1
|
Eskes ECB, van Dussen L, Brands MMMG, Vaz FM, Aerts JMFG, van Kuilenburg ABP, Sjouke B, Hollak CEM. Natural disease course of chronic visceral acid sphingomyelinase deficiency in adults: A first step toward treatment criteria. J Inherit Metab Dis 2025; 48:e12789. [PMID: 39177062 PMCID: PMC11670446 DOI: 10.1002/jimd.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Acid sphingomyelinase deficiency (ASMD) is an ultra-rare lysosomal storage disease with a broad spectrum of manifestations ranging from severe neuropathic forms to attenuated, chronic visceral forms. Manifestations of the chronic visceral subtype are variable and encompass different degrees of hepatosplenomegaly, pulmonary disease and dyslipidemia. The aim of this study was to provide insights into the natural course of adult patients with the chronic visceral subtype. Based on these insights, we proposed tentative criteria for initiation and follow-up of enzyme replacement therapy (ERT). The data of 23 adult patients were collected in a prospective study. Clinical, genetic and demographic data, plasma measurements, abdominal imaging, pulmonary imaging, pulmonary function tests and quality of life questionnaires were collected. Stability of disease based on several clinical, biochemical and radiological markers (i.e., spleen volume, platelet levels, liver volume, alanine aminotransferase [ALT] levels, diffusion capacity of the lungs for carbon monoxide [DLCO] chitotriosidase activity and lysosphingomyelin [LSM]) was assessed. Cardiovascular risk was estimated based on sex, age, smoking, systolic blood pressure and lipid profile. Quality of life was evaluated with the 36-Item Short Form Health Survey and the Health Assessment Questionnaire. Median follow-up was 6.1 years (range 1.3-19.5 years). The most common manifestations were splenomegaly (100%), decreased high-density lipoprotein cholesterol (HDL-C) plasma levels (83%), (signs of) steatosis measured with transient elastography (82%), thrombocytopenia (64%), hepatomegaly (52%) and decreased diffusion capacity (45%). The majority of markers remained stable during follow-up. Twelve patients showed progression of disease: four for spleen volume, two for liver volume, three for DLCO, seven for chitotriosidase activity and three for LSM. One patient showed progression of disease based on four markers, although this patient did not report any problems at the last visit. Cardiovascular risk was estimated and was increased in half of the patients older than 40 years. Patient-reported quality of life did not differ from the general population, but differences in median 36-Item Short Form Health Survey (SF-36) scores of patients with severe pulmonary involvement and those of patients without pulmonary involvement were observed. Tentative criteria for initiation and effect of therapy were proposed. In conclusion, the chronic visceral subtype of ASMD showed a predominantly stable disease course in this cohort. We propose that ERT should be initiated on an individual basis and only in case of progression or symptomatic disease. Collection and analysis of real world data are necessary to refine start, stop and follow-up criteria in the future.
Collapse
Affiliation(s)
- Eline C. B. Eskes
- Department of Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
| | - Laura van Dussen
- Department of Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
| | - Marion M. M. G. Brands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
- Department of Pediatric Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Emma Children's HospitalAmsterdamThe Netherlands
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Johannes M. F. G. Aerts
- Department of Medical BiochemistryLeiden Institute of Chemistry, University of LeidenLeidenThe Netherlands
| | - André B. P. van Kuilenburg
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Barbara Sjouke
- Department of Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Internal MedicineRadboud UMCNijmegenNetherlands
| | - Carla E. M. Hollak
- Department of Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
| |
Collapse
|
2
|
Keikhaei B, Mafakher L. Different and unusual presentation of Gaucher's disease with the same mutation in the glucocerebrosidase enzyme (F266L) in two patients: a case report. J Med Case Rep 2024; 18:563. [PMID: 39574135 PMCID: PMC11583564 DOI: 10.1186/s13256-024-04902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Gaucher is an autosomal recessive inherited lysosomal storage disorder. The incidence of this disease is rare with a global estimate of around 1 in 57,000 to 1 in 75,000. Gaucher's disease is caused by a mutation in the glucocerebrosidase gene. Common symptoms of this disease include hepatosplenomegaly, moderate neurological symptoms, and late‑onset skeletal alterations. However, Gaucher can sometimes have rare presentations that lead to a delayed diagnosis in patients. This report discusses two adult cases of Gaucher's disease (type 1) with the same mutation but with unusual symptoms. CASE PRESENTATION One patient was a 44-year-old man who had been experiencing chronic cough since he was 10 years old, and the other patient was a 27-year-old woman with itching, both atypical symptoms of Gaucher. Bronchodilators and prednisolone were administered for chronic cough and antihistamines and prednisolone were given for the itching, but little to no improvement was seen. Sonography tests revealed that both cases had splenomegaly, hepatomegaly, and liver malfunction, characteristic of Gaucher's disease. Bone marrow aspiration tests confirmed the presence of Gaucher's cells in their bones. The level of glucocerebrosidase enzyme in both cases was less than 1.5 nmol/mL/hour. Whole exon sequencing confirmed a mutation on exon 8 of the GBA1 gene in a homozygous form in both cases, resulting in a transversion mutation (C > G) at position c.798, leading to the substitution of phenylalanine 266 with leucine. Both patients were of Bakhtiyari ethnicity and had parents who were in a consanguineous marriage. After receiving Cerezyme treatment, both cases experienced a disappearance of their cough and itching symptoms. CONCLUSION This report highlights the importance of recognizing the unusual presentation of Gaucher's disease especially in regions with high rates of consanguineous marriage and thalassemia. This knowledge can aid physicians in making accurate diagnoses and providing appropriate treatment.
Collapse
Affiliation(s)
- Bijan Keikhaei
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Eskes ECB, van Dussen L, Aerts JMFG, van der Lienden MJC, Maas M, Akkerman EM, van Kuilenburg ABP, Sjouke B, Hollak CEM. Acid sphingomyelinase deficiency and Gaucher disease in adults: Similarities and differences in two macrophage storage disorders. JIMD Rep 2024; 65:330-340. [PMID: 39544689 PMCID: PMC11558470 DOI: 10.1002/jmd2.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 11/17/2024] Open
Abstract
The lysosomal storage diseases chronic visceral acid sphingomyelinase deficiency (ASMD) and Gaucher disease type 1 (GD1) are both macrophage storage disorders with overlapping clinical manifestations. We compared cross-sectional data on visceral, hematological, and biochemical manifestations of untreated adult patients with chronic visceral ASMD (n = 19) and GD1 (n = 85). Spleen volume, liver volume, and bone marrow fat fraction did not significantly differ between the two disease groups (p >0.05 for all). Chitotriosidase activity was higher in GD1 (GD1: median 30 940 nmol/(mL.h), range 513-201 352, ASMD: median 1693 nmol/(mL.h), range 326-6620, p <0.001), whereas platelet levels were lower (GD1: median 102 109/L, range 16-726, ASMD: median 154 109/L, range 86-484, p <0.010), as were hemoglobin levels (GD1: median 7.8 mmol/L, range 5.0-10.4, ASMD: median 9.0 mmol/L, range 7.0-10.4, p <0.001). No bone complications were reported for ASMD, compared to 33% in GD1 (p <0.005). In ASMD pulmonary disease was more severe as evidenced by a median diffusion capacity of the lungs for carbon monoxide of 73% of predicted (range 26-104), compared to 85% (range 53-126) in GD1 (p = 0.029). In conclusion, bone complications, hematological abnormalities, chitotriosidase activity, and CCL18 levels were more prominent in GD1, while pulmonary manifestations were more common in AMSD. Different secondary pathophysiological processes surrounding sphingomyelin and glucosylceramide accumulation might explain these differences.
