1
|
Potter NL, VanDam M, Bruce L, Davis J, Eng L, Finestack L, Heinlen V, Scherer N, Schrock C, Seltzer R, Stoel-Gammon C, Thompson L, Peter B. Virtual Post-Intervention Speech and Language Assessment of Toddler and Preschool Participants in Babble Boot Camp. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:3327-3339. [PMID: 37235746 DOI: 10.1044/2023_jslhr-22-00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
PURPOSE Babble Boot Camp (BBC) is a parent-implemented telepractice intervention for infants at risk for speech and language disorders. BBC uses a teach-model-coach-review approach, delivered through weekly 15-min virtual meetings with a speech-language pathologist. We discuss accommodations needed for successful virtual follow-up test administration and preliminary assessment outcomes for children with classic galactosemia (CG) and controls at age 2.5 years. METHOD This clinical trial included 54 participants, 16 children with CG receiving BBC speech-language intervention from infancy, age 2 years, five children receiving sensorimotor intervention from infancy and changing to speech-language intervention at 15 months until 2 years of age, seven controls with CG, and 26 typically developing controls. The participants' language and articulation were assessed via telehealth at age 2.5 years. RESULTS The Preschool Language Scale-Fifth Edition (PLS-5) was successfully administered with specific parent instruction and manipulatives assembled from the child's home. The GFTA-3 was successfully administered to all but three children who did not complete this assessment due to limited expressive vocabularies. Referrals for continued speech therapy based on PLS-5 and GFTA-3 scores were made for 16% of children who received BBC intervention from infancy as compared to 40% and 57% of children who began BBC at 15 months of age or did not receive BBC intervention, respectively. CONCLUSIONS With extended time and accommodations from the standardized administration guidelines, virtual assessment of speech and language was possible. However, given the inherent challenges of testing very young children virtually, in-person assessment is recommended, when possible, for outcome measurements.
Collapse
Affiliation(s)
- Nancy L Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Phoenix
| | - Jenny Davis
- College of Health Solutions, Arizona State University, Phoenix
| | - Linda Eng
- College of Health Solutions, Arizona State University, Phoenix
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Twin Cities
| | - Victoria Heinlen
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Phoenix
| | - Claire Schrock
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Ryan Seltzer
- College of Health Solutions, Arizona State University, Phoenix
| | - Carol Stoel-Gammon
- Department of Speech & Hearing Sciences, University of Washington, Seattle
| | - Lauren Thompson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Beate Peter
- College of Health Solutions, Arizona State University, Phoenix
| |
Collapse
|
2
|
Mazzini S, Yadnik S, Timmers I, Rubio-Gozalbo E, Jansma BM. Altered neural oscillations in classical galactosaemia during sentence production. J Inherit Metab Dis 2024; 47:690-702. [PMID: 38600724 DOI: 10.1002/jimd.12740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Classical galactosaemia (CG) is a hereditary disease in galactose metabolism that despite dietary treatment is characterized by a wide range of cognitive deficits, among which is language production. CG brain functioning has been studied with several neuroimaging techniques, which revealed both structural and functional atypicalities. In the present study, for the first time, we compared the oscillatory dynamics, especially the power spectrum and time-frequency representations (TFR), in the electroencephalography (EEG) of CG patients and healthy controls while they were performing a language production task. Twenty-one CG patients and 19 healthy controls described animated scenes, either in full sentences or in words, indicating two levels of complexity in syntactic planning. Based on previous work on the P300 event related potential (ERP) and its relation with theta frequency, we hypothesized that the oscillatory activity of patients and controls would differ in theta power and TFR. With regard to behavior, reaction times showed that patients are slower, reflecting the language deficit. In the power spectrum, we observed significant higher power in patients in delta (1-3 Hz), theta (4-7 Hz), beta (15-30 Hz) and gamma (30-70 Hz) frequencies, but not in alpha (8-12 Hz), suggesting an atypical oscillatory profile. The time-frequency analysis revealed significantly weaker event-related theta synchronization (ERS) and alpha desynchronization (ERD) in patients in the sentence condition. The data support the hypothesis that CG language difficulties relate to theta-alpha brain oscillations.
