturley SL. Exacerbating and reversing lysosomal storage diseases: from yeast to humans. MICROBIAL CELL 2017; 4:278-293. [PMID: 28913343 PMCID: PMC5597791 DOI: 10.15698/mic2017.09.588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysosomal storage diseases (LSDs) arise from monogenic deficiencies in lysosomal proteins and pathways and are characterized by a tissue-wide accumulation of a vast variety of macromolecules, normally specific to each genetic lesion. Strategies for treatment of LSDs commonly depend on reduction of the offending metabolite(s) by substrate depletion or enzyme replacement. However, at least 44 of the ~50 LSDs are currently recalcitrant to intervention. Murine models have provided significant insights into our understanding of many LSD mechanisms; however, these systems do not readily permit phenotypic screening of compound libraries, or the establishment of genetic or gene-environment interaction networks. Many of the genes causing LSDs are evolutionarily conserved, thus facilitating the application of models system to provide additional insight into LSDs. Here, we review the utility of yeast models of 3 LSDs: Batten disease, cystinosis, and Niemann-Pick type C disease. We will focus on the translation of research from yeast models into human patients suffering from these LSDs. We will also discuss the use of yeast models to investigate the penetrance of LSDs, such as Niemann-Pick type C disease, into more prevalent syndromes including viral infection and obesity.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Stephen L Sturley
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
7
|
Stroobants S, Damme M, Van der Jeugd A, Vermaercke B, Andersson C, Fogh J, Saftig P, Blanz J, D'Hooge R. Long-term enzyme replacement therapy improves neurocognitive functioning and hippocampal synaptic plasticity in immune-tolerant alpha-mannosidosis mice. Neurobiol Dis 2017; 106:255-268. [PMID: 28720484 DOI: 10.1016/j.nbd.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/14/2017] [Indexed: 01/22/2023] Open
Abstract
Alpha-mannosidosis is a glycoproteinosis caused by deficiency of lysosomal acid alpha-mannosidase (LAMAN), which markedly affects neurons of the central nervous system (CNS), and causes pathognomonic intellectual dysfunction in the clinical condition. Cognitive improvement consequently remains a major therapeutic objective in research on this devastating genetic error. Immune-tolerant LAMAN knockout mice were developed to evaluate the effects of enzyme replacement therapy (ERT) by prolonged administration of recombinant human enzyme. Biochemical evidence suggested that hippocampus may be one of the brain structures that benefits most from long-term ERT. In the present functional study, ERT was initiated in 2-month-old immune-tolerant alpha-mannosidosis mice and continued for 9months. During the course of treatment, mice were trained in the Morris water maze task to assess spatial-cognitive performance, which was related to synaptic plasticity recordings and hippocampal histopathology. Long-term ERT reduced primary substrate storage and neuroinflammation in hippocampus, and improved spatial learning after mid-term (10weeks+) and long-term (30weeks+) treatment. Long-term treatment substantially improved the spatial-cognitive abilities of alpha-mannosidosis mice, whereas the effects of mid-term treatment were more modest. Detailed analyses of spatial memory and spatial-cognitive performance indicated that even prolonged ERT did not restore higher cognitive abilities to the level of healthy mice. However, it did demonstrate marked therapeutic effects that coincided with increased synaptic connectivity, reflected by improvements in hippocampal CA3-CA1 long-term potentiation (LTP), expression of postsynaptic marker PSD-95 as well as postsynaptic density morphology. These experiments indicate that long-term ERT may hold promise, not only for the somatic defects of alpha-mannosidosis, but also to alleviate cognitive impairments of the disorder.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Ann Van der Jeugd
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Ben Vermaercke
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | | | - Jens Fogh
- Zymenex A/S, Roskildevej 12C, 3400 Hillerød, Denmark.