Collapse
Affiliation(s)
- Eline C. B. Eskes
- Endocrinology and MetabolismAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
| | - Laura van Dussen
- Endocrinology and MetabolismAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical BiochemistryLeiden Institute of Chemistry, Department of Medical BiochemistryLeidenThe Netherlands
| | - Martijn J. C. van der Lienden
- Department of Medical BiochemistryLeiden Institute of Chemistry, Department of Medical BiochemistryLeidenThe Netherlands
| | - Mario Maas
- Radiology and Nuclear MedicineAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Erik M. Akkerman
- Radiology and Nuclear MedicineAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - André B. P. van Kuilenburg
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Barbara Sjouke
- Endocrinology and MetabolismAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
- Department of Internal MedicineRadboud UMCNijmegenThe Netherlands
| | - Carla E. M. Hollak
- Endocrinology and MetabolismAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
| |
Collapse
|
4
|
Dubiela P, Szymanska-Rozek P, Hasinski P, Lipinski P, Kleinotiene G, Giersz D, Tylki-Szymanska A. Long- and Short-Term Glucosphingosine (lyso-Gb1) Dynamics in Gaucher Patients Undergoing Enzyme Replacement Therapy. Biomolecules 2024; 14:842. [PMID: 39062556 PMCID: PMC11275231 DOI: 10.3390/biom14070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Gaucher disease (GD) is a lysosomal storage disorder caused by mutations in the GBA1 gene, leading to β-glucocerebrosidase deficiency and glucosylceramide accumulation. Methods: We analyzed short- and long-term dynamics of lyso-glucosylceramide (lyso-Gb1) in a large cohort of GD patients undergoing enzyme replacement therapy (ERT). Results: Eight-years analysis of lyso-Gb1 revealed statistically insignificant variability in the biomarker across the years and relatively high individual variability in patients' results. GD type 1 (GD1) patients exhibited higher variability compared to GD type 3 (GD3) patients (coefficients of variation: 34% and 23%, respectively; p-value = 0.0003). We also investigated the short-term response of the biomarker to enzyme replacement therapy (ERT), measuring lyso-Gb1 right before and 30 min after treatment administration. We tested 20 GD patients (16 GD1, 4 GD3) and observed a rapid and significant reduction in lyso-Gb1 levels (average decrease of 17%; p-value < 0.0001). This immediate response reaffirms the efficacy of ERT in reducing substrate accumulation in GD patients but, on the other hand, suggests the biomarker's instability between the infusions. Conclusions: These findings underscore lyso-Gb1's potential as a reliable biomarker for monitoring efficacy of treatment. However, individual variability and dry blood spot (DBS) testing limitations urge a further refinement in clinical application. Our study contributes valuable insights into GD patient management, emphasizing the evolving role of biomarkers in personalized medicine.
Collapse
Affiliation(s)
- Pawel Dubiela
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.D.); (D.G.)
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Paulina Szymanska-Rozek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 00-927 Warsaw, Poland;
| | - Piotr Hasinski
- Department of Internal Medicine and Gastroenterology, Municipal Hospital, 43-100 Tychy, Poland;
| | - Patryk Lipinski
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy, 00-136 Warsaw, Poland;
| | | | - Dorota Giersz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.D.); (D.G.)
| | - Anna Tylki-Szymanska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| |
Collapse
|
5
|
Beliën J, Swinnen S, D'hondt R, Verdú de Juan L, Dedoncker N, Matthys P, Bauer J, Vens C, Moylett S, Dubois B. CHIT1 at diagnosis predicts faster disability progression and reflects early microglial activation in multiple sclerosis. Nat Commun 2024; 15:5013. [PMID: 38866782 PMCID: PMC11169395 DOI: 10.1038/s41467-024-49312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple sclerosis (MS) is characterized by heterogeneity in disease course and prediction of long-term outcome remains a major challenge. Here, we investigate five myeloid markers - CHIT1, CHI3L1, sTREM2, GPNMB and CCL18 - in the cerebrospinal fluid (CSF) at diagnostic lumbar puncture in a longitudinal cohort of 192 MS patients. Through mixed-effects and machine learning models, we show that CHIT1 is a robust predictor for faster disability progression. Integrative analysis of 11 CSF and 26 central nervous system (CNS) parenchyma single-cell/nucleus RNA sequencing samples reveals CHIT1 to be predominantly expressed by microglia located in active MS lesions and enriched for lipid metabolism pathways. Furthermore, we find CHIT1 expression to accompany the transition from a homeostatic towards a more activated, MS-associated cell state in microglia. Neuropathological evaluation in post-mortem tissue from 12 MS patients confirms CHIT1 production by lipid-laden phagocytes in actively demyelinating lesions, already in early disease stages. Altogether, we provide a rationale for CHIT1 as an early biomarker for faster disability progression in MS.
Collapse
Affiliation(s)
- Jarne Beliën
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stijn Swinnen
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Robbe D'hondt
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
- Imec research group itec, KU Leuven, Kortrijk, Belgium
| | - Laia Verdú de Juan
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nina Dedoncker
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Celine Vens
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
- Imec research group itec, KU Leuven, Kortrijk, Belgium
| | - Sinéad Moylett
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bénédicte Dubois
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Bengherbia M, Berger M, Hivert B, Rigaudier F, Bracoud L, Vaeterlein O, Yousfi K, Maric M, Malcles M, Belmatoug N. A Real-World Investigation of MRI Changes in Bone in Patients with Type 1 Gaucher Disease Treated with Velaglucerase Alfa: The EIROS Study. J Clin Med 2024; 13:2926. [PMID: 38792468 PMCID: PMC11122233 DOI: 10.3390/jcm13102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: Gaucher disease type 1 (GD1) is characterized by hepatosplenomegaly, thrombocytopenia, and disabling bone manifestations requiring regular MRI monitoring. The EIROS study assessed the real-world impact of velaglucerase alfa on GD1 bone disease, using MRI data collected in French clinical practice. Methods: MRIs collected retrospectively from treatment initiation and prospectively during follow-up (12-months) were analyzed centrally by a blinded expert radiologist to evaluate bone infiltration using the Bone Marrow Burden (BMB) score and a qualitative method (stable, improved or worsened for the spine and femur). Abdominal MRIs were also centrally analyzed to assess hepatosplenomegaly. Bone manifestations, hepatosplenomegaly, and hematologic parameters were analyzed from medical records. Results: MRI data were available for 20 patients: 6 treatment-naive patients and 14 patients who switched to velaglucerase alfa from another GD treatment. Interpretable MRIs for BMB scoring were available for seven patients for the spine and one patient for the femur. Qualitative assessments (n = 18) revealed stability in spine and femur infiltration in 100.0% and 84.6% of treatment-switched patients (n = 13), respectively, and improvements in 80.0% and 60.0% of treatment-naive patients (n = 5), respectively; no worsening of bone infiltration was observed. Liver, spleen, and hematologic parameters improved in treatment-naive patients and remained stable in treatment-switched patients. Conclusions: The qualitative real-world data support findings from clinical trials suggesting the long-term effectiveness of velaglucerase alfa on GD1 bone manifestations. When MRI assessment by radiologists with experience of GD is not possible, a simplified qualitative assessment may be sufficient in clinical practice for monitoring bone disease progression and treatment response.