Collapse
Affiliation(s)
- Sara Mazzini
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sai Yadnik
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Inge Timmers
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bernadette M Jansma
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Figueiredo C, Psotta C, Jayakumar K, Lielpetere A, Mandal T, Schuhmann W, Leech D, Falk M, Pita M, Shleev S, De Lacey AL. Effect of Protection Polymer Coatings on the Performance of an Amperometric Galactose Biosensor in Human Plasma. BIOSENSORS 2024; 14:167. [PMID: 38667160 PMCID: PMC11047878 DOI: 10.3390/bios14040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Galactose monitoring in individuals allows the prevention of harsh health conditions related to hereditary metabolic diseases like galactosemia. Current methods of galactose detection need development to obtain cheaper, more reliable, and more specific sensors. Enzyme-containing amperometric sensors based on galactose oxidase activity are a promising approach, which can be enhanced by means of their inclusion in a redox polymer coating. This strategy simultaneously allows the immobilization of the biocatalyst to the electroactive surface and hosts the electron shuttling units. An additional deposition of capping polymers prevents external interferences like ascorbic or uric acid as well as biofouling when measuring in physiological fuels. This work studies the protection effect of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate (MPC) and polyvinylimidazole-polysulfostyrene (P(VI-SS)) when incorporated in the biosensor design for the detection of galactose in human plasma.
Collapse
Affiliation(s)
- Carina Figueiredo
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| | - Carolin Psotta
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
- Aptusens AB, 293 94 Kyrkhult, Sweden
| | - Kavita Jayakumar
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Anna Lielpetere
- Analytical Chemistry-Center for Electrochemical Science (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44791 Bochum, Germany; (A.L.); (W.S.)
| | - Tanushree Mandal
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Science (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44791 Bochum, Germany; (A.L.); (W.S.)
| | - Dónal Leech
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| | - Sergey Shleev
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
- Aptusens AB, 293 94 Kyrkhult, Sweden
| | - Antonio L. De Lacey
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| |
Collapse
|
4
|
Panis B, Vos EN, Barić I, Bosch AM, Brouwers MCGJ, Burlina A, Cassiman D, Coman DJ, Couce ML, Das AM, Demirbas D, Empain A, Gautschi M, Grafakou O, Grunewald S, Kingma SDK, Knerr I, Leão-Teles E, Möslinger D, Murphy E, Õunap K, Pané A, Paci S, Parini R, Rivera IA, Scholl-Bürgi S, Schwartz IVD, Sdogou T, Shakerdi LA, Skouma A, Stepien KM, Treacy EP, Waisbren S, Berry GT, Rubio-Gozalbo ME. Brain function in classic galactosemia, a galactosemia network (GalNet) members review. Front Genet 2024; 15:1355962. [PMID: 38425716 PMCID: PMC10902464 DOI: 10.3389/fgene.2024.1355962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Classic galactosemia (CG, OMIM #230400, ORPHA: 79,239) is a hereditary disorder of galactose metabolism that, despite treatment with galactose restriction, affects brain function in 85% of the patients. Problems with cognitive function, neuropsychological/social emotional difficulties, neurological symptoms, and abnormalities in neuroimaging and electrophysiological assessments are frequently reported in this group of patients, with an enormous individual variability. In this review, we describe the role of impaired galactose metabolism on brain dysfunction based on state of the art knowledge. Several proposed disease mechanisms are discussed, as well as the time of damage and potential treatment options. Furthermore, we combine data from longitudinal, cross-sectional and retrospective studies with the observations of specialist teams treating this disease to depict the brain disease course over time. Based on current data and insights, the majority of patients do not exhibit cognitive decline. A subset of patients, often with early onset cerebral and cerebellar volume loss, can nevertheless experience neurological worsening. While a large number of patients with CG suffer from anxiety and depression, the increased complaints about memory loss, anxiety and depression at an older age are likely multifactorial in origin.