| | - Paul Saftig
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Judith Blanz
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Passantino A, Masucci M. Congenital and inherited neurologic diseases in dogs and cats: Legislation and its effect on purchase in Italy. Vet World 2016; 9:437-43. [PMID: 27284217 PMCID: PMC4893712 DOI: 10.14202/vetworld.2016.437-443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/25/2016] [Indexed: 01/19/2023] Open
Abstract
Many of the congenital neurologic diseases can result in incapacity or death of the animal. Some of them, such as idiopathic epilepsy and hydrocephalus, exhibit breed or familial predisposition and a genetic basis was proved or suggested. Some diseases can be presumptively diagnosed after a detailed signalment (breed predisposition), history (e.g. family history because many of these defects have familial tendencies), and through physical exam; other diagnostic methods (radiography, computed tomography, magnetic resonance, electrophysiologic tests, etc.) can provide supportive evidence for the congenital defect and help to confirm the diagnosis. Some cases can lead to civil law-suits when the lesions are congenital, but not easily recognizable, or when the lesions are hereditary but tend to became manifest only after some time (more than 12 months after the date of purchase, e.g., after the vice-free guarantee period has expired). Moreover, quite frequently an early diagnosis is not made because there are delays in consulting the veterinarian or the general practitioner veterinarian does not perceive subtle signs. This study was designed to focus on the medico-legal aspects concerning the buying and selling in Italy of dogs and cats affected by congenital and hereditary neurologic diseases that could constitute vice in these animals. While adequate provisions to regulate in detail the various aspects of pet sale have still to be drawn up by legislators, it may be helpful to involve breeders, by obliging them by contract to extend guarantees in the case of hereditary lesions, including neurologic diseases.
Collapse
Affiliation(s)
- Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Marisa Masucci
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| |
Collapse
|
10
|
Xu M, Motabar O, Ferrer M, Marugan JJ, Zheng W, Ottinger EA. Disease models for the development of therapies for lysosomal storage diseases. Ann N Y Acad Sci 2016; 1371:15-29. [PMID: 27144735 DOI: 10.1111/nyas.13052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
Lysosomal storage diseases (LSDs) are a group of rare diseases in which the function of the lysosome is disrupted by the accumulation of macromolecules. The complexity underlying the pathogenesis of LSDs and the small, often pediatric, population of patients make the development of therapies for these diseases challenging. Current treatments are only available for a small subset of LSDs and have not been effective at treating neurological symptoms. Disease-relevant cellular and animal models with high clinical predictability are critical for the discovery and development of new treatments for LSDs. In this paper, we review how LSD patient primary cells and induced pluripotent stem cell-derived cellular models are providing novel assay systems in which phenotypes are more similar to those of the human LSD physiology. Furthermore, larger animal disease models are providing additional tools for evaluation of the efficacy of drug candidates. Early predictors of efficacy and better understanding of disease biology can significantly affect the translational process by focusing efforts on those therapies with the higher probability of success, thus decreasing overall time and cost spent in clinical development and increasing the overall positive outcomes in clinical trials.
Collapse
Affiliation(s)
- Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland.,Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Omid Motabar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Elizabeth A Ottinger
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
11
|
Aronovich EL, Hackett PB. Lysosomal storage disease: gene therapy on both sides of the blood-brain barrier. Mol Genet Metab 2015; 114:83-93. [PMID: 25410058 PMCID: PMC4312729 DOI: 10.1016/j.ymgme.2014.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Most lysosomal storage disorders affect the nervous system as well as other tissues and organs of the body. Previously, the complexities of these diseases, particularly in treating neurologic abnormalities, were too great to surmount. However, based on recent developments there are realistic expectations that effective therapies are coming soon. Gene therapy offers the possibility of affordable, comprehensive treatment associated with these diseases currently not provided by standards of care. With a focus on correction of neurologic disease by systemic gene therapy of mucopolysaccharidoses types I and IIIA, we review some of the major recent advances in viral and non-viral vectors, methods of their delivery and strategies leading to correction of both the nervous and somatic tissues as well as evaluation of functional correction of neurologic manifestations in animal models. We discuss two questions: what systemic gene therapy strategies work best for correction of both somatic and neurologic abnormalities in a lysosomal storage disorder and is there evidence that targeting peripheral tissues (e.g., in the liver) has a future for ameliorating neurologic disease in patients?