Collapse
Affiliation(s)
- Monia Bengherbia
- Department of Internal Medicine, Referral Center for Lysosomal Diseases, Beaujon Hospital, AP-HP, Université Paris Cité, 92110 Clichy, France; (M.B.); (K.Y.)
| | - Marc Berger
- Department of Biological and Clinical Hematology, Estaing Hospital, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Bénédicte Hivert
- Department of Hematology, Saint Vincent de Paul Hospital, GHICL, 59000 Lille, France;
| | | | - Luc Bracoud
- Clario Inc. (Formerly Bioclinica, Inc.), 69006 Lyon, France;
| | - Ole Vaeterlein
- Clario Inc. (Formerly Bioclinica, Inc.), 20355 Hamburg, Germany;
| | - Karima Yousfi
- Department of Internal Medicine, Referral Center for Lysosomal Diseases, Beaujon Hospital, AP-HP, Université Paris Cité, 92110 Clichy, France; (M.B.); (K.Y.)
| | - Michele Maric
- Takeda France SAS, 75116 Paris, France; (M.M.); (M.M.)
| | - Marie Malcles
- Takeda France SAS, 75116 Paris, France; (M.M.); (M.M.)
| | - Nadia Belmatoug
- Department of Internal Medicine, Referral Center for Lysosomal Diseases, Beaujon Hospital, AP-HP, Université Paris Cité, 92110 Clichy, France; (M.B.); (K.Y.)
| |
Collapse
|
7
|
Cullufi P, Tomori S, Velmishi V, Gjikopulli A, Akshija I, Tako A, Dervishi E, Hoxha G, Tanka M, Troja E, Tabaku M. Taliglucerase alfa in the longterm treatment of children and adolescents with type 1 Gaucher disease: the Albanian experience. Front Pediatr 2024; 12:1352179. [PMID: 38464899 PMCID: PMC10920268 DOI: 10.3389/fped.2024.1352179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Enzyme replacement therapy is already recognized as the gold standard of care for patients with Gaucher disease. Taliglucerase alfa is one of the three alternatives recommended for treatment of Gaucher disease in children and adults. Aim This study aims to evaluate the long-term efficacy and safety of Taliglucerase alfa in children and adolescents with Type 1 Gaucher disease. Patients and methods Over a six-year period, we monitored the efficacy of continuous treatment in 10 patients by assessing various parameters, including hemoglobin concentration, platelet count, liver and spleen volume, bone mineral density, glucosylsphingosine level, chitotriosidase activity, and growth parameters. Safety was evaluated by immunogenicity and adverse event monitoring. Results The mean age of patients was 13.4 ± 3.6 years and the treatment duration was 60.24 ± 13.4 months. From baseline to end line the parameters change as follows: hemoglobin concentration improved from 12.7 (±1.3) to 14.6 (±1.5) and platelet count from 180 (±74) to 198 (±79). The spleen volume, was reduced by 46% (p = 0,007). The chitotriosidase activity decreased from 4,019.7 (±3,542.0) nmoles/ml/hr to 2,039.5 (±1,372.2) nmoles/ml/hr (46% reduction). Glucoylsphingosine level dropped from 119.2 (±70.4) ng/ml to 86.2 (±38.1) ng/ml, indicating a reduction of 28%. Bone mineral density Z-score, improved from -1.47 (±1.76) to -0.46 (±0.99) (69.7% reduction). Out of the 1,301 total administrations, our patients reported only 37 (2.8%) infusion-related adverse events which were mild and transitory. Conclusion Taliglucerase alfa exhibits good efficacy and a safe profile in the treatment of children and adolescents with Type 1 Gaucher disease.
Collapse
Affiliation(s)
- Paskal Cullufi
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Sonila Tomori
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Virtut Velmishi
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Agim Gjikopulli
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Ilir Akshija
- Statistics Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Aferdita Tako
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Ermira Dervishi
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Gladiola Hoxha
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Marjeta Tanka
- Radiology Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Erjon Troja
- Pharmacy Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Mirela Tabaku
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| |
Collapse
|
8
|
Malinová V, Poupětová H, Řeboun M, Dvořáková L, Reichmannová S, Švandová I, Murgašová L, Kasper DC, Magner M. Long-Term Evaluation of Biomarkers in the Czech Cohort of Gaucher Patients. Int J Mol Sci 2023; 24:14440. [PMID: 37833892 PMCID: PMC10572410 DOI: 10.3390/ijms241914440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
A personalized treatment decision for Gaucher disease (GD) patients should be based on relevant markers that are specific to GD, play a direct role in GD pathophysiology, exhibit low genetic variation, reflect the therapy, and can be used for all patients. Thirty-four GD patients treated with enzyme replacement therapy (ERT) or substrate reduction therapy (SRT) were analyzed for platelet count, chitotriosidase, and tartrate-resistant acid phosphatase activity in plasma samples, and quantitative measurement of Lyso-Gb1 was performed in dried blood spots. In our ERT and SRT study cohorts, plasma lyso-GL1 correlated significantly with chito-triosidase (ERT: r = 0.55, p < 0.001; SRT: r = 0.83, p < 0.001) and TRAP (ERT: r = 0.34, p < 0.001; SRT: r = 0.88, p < 0.001), irrespective of treatment method. A platelet count increase was associated with a Lyso-Gb1 decrease in both treatment groups (ERT: p = 0.021; SRT: p = 0.028). The association of Lyso-Gb1 with evaluated markers was stronger in the SRT cohort. Our results indicate that ERT and SRT in combination or in a switch manner could offer the potential of individual drug effectiveness for particular GD symptoms. Combination of the key biomarker of GD, Lyso-Gb1, with other biomarkers can offer improved response assessment to long-term therapy.