Collapse
Affiliation(s)
- Bianca Panis
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
| | - E. Naomi Vos
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Croatia, and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Annet M. Bosch
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Pediatrics, Division of Metabolic Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Martijn C. G. J. Brouwers
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Alberto Burlina
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, University Hospital Padova, Padova, Italy
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - David J. Coman
- Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, QLD, Australia
| | - María L. Couce
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Pediatrics, Diagnosis and Treatment Unit of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, IDIS-Health Research Institute of Santiago de Compostela, CIBERER, RICORS Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - Anibh M. Das
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics, Pediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Didem Demirbas
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - Aurélie Empain
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics, Metabolic and Nutrition Unit, Division of Endocrinology, Diabetes and Metabolism, University Hospital for Children Queen Fabiola, Bruxelles, Belgium
| | - Matthias Gautschi
- Department of Paediatrics, Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Swiss Reference Centre for Inborn Errors of Metabolism, Site Bern, Division of Pediatric Endocrinology, Diabetes and Metabolism, University of Bern, Bern, Switzerland
| | - Olga Grafakou
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- IEM Clinic, Arch Makarios III Hospital, Nicosia, Cyprus
| | - Stephanie Grunewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, United Kingdom
| | - Sandra D. K. Kingma
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street, University College Dublin, Dublin, Ireland
| | - Elisa Leão-Teles
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Dorothea Möslinger
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery (NHNN), London, United Kingdom
| | - Katrin Õunap
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Genetics and Personalized Medicine Clinic, Faculty of Medicine, Tartu University Hospital, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Adriana Pané
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sabrina Paci
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Inborn Errors of Metabolism, Clinical Department of Pediatrics, San Paolo Hospital - ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Rossella Parini
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Rare Diseases Unit, Department of Internal Medicine, San Gerardo Hospital IRCCS, Monza, Italy
| | - Isabel A. Rivera
- iMed.ULisboa–Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division of Pediatrics I-Inherited Metabolic Disorders, Medical University Innsbruck, Innsbruck, Austria
| | - Ida V. D. Schwartz
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Triantafyllia Sdogou
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Newborn Screening Department, Institute of Child Health, Athens, Greece
| | - Loai A. Shakerdi
- Adult Metabolics/Genetics, National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Anastasia Skouma
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Newborn Screening Department, Institute of Child Health, Athens, Greece
| | - Karolina M. Stepien
- Salford Royal Organisation, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| | - Eileen P. Treacy
- School of Medicine, Trinity College Dublin, National Rare Diseases Office, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Susan Waisbren
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - Gerard T. Berry
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - M. Estela Rubio-Gozalbo
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Finestack LH, Potter N, VanDam M, Davis J, Bruce L, Scherer N, Eng L, Peter B. Feasibility of a Proactive Parent-Implemented Communication Intervention Delivered via Telepractice for Children With Classic Galactosemia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:2527-2538. [PMID: 36251874 PMCID: PMC9911118 DOI: 10.1044/2022_ajslp-22-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 05/03/2023]
Abstract
PURPOSE This study evaluated the feasibility of Babble Boot Camp (BBC) for use with infants with classic galactosemia (CG) starting at less than 6 months of age. BBC is a parent-implemented intervention delivered by speech-language pathologists (SLPs) entirely via telepractice with the potential to increase access to early preventative interventions. We evaluated BBC feasibility based on acceptability, implementation, and practicality. METHOD We obtained data from 16 parents of infants with CG (mean age at enrollment = 3.38 months) involved in a large randomized clinical trial of BBC. BBC uses a teach-model-coach-review approach to provide parents with strategies to support their child's communication development. Families completed, on average, eighty-one 15-min sessions over a 20-month intervention period. We drew data from surveys completed by parents at the end of the intervention period, intervention logs maintained by the SLPs, and intervention fidelity checks completed by research assistants. RESULTS Data drawn from parent surveys, intervention logs, and intervention fidelity checks revealed high parent acceptability, high rates of completion and compliance, and low costs in terms of parent and clinician time. CONCLUSION Results suggest that BBC is feasible for families of infants with CG, warranting further examination of BBC across a broader range of children with CG as well as other infants who are at predictable risk for speech and language impairment.
Collapse
|
6
|
Peter B, Davis J, Finestack L, Stoel-Gammon C, VanDam M, Bruce L, Kim Y, Eng L, Cotter S, Landis E, Beames S, Scherer N, Knerr I, Williams D, Schrock C, Potter N. Translating principles of precision medicine into speech-language pathology: Clinical trial of a proactive speech and language intervention for infants with classic galactosemia. HGG ADVANCES 2022; 3:100119. [PMID: 35677809 PMCID: PMC9168611 DOI: 10.1016/j.xhgg.2022.100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Precision medicine is an emerging approach to managing disease by taking into consideration an individual's genetic and environmental profile toward two avenues to improved outcomes: prevention and personalized treatments. This framework is largely geared to conditions conventionally falling into the field of medical genetics. Here, we show that the same avenues to improving outcomes can be applied to conditions in the field of behavior genomics, specifically disorders of spoken language. Babble Boot Camp (BBC) is the first comprehensive and personalized program designed to proactively mitigate speech and language disorders in infants at predictable risk by fostering precursor and early communication skills via parent training. The intervention begins at child age 2 to 5 months and ends at age 24 months, with follow-up testing at 30, 42, and 54 months. To date, 44 children with a newborn diagnosis of classic galactosemia (CG) have participated in the clinical trial of BBC. CG is an inborn error of metabolism of genetic etiology that predisposes up to 85% of children to severe speech and language disorders. Of 13 children with CG who completed the intervention and all or part of the follow-up testing, only one had disordered speech and none had disordered language skills. For the treated children who completed more than one assessment, typical speech and language skills were maintained over time. This shows that knowledge of genetic risk at birth can be leveraged toward proactive and personalized management of a disorder that manifests behaviorally.