Collapse
Affiliation(s)
- Elena L Aronovich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Perry B Hackett
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
12
|
te Vruchte D, Wallom KL, Platt FM. Measuring relative lysosomal volume for monitoring lysosomal storage diseases. Methods Cell Biol 2015; 126:331-47. [DOI: 10.1016/bs.mcb.2014.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Platt FM. Sphingolipid lysosomal storage disorders. Nature 2014; 510:68-75. [PMID: 24899306 DOI: 10.1038/nature13476] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
Lysosomal storage diseases are inborn errors of metabolism, the hallmark of which is the accumulation, or storage, of macromolecules in the late endocytic system. They are monogenic disorders that occur at a collective frequency of 1 in 5,000 live births and are caused by inherited defects in genes that mainly encode lysosomal proteins, most commonly lysosomal enzymes. A subgroup of these diseases involves the lysosomal storage of glycosphingolipids. Through our understanding of the genetics, biochemistry and, more recently, cellular aspects of sphingolipid storage disorders, we have gained insights into fundamental aspects of cell biology that would otherwise have remained opaque. In addition, study of these disorders has led to significant progress in the development of therapies, several of which are now in routine clinical use. Emerging mechanistic links with more common diseases suggest we need to rethink our current concept of disease boundaries.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
14
|
Lawrence R, Brown JR, Lorey F, Dickson PI, Crawford BE, Esko JD. Glycan-based biomarkers for mucopolysaccharidoses. Mol Genet Metab 2014; 111:73-83. [PMID: 23958290 PMCID: PMC3769472 DOI: 10.1016/j.ymgme.2013.07.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 07/20/2013] [Indexed: 12/12/2022]
Abstract
The mucopolysaccharidoses (MPS) result from attenuation or loss of enzyme activities required for lysosomal degradation of the glycosaminoglycans, hyaluronan, heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate. This review provides a summary of glycan biomarkers that have been used to characterize animal models of MPS, for diagnosis of patients, and for monitoring therapy based on hematopoietic stem cell transplantation and enzyme replacement therapy. Recent advances have focused on the non-reducing terminus of the glycosaminoglycans that accumulate as biomarkers, using a combination of enzymatic digestion with bacterial enzymes followed by quantitative liquid chromatography/mass spectrometry. These new methods provide a simple, rapid diagnostic strategy that can be applied to samples of urine, blood, cerebrospinal fluid, cultured cells and dried blood spots from newborn infants. Analysis of the non-reducing end glycans provides a method for monitoring enzyme replacement and substrate reduction therapies and serves as a discovery tool for uncovering novel biomarkers and new forms of mucopolysaccharidoses.
Collapse
Affiliation(s)
- Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Fred Lorey
- Genetic Disease Screening Program, California Department of Public Health, Richmond, CA 94804, USA
| | - Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA 90502, USA
| | | | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013; 36:437-49. [PMID: 23609350 DOI: 10.1007/s10545-013-9608-0] [Citation(s) in RCA: 559] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
Abstract
The neurons of the central nervous system (CNS) require precise control of their bathing microenvironment for optimal function, and an important element in this control is the blood-brain barrier (BBB). The BBB is formed by the endothelial cells lining the brain microvessels, under the inductive influence of neighbouring cell types within the 'neurovascular unit' (NVU) including astrocytes and pericytes. The endothelium forms the major interface between the blood and the CNS, and by a combination of low passive permeability and presence of specific transport systems, enzymes and receptors regulates molecular and cellular traffic across the barrier layer. A number of methods and models are available for examining BBB permeation in vivo and in vitro, and can give valuable information on the mechanisms by which therapeutic agents and constructs permeate, ways to optimize permeation, and implications for drug discovery, delivery and toxicity. For treating lysosomal storage diseases (LSDs), models can be included that mimic aspects of the disease, including genetically-modified animals, and in vitro models can be used to examine the effects of cells of the NVU on the BBB under pathological conditions. For testing CNS drug delivery, several in vitro models now provide reliable prediction of penetration of drugs including large molecules and artificial constructs with promising potential in treating LSDs. For many of these diseases it is still not clear how best to deliver appropriate drugs to the CNS, and a concerted approach using a variety of models and methods can give critical insights and indicate practical solutions.