Collapse
Affiliation(s)
- Věra Malinová
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic (H.P.); (M.Ř.); (L.D.); (S.R.); (I.Š.); (L.M.)
| | - Helena Poupětová
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic (H.P.); (M.Ř.); (L.D.); (S.R.); (I.Š.); (L.M.)
| | - Martin Řeboun
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic (H.P.); (M.Ř.); (L.D.); (S.R.); (I.Š.); (L.M.)
| | - Lenka Dvořáková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic (H.P.); (M.Ř.); (L.D.); (S.R.); (I.Š.); (L.M.)
| | - Stella Reichmannová
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic (H.P.); (M.Ř.); (L.D.); (S.R.); (I.Š.); (L.M.)
| | - Ivana Švandová
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic (H.P.); (M.Ř.); (L.D.); (S.R.); (I.Š.); (L.M.)
| | - Lenka Murgašová
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic (H.P.); (M.Ř.); (L.D.); (S.R.); (I.Š.); (L.M.)
| | | | - Martin Magner
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic (H.P.); (M.Ř.); (L.D.); (S.R.); (I.Š.); (L.M.)
| |
Collapse
|
9
|
Eskes ECB, van der Lienden MJC, Sjouke B, van Vliet L, Brands MMMG, Hollak CEM, Aerts JMFG. Glycoprotein non-metastatic protein B (GPNMB) plasma values in patients with chronic visceral acid sphingomyelinase deficiency. Mol Genet Metab 2023; 139:107631. [PMID: 37453187 DOI: 10.1016/j.ymgme.2023.107631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare LSD characterized by lysosomal accumulation of sphingomyelin, primarily in macrophages. With the recent availability of enzyme replacement therapy, the need for biomarkers to assess severity of disease has increased. Glycoprotein non-metastatic protein B (GPNMB) plasma levels were demonstrated to be elevated in Gaucher disease. Given the similarities between Gaucher disease and ASMD, the hypothesis was that GPNMB might be a potential biochemical marker for ASMD as well. Plasma samples of ASMD patients were analyzed and GPNMB plasma levels were compared to those of healthy volunteers. Visceral disease severity was classified as severe when splenic, hepatic and pulmonary manifestations were all present and as mild to moderate if this was not the case. Median GPNMB levels in 67 samples of 19 ASMD patients were 185 ng/ml (range 70-811 ng/ml) and were increased compared to 10 healthy controls (median 36 ng/ml, range 9-175 ng/ml, p < 0.001). Median plasma GPNMB levels of ASMD patients with mild to moderate visceral disease compared to patients with severe visceral disease differed significantly and did not overlap (respectively 109 ng/ml, range 70-304 ng/ml and 325 ng/ml, range 165-811 ng/ml, p < 0.001). Correlations with other biochemical markers of ASMD (i.e. chitotriosidase activity, CCL18 and lysosphingomyelin, respectively R = 0.28, p = 0.270; R = 0.34, p = 0.180; R = 0.39, p = 0.100) and clinical parameters (i.e. spleen volume, liver volume, diffusion capacity and forced vital capacity, respectively R = 0.59, p = 0.061, R = 0.5, p = 0.100, R = 0.065, p = 0.810, R = -0.38, p = 0.160) could not be established within this study. The results of this study suggest that GPNMB might be suitable as a biomarker of visceral disease severity in ASMD. Correlations between GPNMB and biochemical or clinical markers of ASMD and response to therapy have to be studied in a larger cohort.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Martijn J C van der Lienden
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Laura van Vliet
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marion M M G Brands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Department of Pediatrics, Division of Metabolic Diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
10
|
Long-term effects of eliglustat on skeletal manifestations in clinical trials of patients with Gaucher disease type 1. Genet Med 2023; 25:100329. [PMID: 36469032 DOI: 10.1016/j.gim.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Most patients with Gaucher disease have progressive and often disabling skeletal manifestations. We examined the long-term effect of eliglustat treatment on bone outcomes in clinical trials in adults with Gaucher disease type 1. METHODS Data from 4 completed phase 2 and 3 trials were evaluated in treatment-naïve patients or patients switching to eliglustat from enzyme replacement therapy (ERT). RESULTS Overall, 319 of 393 (81%) eliglustat-treated patients remained in their trials until completion or commercial eliglustat became available. Mean eliglustat treatment duration ranged from 3.3 to 6.5 years. In treatment-naïve patients and ERT-switch patients, frequency and severity of bone pain decreased during eliglustat treatment. Mean lumbar spine T-scores shifted from abnormal to normal in treatment-naïve patients and remained in the healthy reference range or improved modestly in ERT-switch patients. Mean total bone marrow burden score shifted from marked-to-severe to moderate in treatment-naïve patients and remained moderate in ERT-switch patients. MIP-1β (marker of active bone disease) was elevated at baseline and decreased to the healthy reference range in treatment-naïve patients and remained in the healthy reference range among ERT-switch patients. CONCLUSION These findings confirm the long-term efficacy of eliglustat on skeletal complications of Gaucher disease in treatment-naïve and ERT-switch patients.
Collapse
|
11
|
Carnicer-Cáceres C, Villena-Ortiz Y, Castillo-Ribelles L, Barquín-Del-Pino R, Camprodon-Gomez M, Felipe-Rucián A, Moreno-Martínez D, Lucas-Del-Pozo S, Hernández-Vara J, García-Serra A, Tigri-Santiña A, Moltó-Abad M, Agraz-Pamplona I, Rodriguez-Palomares JF, Limeres-Freire J, Macaya-Font M, Rodríguez-Sureda V, Miguel LDD, Del-Toro-Riera M, Pintos-Morell G, Arranz-Amo JA. Influence of initial clinical suspicion on the diagnostic yield of laboratory enzymatic testing in lysosomal storage disorders. Experience from a multispecialty hospital. Blood Cells Mol Dis 2023; 98:102704. [PMID: 36265282 DOI: 10.1016/j.bcmd.2022.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Lysosomal storage disorders (LSD) are a group of inherited metabolic diseases mainly caused by a deficiency of lysosomal hydrolases, resulting in a gradual accumulation of non-degraded substrates in different tissues causing the characteristic clinical manifestations of such disorders. Confirmatory tests of suspected LSD individuals include enzymatic and genetic testing. A well-oriented clinical suspicion can improve the cost-effectiveness of confirmatory tests and reduce the time expended to achieve the diagnosis. Thus, this work aims to retrospectively study the influence of clinical orientation on the diagnostic yield of enzymatic tests in LSD by retrieving clinical, biochemical, and genetic data obtained from subjects with suspicion of LSD. Our results suggest that the clinical manifestations at the time of diagnosis and the initial clinical suspicion can have a great impact on the diagnostic yield of enzymatic tests, and that clinical orientation performed in specialized clinical departments can contribute to improve it. In addition, the analysis of enzymatic tests as the first step in the diagnostic algorithm can correctly guide subsequent confirmatory genetic tests, in turn increasing their diagnostic yield. In summary, our results suggest that initial clinical suspicion plays a crucial role on the diagnostic yield of confirmatory enzymatic tests in LSD.