Collapse
Affiliation(s)
- Beate Peter
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Jennifer Davis
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Lizbeth Finestack
- Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark VanDam
- Speech and Hearing Sciences, Washington State University, Spokane, WA, USA
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Yookyung Kim
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Linda Eng
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Sarah Cotter
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Emily Landis
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Sam Beames
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - Delaney Williams
- Speech and Hearing Sciences, Washington State University, Spokane, WA, USA
| | - Claire Schrock
- Speech and Hearing Sciences, Washington State University, Spokane, WA, USA
| | - Nancy Potter
- Speech and Hearing Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
7
|
Chan JCS, Stout JC, Shirbin CA, Vogel AP. Listener Detection of Objectively Validated Acoustic Features of Speech in Huntington's Disease. J Huntingtons Dis 2022; 11:71-79. [PMID: 34974436 DOI: 10.3233/jhd-210501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Subtle progressive changes in speech motor function and cognition begin prior to diagnosis of Huntington's disease (HD). OBJECTIVE To determine the nature of listener-rated speech differences in premanifest and early-stage HD (i.e., PreHD and EarlyHD), compared to neurologically healthy controls. METHODS We administered a speech battery to 60 adults (16 people with PreHD, 14 with EarlyHD, and 30 neurologically healthy controls), and conducted a cognitive test of processing speed/visual attention, the Symbol Digit Modalities Test (SDMT) on participants with HD. Voice recordings were rated by expert listeners and analyzed for acoustic and perceptual speech features. RESULTS Listeners perceived subtle differences in the speech of PreHD compared to controls, including abnormal pitch level and speech rate, reduced loudness and loudness inflection, altered voice quality, hypernasality, imprecise articulation, and reduced naturalness of speech. Listeners detected abnormal speech rate in PreHD compared to healthy speakers on a reading task, which correlated with slower speech rate from acoustic analysis and a lower cognitive performance score. In early-stage HD, continuous speech was characterized by longer pauses, a higher proportion of silence, and slower rate. CONCLUSION Differences in speech and voice acoustic features are detectable in PreHD by expert listeners and align with some acoustically-derived objective speech measures. Slower speech rate in PreHD suggests altered oral motor control and/or subtle cognitive deficits that begin prior to diagnosis. Speakers with EarlyHD exhibited more silences compared to the PreHD and control groups, raising the likelihood of a link between speech and cognition that is not yet well characterized in HD.
Collapse
Affiliation(s)
- Jess C S Chan
- Centre for Neuroscience of Speech, University of Melbourne, Victoria, Australia
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia
| | - Christopher A Shirbin
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia
| | - Adam P Vogel
- Centre for Neuroscience of Speech, University of Melbourne, Victoria, Australia.,Division of Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany & Center for Neurology, University Hospital Tübingen, Germany.,Redenlab, Australia
| |
Collapse
|
8
|
Nieto N, Peterson V, Rufiner HL, Kamienkowski JE, Spies R. Thinking out loud, an open-access EEG-based BCI dataset for inner speech recognition. Sci Data 2022; 9:52. [PMID: 35165308 PMCID: PMC8844234 DOI: 10.1038/s41597-022-01147-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Surface electroencephalography is a standard and noninvasive way to measure electrical brain activity. Recent advances in artificial intelligence led to significant improvements in the automatic detection of brain patterns, allowing increasingly faster, more reliable and accessible Brain-Computer Interfaces. Different paradigms have been used to enable the human-machine interaction and the last few years have broad a mark increase in the interest for interpreting and characterizing the "inner voice" phenomenon. This paradigm, called inner speech, raises the possibility of executing an order just by thinking about it, allowing a "natural" way of controlling external devices. Unfortunately, the lack of publicly available electroencephalography datasets, restricts the development of new techniques for inner speech recognition. A ten-participant dataset acquired under this and two others related paradigms, recorded with an acquisition system of 136 channels, is presented. The main purpose of this work is to provide the scientific community with an open-access multiclass electroencephalography database of inner speech commands that could be used for better understanding of the related brain mechanisms.
Collapse
Affiliation(s)
- Nicolás Nieto
- Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina.