Collapse
Affiliation(s)
- N Joan Abbott
- BBB Group, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
16
|
Abstract
The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.
Collapse
|
17
|
Walton RM, Parmentier T, Wolfe JH. Postnatal neural precursor cell regions in the rostral subventricular zone, hippocampal subgranular zone and cerebellum of the dog (Canis lupus familiaris). Histochem Cell Biol 2012. [PMID: 23192285 DOI: 10.1007/s00418-012-1053-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Identification of neural stem and progenitor cells (NPCs) in vitro and in vivo is essential to the use of developmental and disease models of neurogenesis. The dog is a valuable large animal model for multiple neurodegenerative diseases and is more closely matched to humans than rodents with respect to brain organization and complexity. It is therefore important to determine whether immunohistochemical markers associated with NPCs in humans and rodents are also appropriate for the dog. The NPC markers CD15, CD133, nestin, GFAP and phosphacan (DSD-1) were evaluated in situ in the canine rostral telencephalon, hippocampal dentate gyrus, and cerebellum at different postnatal time-points. Positive staining results were interpreted in the context of region and cellular morphology. Our results showed that neurospheres and cells within the rostral subventricular zone (SVZ), dentate gyrus subgranular zone (SGZ), and white matter tracts of the cerebellum were immunopositive for CD15, nestin and GFAP. Neurospheres and the cerebellum were immunonegative for CD133, whereas CD133 staining was present in the postnatal rostral SVZ. Anti-phosphacan antibody staining delineated the neurogenic niches of the rostral lateral ventricle SVZ and the hippocampal SGZ. Positive staining for phosphacan was also noted in white matter tracts of the cerebellum and within the Purkinje layer. Our results showed that in the dog these markers were associated with regions shown to be neurogenic in rodents and primates.
Collapse
Affiliation(s)
- Raquel M Walton
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
Ghosh A, Corbett GT, Gonzalez FJ, Pahan K. Gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, up-regulate tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor α: implications for late infantile Batten disease therapy. J Biol Chem 2012; 287:38922-35. [PMID: 22989886 DOI: 10.1074/jbc.m112.365148] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The classical late infantile neuronal ceroid lipofuscinosis (LINCLs) is an autosomal recessive disease, where the defective gene is Cln2, encoding tripeptidyl-peptidase I (TPP1). At the molecular level, LINCL is caused by accumulation of autofluorescent storage materials in neurons and other cell types. Currently, there is no established treatment for this fatal disease. This study reveals a novel use of gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, in up-regulating TPP1 in brain cells. Both gemfibrozil and fenofibrate up-regulated mRNA, protein, and enzymatic activity of TPP1 in primary mouse neurons and astrocytes as well as human astrocytes and neuronal cells. Because gemfibrozil and fenofibrate are known to activate peroxisome proliferator-activated receptor-α (PPARα), the role of PPARα in gemfibrozil- and fenofibrate-mediated up-regulation of TPP1 was investigated revealing that both drugs up-regulated TPP1 mRNA, protein, and enzymatic activity both in vitro and in vivo in wild type (WT) and PPARβ(-/-), but not PPARα(-/-), mice. In an attempt to delineate the mechanism of TPP1 up-regulation, it was found that the effects of the fibrate drugs were abrogated in the absence of retinoid X receptor-α (RXRα), a molecule known to form a heterodimer with PPARα. Accordingly, all-trans-retinoic acid, alone or together with gemfibrozil, up-regulated TPP1. Co-immunoprecipitation and ChIP studies revealed the formation of a PPARα/RXRα heterodimer and binding of the heterodimer to an RXR-binding site on the Cln2 promoter. Together, this study demonstrates a unique mechanism for the up-regulation of TPP1 by fibrate drugs via PPARα/RXRα pathway.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
19
|
Clarke LA. Pathogenesis of skeletal and connective tissue involvement in the mucopolysaccharidoses: glycosaminoglycan storage is merely the instigator. Rheumatology (Oxford) 2012; 50 Suppl 5:v13-8. [PMID: 22210665 DOI: 10.1093/rheumatology/ker395] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mucopolysaccharidoses (MPSs) are a series of rare genetic disorders in which progressive bone and joint disease represents a key source of morbidity for patients. The recent introduction of enzyme replacement therapy for many of the MPSs has led to a need for increased physician awareness of these rare conditions in order to ensure that treatment is initiated at a time that leads to optimal benefit for patients. In addition, the current experiences of the clinical responsiveness of patient's symptoms to enzyme replacement approaches have also fuelled an interest in the development of alternative and adjunctive therapeutic approaches directed particularly to the rheumatological aspects of disease. Understanding the underlying pathogenesis of the MPSs is a key element for advancements in both of these areas. This review highlights the current knowledge underlying the pathophysiology of disease symptoms in the MPSs and underscores the importance and role of pathogenic cascades.