Collapse
Affiliation(s)
- Clara Carnicer-Cáceres
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Yolanda Villena-Ortiz
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Laura Castillo-Ribelles
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Raquel Barquín-Del-Pino
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Maria Camprodon-Gomez
- Department of Internal Medicine, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Ana Felipe-Rucián
- Department of Pediatric Neurology, Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain.
| | - David Moreno-Martínez
- Department of Internal Medicine, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Sara Lucas-Del-Pozo
- Neurodegenerative Diseases Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Department of Neurology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jorge Hernández-Vara
- Neurodegenerative Diseases Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Department of Neurology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Anna García-Serra
- Neurodegenerative Diseases Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Ariadna Tigri-Santiña
- Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Marc Moltó-Abad
- Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain.
| | - Irene Agraz-Pamplona
- Department of Nephrology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Jose F Rodriguez-Palomares
- Department of Cardiology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Javier Limeres-Freire
- Department of Cardiology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Marc Macaya-Font
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Victor Rodríguez-Sureda
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Biochemistry and Molecular Biology Research Centre for Nanomedicine, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Lucy Dougherty-De Miguel
- Department of Pediatric Neurology, Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain.
| | - Mireia Del-Toro-Riera
- Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Department of Pediatric Neurology, Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain.
| | - Guillem Pintos-Morell
- Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Jose Antonio Arranz-Amo
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| |
Collapse
|
12
|
Dardis A, Michelakakis H, Rozenfeld P, Fumic K, Wagner J, Pavan E, Fuller M, Revel-Vilk S, Hughes D, Cox T, Aerts J. Patient centered guidelines for the laboratory diagnosis of Gaucher disease type 1. Orphanet J Rare Dis 2022; 17:442. [PMID: 36544230 PMCID: PMC9768924 DOI: 10.1186/s13023-022-02573-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder due to the deficient activity of the acid beta-glucosidase (GCase) enzyme, resulting in the progressive lysosomal accumulation of glucosylceramide (GlcCer) and its deacylated derivate, glucosylsphingosine (GlcSph). GCase is encoded by the GBA1 gene, located on chromosome 1q21 16 kb upstream from a highly homologous pseudogene. To date, more than 400 GBA1 pathogenic variants have been reported, many of them derived from recombination events between the gene and the pseudogene. In the last years, the increased access to new technologies has led to an exponential growth in the number of diagnostic laboratories offering GD testing. However, both biochemical and genetic diagnosis of GD are challenging and to date no specific evidence-based guidelines for the laboratory diagnosis of GD have been published. The objective of the guidelines presented here is to provide evidence-based recommendations for the technical implementation and interpretation of biochemical and genetic testing for the diagnosis of GD to ensure a timely and accurate diagnosis for patients with GD worldwide. The guidelines have been developed by members of the Diagnostic Working group of the International Working Group of Gaucher Disease (IWGGD), a non-profit network established to promote clinical and basic research into GD for the ultimate purpose of improving the lives of patients with this disease. One of the goals of the IWGGD is to support equitable access to diagnosis of GD and to standardize procedures to ensure an accurate diagnosis. Therefore, a guideline development group consisting of biochemists and geneticists working in the field of GD diagnosis was established and a list of topics to be discussed was selected. In these guidelines, twenty recommendations are provided based on information gathered through a systematic review of the literature and two different diagnostic algorithms are presented, considering the geographical differences in the access to diagnostic services. Besides, several gaps in the current diagnostic workflow were identified and actions to fulfill them were taken within the IWGGD. We believe that the implementation of recommendations provided in these guidelines will promote an equitable, timely and accurate diagnosis for patients with GD worldwide.
Collapse
Affiliation(s)
- A Dardis
- Regional Coordinator Centre for Rare Disease, University Hospital of Udine, P.Le Santa Maria Della Misericordia 15, 33100, Udine, Italy.
| | - H Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - P Rozenfeld
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos Y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, La Plata, Argentina
| | - K Fumic
- Department for Laboratory Diagnostics, University Hospital Centre Zagreb and School of Medicine, Zagreb, Croatia
| | - J Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
- International Gaucher Alliance, Dursley, UK
| | - E Pavan
- Regional Coordinator Centre for Rare Disease, University Hospital of Udine, P.Le Santa Maria Della Misericordia 15, 33100, Udine, Italy
| | - M Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - S Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - D Hughes
- Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust and University College London, London, UK
| | - T Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
13
|
Gayed MM, Jung SH, Huggins E, Rodriguez-Rassi E, DeArmey S, Kishnani PS, Stiles AR. Glucosylsphingosine (Lyso-Gb 1): An Informative Biomarker in the Clinical Monitoring of Patients with Gaucher Disease. Int J Mol Sci 2022; 23:ijms232314938. [PMID: 36499264 PMCID: PMC9736277 DOI: 10.3390/ijms232314938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Historically, disease burden and treatment responses in patients with Gaucher disease (GD) was assessed by monitoring clinical data, laboratory, imaging, chitotriosidase (CHITO), and other biomarkers; however, these biomarkers lack specificity and CHITO is uninformative in patients heterozygous or homozygous for the CHIT1 c.1049_1072dup24 variant. Recently, glucosylsphingosine (lyso-Gb1), a sensitive and specific GD biomarker, has been recommended for patient monitoring. Furthermore, studies measuring lyso-Gb1 and CHITO in patients on long-term treatment with enzyme replacement therapy (ERT) and/or substrate reduction therapy (SRT) reported as group data show a reduction in both analytes, yet individualized patient data are generally unavailable. We describe seven patients on long-term treatment with longitudinal clinical data with monitoring based on current treatment guidelines. We present four patients who exhibit stable disease with normalized CHITO despite elevated lyso-Gb1. We present one patient who transitioned from ERT to SRT due to lack of a clinical response with life-threatening thrombocytopenia who responded with marked improvement in platelets, and normalized levels of both CHITO and lyso-Gb1. Finally, we present two ERT to SRT switch patients with stable disease on ERT who exhibited non-compliance on SRT, one with mirrored marked elevations of CHITO and lyso-Gb1; and another with normal CHITO and platelets, but increasing lyso-Gb1 levels and enlarged spleen. These clinical vignettes highlight the role of lyso-Gb1 as a sensitive biomarker in management of patients with GD, and its further value when CHITO is normal and thus uninformative. We highlight the personalized medicine approach needed to optimize treatment outcomes and recommendations for these patients.
Collapse
Affiliation(s)
- Matthew M. Gayed
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Seung-Hye Jung
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin Huggins
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Eleanor Rodriguez-Rassi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephanie DeArmey
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Priya Sunil Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence:
| | - Ashlee R. Stiles
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC 27713, USA
| |
Collapse
|
14
|
Sabitha KR, Chandran D, Shetty AK, Upadhya D. Delineating the neuropathology of lysosomal storage diseases using patient-derived induced pluripotent stem cells. Stem Cells Dev 2022; 31:221-238. [PMID: 35316126 DOI: 10.1089/scd.2021.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSD) are inherited metabolic diseases caused due to deficiency of lysosomal enzymes, essential for the normal development of the brain and other organs. Approximately two-thirds of the patients suffering from LSD exhibit neurological deficits and impose an escalating challenge to the medical and scientific field. The advent of iPSC technology has aided researchers in efficiently generating functional neuronal and non-neuronal cells through directed differentiation protocols, as well as in decoding the cellular, subcellular and molecular defects associated with LSDs using two-dimensional cultures and cerebral organoid models. This review highlights the information assembled from patient-derived iPSCs on neurodevelopmental and neuropathological defects identified in LSDs. Multiple studies have identified neural progenitor cell migration and differentiation defects, substrate accumulation, axon growth and myelination defects, impaired calcium homeostasis and altered electrophysiological properties, using patient-derived iPSCs. In addition, these studies have also uncovered defective lysosomes, mitochondria, endoplasmic reticulum, Golgi complex, autophagy and vesicle trafficking and signaling pathways, oxidative stress, neuroinflammation, blood brain barrier dysfunction, neurodegeneration, gliosis, altered transcriptomes in LSDs. The review also discusses the therapeutic applications such as drug discovery, repurposing of drugs, synergistic effects of drugs, targeted molecular therapies, gene therapy, and transplantation applications of mutation corrected lines identified using patient-derived iPSCs for different LSDs.