- Instituto de Matemática Aplicada del Litoral, IMAL-UNL/CONICET, Santa Fe, Argentina.
| | - Victoria Peterson
- Instituto de Matemática Aplicada del Litoral, IMAL-UNL/CONICET, Santa Fe, Argentina
| | - Hugo Leonardo Rufiner
- Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
- Laboratorio de Cibernética, Universidad Nacional de Entre Ríos, FI-UNER, Oro Verde, Argentina
| | - Juan Esteban Kamienkowski
- Laboratorio de Inteligencia Artificial Aplicada, Instituto de Ciencias de la Computación, Universidad de Buenos Aires - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ruben Spies
- Instituto de Matemática Aplicada del Litoral, IMAL-UNL/CONICET, Santa Fe, Argentina
| |
Collapse
|
9
|
Peter B, Davis J, Cotter S, Belter A, Williams E, Stumpf M, Bruce L, Eng L, Kim Y, Finestack L, Stoel-Gammon C, Williams D, Scherer N, VanDam M, Potter N. Toward Preventing Speech and Language Disorders of Known Genetic Origin: First Post-Intervention Results of Babble Boot Camp in Children With Classic Galactosemia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2021; 30:2616-2634. [PMID: 34665663 PMCID: PMC9135004 DOI: 10.1044/2021_ajslp-21-00098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 05/19/2023]
Abstract
Purpose Babble Boot Camp (BBC) is a package of proactive activities and routines designed to prevent speech and language disorders in infants at predictable risk. It is implemented via parent training and currently undergoing clinical trial in children with a newborn diagnosis of classic galactosemia (CG), a metabolic disease with high risk of speech and language disorders. The purpose of this study is to provide updates to a previous pilot study and to present the first set of post-intervention results. Method The intervention and data collection occurred during child ages < 6-24 months, with follow-up assessments of speech and language at ages 2.5 and 3.5 years. Treatment targets included earliest vocalization rates, babble complexity, speech production accuracy, and vocabulary and syntactic growth. The oldest 15 children with CG (including three untreated controls) completed the first set of follow-up assessments. Aggregate data up to 10 months were available for 17 treated children with CG, six untreated children with CG, and six typical controls. Results At ages 7-9 months, babbling complexity, as measured with mean babbling level, was higher in the treated children with CG than in the untreated children with CG and the typical controls. Prior to 24 months of age, the treated children with CG had greater expressive but not receptive vocabulary sizes than an untreated control. Follow-up testing showed typical language scores for all 12 treated children with CG and typical articulation scores for 11 of these, whereas one of three untreated children with CG had low articulation and expressive language scores. Conclusions The BBC appears to be a viable intervention to support the speech and expressive language development of children with GC. Future studies will evaluate the relative contributions of the earliest and later BBC components to outcomes.
Collapse
Affiliation(s)
- Beate Peter
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
- Department of Communication Sciences and Disorders, Saint Louis University, MO
| | - Jennifer Davis
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Sarah Cotter
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Alicia Belter
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Emma Williams
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Melissa Stumpf
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Laurel Bruce
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Linda Eng
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Yookyung Kim
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota Twin Cities, Minneapolis
| | - Carol Stoel-Gammon
- Department of Speech and Hearing Sciences, University of Washington, Seattle
| | - Delaney Williams
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Scherer
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| |
Collapse
|
10
|
Abstract
Galactosemia is the inherited inability to metabolise galactose. The most common results from a lack of galactose 1-phosphate uridylyltransferase activity. The current treatment, removal of galactose from the diet, is inadequate and often fails to prevent long-term complications. Since 2015, three patents have been filed describing novel therapies. These are: the use of aldose reductase inhibitors to reduce cataracts and, possibly, other symptoms; salubrinal to stimulate cellular stress responses; mRNA therapy to increase cellular galactose 1-phosphate uridylyltransferase activity. The viability of all three is supported by academic studies. The potential and drawbacks of all three are discussed and evaluated.