Collapse
Affiliation(s)
- Lorne A Clarke
- Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Current world literature. Curr Opin Pediatr 2011; 23:700-7. [PMID: 22068136 DOI: 10.1097/mop.0b013e32834dda34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Moraitou M, Hadjigeorgiou G, Monopolis I, Dardiotis E, Bozi M, Vassilatis D, Vilageliu L, Grinberg D, Xiromerisiou G, Stefanis L, Michelakakis H. β-Glucocerebrosidase gene mutations in two cohorts of Greek patients with sporadic Parkinson's disease. Mol Genet Metab 2011; 104:149-52. [PMID: 21745757 DOI: 10.1016/j.ymgme.2011.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 11/16/2022]
Abstract
An increasing number of clinical, neuropathological and experimental evidence linking Gaucher disease and a spectrum of synucleinopathies, including Parkinson's disease (PD) has emerged over the last decade. In particular, several studies, despite individual differences, have shown that mutations in the β-glucocerebrosidase gene (GBA) are a risk factor for PD. Recently a study from Northern Greece has shown a significant overrepresentation of such mutations only in patients with early onset PD. In the present study 8 different GBA mutations covering 87% of the mutations identified in Gaucher disease patients diagnosed in Greece were investigated in two ethnic Greek cohorts of patients with sporadic Parkinson's disease. Cohort A included patients residing and originating from Thessaly, Central Greece (n=100) and cohort B included patients residing and/or originating from the greater area of Athens (n=105). Age-gender-ethnicity matched healthy individuals from the same areas were included as controls (n=206). In patients of cohort A 11 carriers of GBA mutations were identified (5/11:N370S, 2/11:L444P, 2/11: D409H;H255Q, 1/11:H255Q, 1/11D409H) as opposed to 3 in the controls (n=105) (1/3:N370S, 1/3:H255Q, 1/3:Y108C) (p=0.021, OR 4.2, 95% CI=1.14-15.54). In patients of cohort B 10 carriers of GBA mutations were identified (4/10:L444P, 4/10:D409H;H255Q, 1/10:N370S, 1/10:IVS10-1G→A) as opposed to 4 in controls (n=101) (3/4:N370S, 1/4:L444P). However the difference was not statistically significant (p=0.113, OR 2.5, 95% CI=0.77-8.42). In both cohorts, patients with PD harboring a GBA mutation had an earlier onset of symptoms than non-carriers (p=0.034, p=0.004). The overall difference in the number of carriers identified in PD patients and controls was statistically significant (p=0.006; OR 3.24; 95% CI=1.35-7.81). The association was reinforced in the early onset PD patients (EOPD; n=28, p=0.000, OR 11.37; 95% CI=3.73-34.6). In conclusion GBA mutations were identified with increased frequency in both geographical cohorts of patients with sporadic PD studied compared to control individuals, with the difference being statistically significant only in cohort A. An impressive association with EOPD was found and one third of the EOPD patients examined harbored a GBA mutation. Qualitative differences regarding the type of mutations and/or their relative frequencies were observed between cohorts A and B of PD patients. Genetic and/or environmental factors may account for the observed differences.