Collapse
Affiliation(s)
- K R Sabitha
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| | - Divya Chandran
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| | - Ashok K Shetty
- Texas A&M University College Station, 14736, College of Medicine, Institute for Regenerative Medicine, College Station, Texas, United States;
| | - Dinesh Upadhya
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| |
Collapse
|
15
|
Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish. J Lipid Res 2022; 63:100199. [PMID: 35315333 PMCID: PMC9058576 DOI: 10.1016/j.jlr.2022.100199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson’s disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.
Collapse
|
16
|
Gaucher Disease Diagnosis Using Lyso-Gb1 on Dry Blood Spot Samples: Time to Change the Paradigm? Int J Mol Sci 2022; 23:ijms23031627. [PMID: 35163551 PMCID: PMC8835963 DOI: 10.3390/ijms23031627] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
For years, the gold standard for diagnosing Gaucher disease (GD) has been detecting reduced β-glucocerebrosidase (GCase) activity in peripheral blood cells combined with GBA1 mutation analysis. The use of dried blood spot (DBS) specimens offers many advantages, including easy collection, the need for a small amount of blood, and simpler transportation. However, DBS has limitations for measuring GCase activity. In this paper, we recount our cross-sectional study and publish seven years of experience using DBS samples and levels of the deacylated form of glucocerebroside, glucosylsphingosine (lyso-Gb1), for GD diagnosis. Of 444 screened subjects, 99 (22.3%) were diagnosed with GD at a median (range) age of 21 (1–78) years. Lyso-Gb levels for genetically confirmed GD patients vs. subjects negative to GD diagnosis were 252 (9–1340) ng/mL and 5.4 (1.5–16) ng/mL, respectively. Patients diagnosed with GD1 and mild GBA1 variants had lower median (range) lyso-Gb1, 194 (9–1050), compared to GD1 and severe GBA1 variants, 447 (38–1340) ng/mL, and neuronopathic GD, 325 (116–1270) ng/mL (p = 0.001). Subjects with heterozygous GBA1 variants (carrier) had higher lyso-Gb1 levels, 5.8 (2.5–15.3) ng/mL, compared to wild-type GBA1, 4.9 (1.5–16), ng/mL (p = 0.001). Lyso-Gb1 levels, median (range), were 5 (2.7–10.7) in heterozygous GBA1 carriers with Parkinson’s disease (PD), similar to lyso-Gb1 levels in subjects without PD. We call for a paradigm change for the diagnosis of GD based on lyso-Gb1 measurements and confirmatory GBA1 mutation analyses in DBS. Lyso-Gb1 levels could not be used to differentiate between heterozygous GBA1 carriers and wild type.
Collapse
|
17
|
Paskulin LD, Starosta RT, Bertholdo D, Vairo FP, Vedolin L, Schwartz IVD. Bone marrow burden score is not useful as a follow-up parameter in stable patients with type 1 Gaucher disease after 5 years of treatment. Blood Cells Mol Dis 2021; 90:102591. [PMID: 34242856 DOI: 10.1016/j.bcmd.2021.102591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Gaucher disease (GD) is one of the most prevalent lysosomal disorders, with an estimated incidence of 1 in 40,000 live births worldwide. Skeletal involvement is one of the main features of GD, causing morbidity and impacting long-term quality of life in patients with type 1 GD. OBJECTIVES To characterize bone marrow infiltration in patients with type 1 GD followed at the Gaucher Disease Referral Center of Porto Alegre, Brazil, and to assess whether the Bone Marrow Burden score (BMB) correlates with clinical or laboratory parameters. We also evaluated whether the BMB score is a suitable parameter for long-term follow-up of patients with type 1 GD. METHODS All included patients underwent magnetic resonance imaging for BMB score calculation at baseline, 1 year, and every other year thereafter or as clinically indicated from 2012 to 2018. RESULTS The BMB score tended to decrease during the first 5 years of treatment, at a rate of -1.08 points per year; after the 5-year mark, BMB tended to remain stable. CONCLUSIONS The BMB score is useful for response monitoring in the first five years of treatment. We recommend that, after 5 years of treatment, MRI for BMB evaluation should only be performed in non-adherent patients or in those who develop symptoms of acute skeletal disease.
Collapse
Affiliation(s)
- Livia d'Ávila Paskulin
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Tzovenos Starosta
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Division of Medical Genetics, Department of Pediatrics, Saint Louis Children's Hospital, Washington University in Saint Louis, St. Louis, MO, USA.
| | | | - Filippo Pinto Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Ida Vanessa Doederlein Schwartz
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Stiles AR, Huggins E, Fierro L, Jung SH, Balwani M, Kishnani PS. The role of glucosylsphingosine as an early indicator of disease progression in early symptomatic type 1 Gaucher disease. Mol Genet Metab Rep 2021; 27:100729. [PMID: 33614410 PMCID: PMC7876627 DOI: 10.1016/j.ymgmr.2021.100729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022] Open
Abstract
Gaucher disease (GD), a lysosomal storage disorder caused by β-glucocerebrosidase deficiency, results in the accumulation of glucosylceramide and glucosylsphingosine. Glucosylsphingosine has emerged as a sensitive and specific biomarker for GD and treatment response. However, limited information exists on its role in guiding treatment decisions in pre-symptomatic patients identified at birth or due to a positive family history. We present two pediatric patients with GD1 and highlight the utility of glucosylsphingosine monitoring in guiding treatment initiation.
Collapse
Affiliation(s)
- Ashlee R. Stiles
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
| | - Erin Huggins
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Luca Fierro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seung-Hye Jung
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Raskovalova T, Deegan PB, Mistry PK, Pavlova E, Yang R, Zimran A, Berger J, Bourgne C, Pereira B, Labarère J, Berger MG. Accuracy of chitotriosidase activity and CCL18 concentration in assessing type I Gaucher disease severity. A systematic review with meta-analysis of individual participant data. Haematologica 2021; 106:437-445. [PMID: 32001533 PMCID: PMC7849573 DOI: 10.3324/haematol.2019.236083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Chitotriosidase activity and CCL18 concentration are interchangeably used for monitoring Gaucher disease (GD) activity, together with clinical assessment. However, comparative studies of these two biomarkers are scarce and of limited sample size. The aim of this systematic review with meta-analysis of individual participant data (IPD) was to compare the accuracy of chitotriosidase activity and CCL18 concentration for assessing type I GD severity. We identified cross-sectional and prospective cohort studies by searching Medline, EMBASE, and CENTRAL from 1995 to June 2017, and by contacting research groups. The primary outcome was a composite of liver volume >1.25 multiple of normal (MN), spleen volume >5 MN, hemoglobin concentration <11 g/dL, and platelet count <100x109/L. Overall, IPD included 1109 observations from 334 patients enrolled in nine primary studies, after excluding 111 patients with undocumented values and 18 patients with deficient chitotriosidase activity. IPD were unavailable for 14 eligible primary studies. The primary outcome was associated with a 5.3-fold (95% confidence interval [CI], 4.2 to 6.6) and 3.0-fold (95% CI, 2.6 to 3.6) increase of the geometric mean for chitotriosidase activity and CCL18 concentration, respectively. The corresponding areas under the receiver operating characteristics curves were 0.82 and 0.84 (summary difference, 0.02, 95% CI, -0.02 to 0.05). The addition of chitotriosidase activity did not improve the accuracy of CCL18 concentration. Estimates remained robust in the sensitivity analysis and consistent across subgroups. Neither chitotriosidase activity nor CCL18 concentration varied significantly according to a recent history of bone events among 97 patients. In conclusion, CCL18 concentration is as accurate as chitotriosidase activity in assessing hematological and visceral parameters of GD severity and can be measured in all GD patients. This meta-analysis supports the use of CCL18 rather than chitotriosidase activity for monitoring GD activity in routine practice.