Collapse
|
11
|
Stillesjö S, Nyberg L, Wirebring LK. Building Memory Representations for Exemplar-Based Judgment: A Role for Ventral Precuneus. Front Hum Neurosci 2019; 13:228. [PMID: 31379536 PMCID: PMC6646524 DOI: 10.3389/fnhum.2019.00228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/21/2019] [Indexed: 01/13/2023] Open
Abstract
The brain networks underlying human multiple-cue judgment, the judgment of a continuous criterion based on multiple cues, have been examined in a few recent studies, and the ventral precuneus has been found to be a key region. Specifically, activation differences in ventral precuneus (as measured with functional magnetic resonance imaging, fMRI) has been linked to an exemplar-based judgment process, where judgments are based on memory for previous similar cases. Ventral precuneus is implicated in various episodic memory processes, notably such that increased activity during learning in this region as well as in the ventromedial prefrontal cortex (vmPFC) and the medial temporal lobes (MTL) have been linked to retrieval success. The present study used fMRI during a multiple-cue judgment task to gain novel neurocognitive evidence informative for the link between learning-related activity changes in ventral precuneus and exemplar-based judgment. Participants (N = 27) spontaneously learned to make judgments during fMRI, in a multiple-cue judgment task specifically designed to induce exemplar-based processing. Contrasting brain activity during late learning to early learning revealed higher activity in ventral precuneus, the bilateral MTL, and the vmPFC. Activity in the ventral precuneus and the vmPFC was found to parametrically increase between each judgment event, and activity levels in the ventral precuneus predicted performance after learning. These results are interpreted such that the ventral precuneus supports the aspects of exemplar-based processes that are related to episodic memory, tentatively by building, storing, and being implicated in retrieving memory representations for judgment.
Collapse
Affiliation(s)
- Sara Stillesjö
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Linnea Karlsson Wirebring
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Department of Psychology, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Demirbas D, Coelho AI, Rubio-Gozalbo ME, Berry GT. Hereditary galactosemia. Metabolism 2018; 83:188-196. [PMID: 29409891 DOI: 10.1016/j.metabol.2018.01.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
Hereditary galactosemia is an inborn error of carbohydrate metabolism. Galactose is metabolized by Leloir pathway enzymes; galactokinase (GALK), galactose-1-phosphate uridylyltransferase (GALT) and UDP-galactose 4-epimerase (GALE). The defects in these enzymes cause galactosemia in an autosomal recessive manner. The severe GALT deficiency, or classic galactosemia, is life-threatening in the newborn period. The treatment for classic galactosemia is dietary restriction of lactose. Although implementation of lactose restricted diet is efficient in resolving the acute complications, it is not sufficient to prevent long-term complications affecting the brain and female gonads, the two main target organs of damage. Implementation of molecular genetics diagnostic tools and GALT enzyme assays are instrumental in distinguishing classic galactosemia from clinical and biochemical variant forms of GALT deficiency. Better understanding of mechanisms responsible for the phenotypic variation even within the same genotype is essential to provide appropriate counseling for families. Utilization of a lactose restricted diet is also recommended for GALK deficiency and some rare forms of GALE deficiency. Novel modes of therapies are being explored; they may be beneficial if access issues to the affected tissues are circumvented and optimum use of therapeutic window is achieved.
Collapse
Affiliation(s)
- Didem Demirbas
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana I Coelho
- Department of Pediatrics, Department of Clinical Genetics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics, Department of Clinical Genetics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gerard T Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Coelho AI, Rubio-Gozalbo ME, Vicente JB, Rivera I. Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis 2017; 40:325-342. [PMID: 28281081 PMCID: PMC5391384 DOI: 10.1007/s10545-017-0029-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/03/2023]
Abstract
Classic galactosemia is a rare inherited disorder of galactose metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme of the Leloir pathway. It presents in the newborn period as a life-threatening disease, whose clinical picture can be resolved by a galactose-restricted diet. The dietary treatment proves, however, insufficient in preventing severe long-term complications, such as cognitive, social and reproductive impairments. Classic galactosemia represents a heavy burden on patients' and their families' lives. After its first description in 1908 and despite intense research in the past century, the exact pathogenic mechanisms underlying galactosemia are still not fully understood. Recently, new important insights on molecular and cellular aspects of galactosemia have been gained, and should open new avenues for the development of novel therapeutic strategies. Moreover, an international galactosemia network has been established, which shall act as a platform for expertise and research in galactosemia. Herein are reviewed some of the latest developments in clinical practice and research findings on classic galactosemia, an enigmatic disorder with many unanswered questions warranting dedicated research.