Collapse
Affiliation(s)
- Marina Moraitou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
INTRODUCTION Lysosomal storage disorders (LSDs) encompass more than 50 distinct diseases, caused by defects in various aspects of lysosomal function. Neurodegeneration and/or dysmyelination are the hallmark of roughly 70% of LSDs. Gene therapy represents a promising approach for the treatment of CNS manifestations in LSDs, as it has the potential to provide a permanent source of the deficient enzyme, either by direct injection of vectors or by transplantation of gene-corrected cells. In this latter approach, the biology of neural stem/progenitor cells and hematopoietic cells might be exploited. AREAS COVERED Based on an extensive literature search up until March 2011, the author reviews and discusses the progress, the crucial aspects and the major challenges towards the development of novel gene therapy strategies aimed to target the CNS, with particular attention to direct intracerebral gene delivery and transplantation of neural stem/progenitor cells. EXPERT OPINION The implementation of viral vector delivery systems with specific tropism, regulated transgene expression, low immunogenicity and low genotoxic risk and the improvement in isolation and manipulation of relevant cell types to be transplanted, are fundamental challenges to the field. Also, combinatorial strategies might be required to achieve full correction in LSDs with neurological involvement.
Collapse
Affiliation(s)
- Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| |
Collapse
|
23
|
Fan X, Klein M, Flanagan-Steet HR, Steet R. Selective yolk deposition and mannose phosphorylation of lysosomal glycosidases in zebrafish. J Biol Chem 2010; 285:32946-32953. [PMID: 20729204 DOI: 10.1074/jbc.m110.158295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation and function of lysosomal hydrolases during yolk consumption and embryogenesis in zebrafish are poorly understood. In an effort to better define the lysosomal biochemistry of this organism, we analyzed the developmental expression, biochemical properties, and function of several glycosidases in zebrafish eggs, embryos, and adult tissues. Our results demonstrated that the specific activity of most enzymes increases during embryogenesis, likely reflecting a greater need for turnover within the embryo as yolk-derived nutrients are depleted. Analysis of glycosidase activity in zebrafish and medaka eggs revealed selective deposition of enzymes required for the degradation of N-linked glycans, including an abundance of acidic mannosidases. Treatment of zebrafish embryos with the α-mannosidase inhibitor swainsonine resulted in the accumulation of glycosylated vitellogenin fragments and demonstrated a function for maternally deposited acid α-mannosidase in yolk consumption. Surprisingly, we also found that, unlike mammals, acid α-glucosidase from zebrafish and medaka does not appear to be modified with mannose 6-phosphate residues. We further showed these residues were not acquired on human acid α-glucosidase when expressed in zebrafish embryos, suggesting unique differences in the ability of the human and zebrafish N-acetylglucosamine-1-phosphotransferase to recognize and modify certain lysosomal glycosidases. Together, these results provide novel insight into the role of acidic glycosidases during yolk utilization and the evolution of the mannose 6-phosphate targeting system in vertebrates.
Collapse
Affiliation(s)
- Xiang Fan
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Maximilian Klein
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | - Richard Steet
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
24
|
Abstract
The lysosomal storage disorders (LSDs) comprise a heterogeneous group of inborn errors of metabolism characterized by tissue substrate deposits, most often caused by a deficiency of the enzyme normally responsible for catabolism of various byproducts of cellular turnover. Individual entities are typified by involvement of multiple body organs, in a pattern reflecting the sites of substrate storage. It is increasingly recognized that one or more processes, such as aberrant inflammation, dysregulation of apoptosis and/or defects of autophagy, may mediate organ dysfunction or failure. Several therapeutic options for various LSDs have been introduced, including hematopoietic stem cell transplantation, enzyme replacement therapy and substrate reduction therapy. Additional strategies are being explored, including the use of pharmacological chaperones and gene therapy. Most LSDs include a variant characterized by primary central nervous system (CNS) involvement. At present, therapy of the CNS manifestations remains a major challenge because of the inability to deliver therapeutic agents across the intact blood-brain barrier. With improved understanding of underlying disease mechanisms, additional therapeutic options may be developed, complemented by various strategies to deliver the therapeutic agent(s) to recalcitrant sites of pathology such as brain, bones and lungs.
Collapse
Affiliation(s)
- Gregory M. Pastores
- Correspondence to: Gregory M. Pastores, MD Department of Neurology and Pediatrics, NYU School of Medicine, 403 East 34th Street, New York, NY 10016, USA
| |
Collapse
|