Collapse
Affiliation(s)
- Tatiana Raskovalova
- Lab immunologie, Grenoble University Hospital, Universite' Grenoble Alpes, Grenoble, France
| | - Patrick B Deegan
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Pramod K Mistry
- Pediatric Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT, USA
| | - Elena Pavlova
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ruby Yang
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ari Zimran
- Shaare Zedek Medical Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Juliette Berger
- CHU Clermont-Ferrand, Hopital Estaing, Hematologie Biologique, Clermont-Ferrand, France
| | - Céline Bourgne
- CHU Clermont-Ferrand, Hopital Estaing, Hematologie Biologique, Clermont-Ferrand, France
| | - Bruno Pereira
- DRCI, CHU Clermont-Ferrand, Clermont-Ferrand Cedex, France
| | - José Labarère
- Univ. Grenoble Alpes, TIMC UMR CNRS 5525, Grenoble University Hospital, Grenoble, France
| | - Marc G Berger
- CHU Clermont-Ferrand, Hopital Estaing, Hematologie Biologique, Clermont-Ferrand, France
| |
Collapse
|
20
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
21
|
Value of Glucosylsphingosine (Lyso-Gb1) as a Biomarker in Gaucher Disease: A Systematic Literature Review. Int J Mol Sci 2020; 21:ijms21197159. [PMID: 32998334 PMCID: PMC7584006 DOI: 10.3390/ijms21197159] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The challenges in the diagnosis, prognosis, and monitoring of Gaucher disease (GD), an autosomal recessive inborn error of glycosphingolipid metabolism, can negatively impact clinical outcomes. This systematic literature review evaluated the value of glucosylsphingosine (lyso-Gb1), as the most reliable biomarker currently available for the diagnosis, prognosis, and disease/treatment monitoring of patients with GD. Literature searches were conducted using MEDLINE, Embase, PubMed, ScienceOpen, Science.gov, Biological Abstracts, and Sci-Hub to identify original research articles relevant to lyso-Gb1 and GD published before March 2019. Seventy-four articles met the inclusion criteria, encompassing 56 related to pathology and 21 related to clinical biomarkers. Evidence for lyso-Gb1 as a pathogenic mediator of GD was unequivocal, although its precise role requires further elucidation. Lyso-Gb1 was deemed a statistically reliable diagnostic and pharmacodynamic biomarker in GD. Evidence supports lyso-Gb1 as a disease-monitoring biomarker for GD, and some evidence supports lyso-Gb1 as a prognostic biomarker, but further study is required. Lyso-Gb1 meets the criteria for a biomarker as it is easily accessible and reliably quantifiable in plasma and dried blood spots, enables the elucidation of GD molecular pathogenesis, is diagnostically valuable, and reflects therapeutic responses. Evidentiary standards appropriate for verifying inter-laboratory lyso-Gb1 concentrations in plasma and in other anatomical sites are needed.
Collapse
|
22
|
Irún P, Cebolla JJ, López de Frutos L, De Castro-Orós I, Roca-Espiau M, Giraldo P. LC-MS/MS analysis of plasma glucosylsphingosine as a biomarker for diagnosis and follow-up monitoring in Gaucher disease in the Spanish population. ACTA ACUST UNITED AC 2020; 58:798-809. [DOI: 10.1515/cclm-2019-0949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/03/2020] [Indexed: 11/15/2022]
Abstract
AbstractBackgroundGaucher disease (GD), caused by a deficiency in acid β-glucosidase, leads to the accumulation of glucosylsphingosine (GluSph), which has been used as a powerful biomarker for the diagnosis and follow-up of GD. Our aim was to perform the first retrospective study of GluSph in Spanish patients, analyzing its relationship with classical biomarkers and other parameters of disease and its utility regarding treatment monitoring.MethodsClassical biomarkers were evaluated retrospectively by standard methods in a total of 145 subjects, including 47 GD patients, carriers, healthy controls and patients suffering from other lysosomal lipidoses. GluSph was also measured using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method developed as part of the present study.ResultsThe optimized method presented intra- and inter-assay variations of 3.1 and 11.5%, respectively, overall recovery higher than 96% and linearity up to plasma concentrations of 1000 ng/mL with 100% specificity and sensitivity. Only GD patients displayed GluSph levels above 5.4 ng/mL at diagnosis and this was significantly correlated with the classical biomarkers chitotriosidase (r = 0.560) and the chemokine CCL18/PARC (CCL18/PARC) (ρ = 0.515), as well as with the Spanish magnetic resonance imaging index (S-MRI, r = 0.364), whereas chitotriosidase correlated with liver volume (r = 0.372) and CCL18/PARC increased in patients with bone manifestations (p = 0.005). GluSph levels decreased with treatment in naïve patients.ConclusionsPlasma GluSph is the most disease-specific biomarker for GD with demonstrated diagnostic value and responsiveness to therapy. GluSph in the present series of patients failed to demonstrate better correlations with clinical characteristics at onset than classical biomarkers.
Collapse
Affiliation(s)
- Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Jorge J. Cebolla
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
| | - Laura López de Frutos
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
| | - Isabel De Castro-Orós
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Mercedes Roca-Espiau
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
- Centro de Diagnóstico por Imagen Dra Roca, Zaragoza, Spain
| | - Pilar Giraldo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
| |
Collapse
|
23
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
24
|
Aerts JMFG, Kuo CL, Lelieveld LT, Boer DEC, van der Lienden MJC, Overkleeft HS, Artola M. Glycosphingolipids and lysosomal storage disorders as illustrated by gaucher disease. Curr Opin Chem Biol 2019; 53:204-215. [PMID: 31783225 DOI: 10.1016/j.cbpa.2019.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Glycosphingolipids are important building blocks of the outer leaflet of the cell membrane. They are continuously recycled, involving fragmentation inside lysosomes by glycosidases. Inherited defects in degradation cause lysosomal glycosphingolipid storage disorders. The relatively common glycosphingolipidosis Gaucher disease is highlighted here to discuss new insights in the molecular basis and pathophysiology of glycosphingolipidoses reached by fundamental research increasingly using chemical biology tools. We discuss improvements in the detection of glycosphingolipid metabolites by mass spectrometry and review new developments in laboratory diagnosis and disease monitoring as well as therapeutic interventions.