Collapse
Affiliation(s)
- Ana I Coelho
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Rivera
- Metabolism & Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Castro MB, Ferreira BK, Cararo JH, Chipindo AE, Magenis ML, Michels M, Danielski LG, de Oliveira MR, Ferreira GC, Streck EL, Petronilho F, Schuck PF. Evidence of oxidative stress in brain and liver of young rats submitted to experimental galactosemia. Metab Brain Dis 2016; 31:1381-1390. [PMID: 27389247 DOI: 10.1007/s11011-016-9865-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
Galactosemia is a disorder of galactose metabolism, leading to the accumulation of this carbohydrate. Galactosemic patients present brain and liver damage. For evaluated oxidative stress, 30-day-old males Wistar rats were divided into two groups: galactose group, that received a single injection of this carbohydrate (5 μmol/g), and control group, that received saline 0.9 % in the same conditions. One, twelve or twenty-four hours after the administration, animals were euthanized and cerebral cortex, cerebellum, and liver were isolated. After one hour, it was found a significant increase in TBA-RS levels, nitrate and nitrite and protein carbonyl contents in cerebral cortex, as well as protein carbonyl content in the cerebellum and in hepatic level of TBA-RS, and a significant decrease in nitrate and nitrite contents in cerebellum. TBA-RS levels were also found increased in all studied tissues, as well as nitrate and nitrite contents in cerebral cortex and cerebellum, that also present increased protein carbonyl content and impairments in the activity of antioxidant enzymes of rats euthanized at twelve hours. Finally, animals euthanized after twenty-four hours present an increase of TBA-RS levels in studied tissues, as well as the protein carbonyl content in cerebellum and liver. These animals also present an increased nitrate and nitrite content and impairment of antioxidant enzymes activities. Taken together, our data suggest that acute galactose administration impairs redox homeostasis in brain and liver of rats.
Collapse
Affiliation(s)
- Márcia B Castro
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, bloco S, sala 6, Criciúma, SC, 88806-000, Brazil
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Bruna K Ferreira
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, bloco S, sala 6, Criciúma, SC, 88806-000, Brazil
| | - José Henrique Cararo
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, bloco S, sala 6, Criciúma, SC, 88806-000, Brazil
| | - Adália E Chipindo
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, bloco S, sala 6, Criciúma, SC, 88806-000, Brazil
| | - Marina L Magenis
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, bloco S, sala 6, Criciúma, SC, 88806-000, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lucinéia G Danielski
- Laboratório de Imunopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Marcos R de Oliveira
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Gustavo C Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratório de Imunopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, bloco S, sala 6, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
15
|
Timson DJ. The molecular basis of galactosemia — Past, present and future. Gene 2016; 589:133-41. [DOI: 10.1016/j.gene.2015.06.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
|
16
|
Timmers I, van den Hurk J, Hofman PA, Zimmermann LJ, Uludağ K, Jansma BM, Rubio-Gozalbo ME. Affected functional networks associated with sentence production in classic galactosemia. Brain Res 2015; 1616:166-76. [PMID: 25979518 DOI: 10.1016/j.brainres.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/07/2015] [Accepted: 05/05/2015] [Indexed: 01/13/2023]
Abstract
Patients with the inherited metabolic disorder classic galactosemia have language production impairments in several planning stages. Here, we assessed potential deviations in recruitment and connectivity across brain areas responsible for language production that may explain these deficits. We used functional magnetic resonance imaging (fMRI) to study neural activity and connectivity while participants carried out a language production task. This study included 13 adolescent patients and 13 age- and gender-matched healthy controls. Participants passively watched or actively described an animated visual scene using two conditions, varying in syntactic complexity (single words versus a sentence). Results showed that patients recruited additional and more extensive brain regions during sentence production. Both groups showed modulations with syntactic complexity in left inferior frontal gyrus (IFG), a region associated with syntactic planning, and in right insula. In addition, patients showed a modulation with syntax in left superior temporal gyrus (STG), whereas the controls did not. Further, patients showed increased activity in right STG and right supplementary motor area (SMA). The functional connectivity data showed similar patterns, with more extensive connectivity with frontal and motor regions, and restricted and weaker connectivity with superior temporal regions. Patients also showed higher baseline cerebral blood flow (CBF) in right IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken together, the data demonstrate that language abnormalities in classic galactosemia are associated with specific changes within the language network. These changes point towards impairments related to both syntactic planning and speech motor planning in these patients.
Collapse
Affiliation(s)
- Inge Timmers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Job van den Hurk
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands; Laboratory of Biological Psychology, University of Leuven, Leuven, Belgium
| | - Paul Am Hofman
- Department of Radiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc Ji Zimmermann
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands
| | - Bernadette M Jansma
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; Laboratory of Genetic Metabolic Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Honselmann KC, Buthut F, Heuwer B, Karadag S, Sayk F, Kurowski V, Thiele H, Droemann D, Wolfrum S. Long-term mortality and quality of life in intensive care patients treated for pneumonia and/or sepsis: Predictors of mortality and quality of life in patients with sepsis/pneumonia. J Crit Care 2015; 30:721-6. [PMID: 25818842 DOI: 10.1016/j.jcrc.2015.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/16/2015] [Accepted: 03/06/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE The purpose of this study is to evaluate long-term mortality and quality of life (QoL) of intensive care patients with pneumonia and/or sepsis 1 year after discharge and to identify potential predictors for these outcome measures. METHODS This retrospective cohort study analyzed all patients admitted to the intensive care unit (ICU) of a German university hospital with diagnosis of pneumonia and/or sepsis between 2008 and 2009. Quality of life was assessed by telephone interview or mail using the standardized EuroQol 5-dimension questionaire. RESULTS Of 1406 patients treated in the ICU within the observational period, 217 met the inclusion criteria. Whereas in-hospital mortality differed significantly between pneumonia (17%) and sepsis (46%) (P < .001), 1-year mortality was not statistically significant (51% and 65%, P = .057). A high Simplified Acute Physiology Score (SAPS) II value was associated with high in-hospital mortality but failed to predict 1-year mortality. Quality of life, measured 1 year after discharge by visual analog scale (VAS), was 50% ± 25%, which was significantly lower than in a matched control group (70% ± 20%; P < .001). A high SAPS II score on admission did not correlate with VAS but was an independent predictor of a low EuroQol 5-dimension index. CONCLUSIONS The high post-ICU mortality of patients with pneumonia and sepsis emphasizes the need to focus on long-term follow-up in ICU studies and demonstrates that even when sepsis signs are missing, critically ill patients due to pneumonia have high 1-year mortality. Simplified Acute Physiology Score II does not predict long-term mortality, but a low SAPS II on admission might be useful to identify patients with good physical status after 1 year. TAKE HOME MESSAGE Hospital mortality of patients treated for pneumonia and/or sepsis is high and increases significantly within the first year after discharge. The SAPS II predicts in-hospital mortality and the physical components of QoL but not long-term mortality. TWEET One-year mortality of ICU pneumonia patients is equally high as in sepsis patients. Simplified Acute Physiology Score II cannot predict long-term mortality but can predict QoL.
Collapse
Affiliation(s)
- Kim C Honselmann
- Medical Clinic II, Cardiology/Angiology/Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany
| | - Franziska Buthut
- Medical Clinic II, Cardiology/Angiology/Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany
| | - Bjoern Heuwer
- Medical Clinic II, Cardiology/Angiology/Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany
| | - Sevin Karadag
- Medical Clinic II, Cardiology/Angiology/Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany
| | - Friedhelm Sayk
- Medical Clinic II, Cardiology/Angiology/Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany
| | - Volkhardt Kurowski
- Medical Clinic II, Cardiology/Angiology/Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany
| | - Holger Thiele
- Medical Clinic II, Cardiology/Angiology/Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany
| | - Daniel Droemann
- Medical Clinic III, Pulmonology/Infectious Diseases, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany
| | - Sebastian Wolfrum
- Medical Clinic II, Cardiology/Angiology/Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany; Department of Emergency Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23552 Luebeck, Germany.
| |
Collapse
|
18
|
Lewis FM, Coman DJ, Syrmis M, Kilcoyne S, Murdoch BE. Differential phonological awareness skills in children with classic galactosemia: a descriptive study of four cases. JIMD Rep 2012; 10:45-52. [PMID: 23430800 DOI: 10.1007/8904_2012_200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/16/2012] [Accepted: 11/12/2012] [Indexed: 12/23/2022] Open
Abstract
Educational achievement, which for individuals with the metabolic disorder classic galactosemia (GAL) is significantly lower than in the wider population, correlates with self-reported quality of life. Phonological awareness skills underpin the development of literacy, and although literacy is a key contributor to successful academic outcomes, no study to date has investigated phonological awareness skills in children with GAL. This study investigated phonological awareness (PA) in four school-aged children with the disorder, two of whom were siblings. Age range for the children was 7 years 7 months to 9 years 2 months. Each child was assessed with the Phonological Awareness criterion-referenced subtest from the Clinical Evaluation of Language Fundamentals-Fourth Edition. Included in the data for analysis was each child's performance measures obtained from their most recent assessment of cognitive and lexical development. A number of descriptive analyses were undertaken on the data. One child, who met her age criterion for PA, had cognitive and lexical development skills in the average range. The remaining three children failed to meet their age criteria. Although these three children presented with clinically similar cognitive and lexical development skills, disparate PA skills were identified. The PA skills of one of the sibling pair were notably more advanced than his older sibling. The limitations of relying on behavioural test results in children with GAL to predict those most at risk of reduced skill development are discussed in terms future research directions.
Collapse
Affiliation(s)
- Fiona M Lewis
- Centre for Neurogenic Communication Disorders Research, School of Health and Rehabilitation Sciences, The University of Queensland, 4072, Brisbane, Australia,
| | | | | | | | | |
Collapse
|