Collapse
Affiliation(s)
- Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands.
| | - Chi-Lin Kuo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Lindsey T Lelieveld
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Daphne E C Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | | | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
25
|
Hughes D, Mikosch P, Belmatoug N, Carubbi F, Cox T, Goker-Alpan O, Kindmark A, Mistry P, Poll L, Weinreb N, Deegan P. Gaucher Disease in Bone: From Pathophysiology to Practice. J Bone Miner Res 2019; 34:996-1013. [PMID: 31233632 PMCID: PMC6852006 DOI: 10.1002/jbmr.3734] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Gaucher disease (GD) is a rare, genetic lysosomal disorder leading to lipid accumulation and dysfunction in multiple organs. Involvement of the skeleton is one of the most prevalent aspects of GD and a major cause of pain, disability, and reduced quality of life. Uniform recommendations for contemporary evaluation and management are needed. To develop practical clinical recommendations, an international group of experienced physicians conducted a comprehensive review of 20 years' of the literature, defining terms according to pathophysiological understanding and pointing out best practice and unmet needs related to the skeletal features of this disorder. Abnormalities of bone modeling, reduced bone density, bone infarction, and plasma cell dyscrasias accompany the displacement of healthy adipocytes in adult marrow. Exposure to excess bioactive glycosphingolipids appears to affect hematopoiesis and the balance of osteoblast and osteoclast numbers and activity. Imbalance between bone formation and breakdown induces disordered trabecular and cortical bone modeling, cortical bone thinning, fragility fractures, and osteolytic lesions. Regular assessment of bone mineral density, marrow infiltration, the axial skeleton and searching for potential malignancy are recommended. MRI is valuable for monitoring skeletal involvement: It provides semiquantitative assessment of marrow infiltration and the degree of bone infarction. When MRI is not available, monitoring of painful acute bone crises and osteonecrosis by plain X-ray has limited value. In adult patients, we recommend DXA of the lumbar spine and left and right hips, with careful protocols designed to exclude focal disease; serial follow-up should be done using the same standardized instrument. Skeletal health may be improved by common measures, including adequate calcium and vitamin D and management of pain and orthopedic complications. Prompt initiation of specific therapy for GD is crucial to optimizing outcomes and preventing irreversible skeletal complications. Investing in safe, clinically useful, and better predictive methods for determining bone integrity and fracture risk remains a need. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Derralynn Hughes
- Royal Free London NHS Foundation Trust and University College London, UK
| | - Peter Mikosch
- Department of Internal Medicine 2, Landesklinikum Mistelbach, Austria, and Medical University Vienna, Externe Lehre, Vienna, Austria
| | - Nadia Belmatoug
- Referral Center for Lysosomal Diseases, Department of Internal Medicine, University Hospital Paris Nord Val de Seine, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Francesca Carubbi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, NOCSAE Hospital, AOU Modena, Italy
| | - TimothyM Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Andreas Kindmark
- Department of Endocrinology and Diabetology, Uppsala University Hospital, Uppsala, Sweden
| | - PramodK Mistry
- Department of Internal Medicine (Digestive Diseases), Yale University School of Medicine, New Haven, CT, USA
| | - Ludger Poll
- Practice of Radiology and Nuclear Medicine Duisburg-Moers, Heinrich-Heine University Düsseldorf, Duisburg, Germany
| | - Neal Weinreb
- Departments of Human Genetics and Medicine (Hematology), Miller School of Medicine, University of Miami, FL, USA
| | - Patrick Deegan
- Lysosomal Disorders Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
26
|
Nguyen Y, Stirnemann J, Belmatoug N. La maladie de Gaucher : quand y penser ? Rev Med Interne 2019; 40:313-322. [DOI: 10.1016/j.revmed.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/12/2018] [Accepted: 11/25/2018] [Indexed: 12/23/2022]
|
27
|
Chin CY, Hsu CT, Lee CS, Chien YH, Wu JF. Monitoring of liver stiffness by transient elastography during the treatment of Gaucher disease. Pediatr Neonatol 2019; 60:221-223. [PMID: 29866519 DOI: 10.1016/j.pedneo.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Affiliation(s)
- Chia-Yi Chin
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chien-Ting Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan.
| | - Chee-Seng Lee
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
Prognostic Biomarkers of Sarcoidosis: A Comparative Study of Serum Chitotriosidase, ACE, Lysozyme, and KL-6. DISEASE MARKERS 2019; 2019:8565423. [PMID: 30944672 PMCID: PMC6421736 DOI: 10.1155/2019/8565423] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
Purpose Sarcoidosis is a systemic granulomatous disease with unknown etiology. Many clinical presentations have been reported, and acute disease needs to be distinguished from subacute and chronic disease. The unpredictable clinical course of the disease prompted us to evaluate the clinical utility of biomarker serum detection in sarcoidosis follow-up. Methods Serum concentrations of chitotriosidase, ACE, KL-6, and lysozyme were analyzed by different methods in a population of 74 sarcoidosis patients (46 on steroid therapy at sampling) regularly monitored at Siena Sarcoidosis Regional Referral Centre and in a group of controls with the aim of comparing their contribution to clinical management of sarcoidosis patients. Results KL-6 concentrations were significantly elevated in sarcoidosis patients with lung fibrosis and were significantly correlated with DLco and CPI score, while chitotriosidase was significantly higher in patients with extrapulmonary localizations. With a cut-off value of 303.5 IU/ml, KL-6 showed the best sensitivity (78%), while chitotriosidase reported the best specificity (85%) among the biomarkers. Conclusions KL-6 is a reliable biomarker of fibrotic lung involvement in sarcoidosis patients. Among biomarkers, KL-6 showed the best sensitivity and serum chitotriosidase the best specificity, even in patients on chronic steroid therapy, and seemed to correlate with extrapulmonary localizations.
Collapse
|
29
|
Sperb-Ludwig F, Heineck BL, Michelin-Tirelli K, Alegra T, Schwartz IVD. Chitotriosidase on treatment-naïve patients with Gaucher disease: A genotype vs phenotype study. Clin Chim Acta 2019; 492:1-6. [PMID: 30695688 DOI: 10.1016/j.cca.2019.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chitotriosidase (ChT) is used as a biomarker for the follow-up of patients with Gaucher disease (GD), once his activity is extremely elevated and declines during ERT. However, some variants in the CHIT1 gene affect ChT activity. METHODS To assess association between ChT genotype, and clinical/biochemical features of GD were performed CHIT1 genotyping for: c.1049_1072dup24, p.Gly102Ser, p.Gly354Arg, c.1155_1156 + 2delGAGT, c.1156 + 5_1156 + 8delGTAA, p.Ala442Val/Gly and the rearrangement delE/I-10. RESULTS Were evaluated 42 patients with GD from Southern Brazil. Pretreatment ChT activity was available for 32 patients. Allelic frequencies found for dup24, p.Gly102Ser and p.Ala442Gly were 0.14, 0.32 and 0.12, respectively. Only one patient presented reduced ChT activity (dup24 homozygous). Comparison between wild homozygous and heterozygous for dup24 showed that both differ in relation to the ChT activity before (15,230 vs 6936 nmol/h/mL, p < .001), but not after treatment (5212 vs 3045 nmol/h/mL, p = .227). CONCLUSIONS Pretreatment ChT activity was not correlated with clinical/biochemical features. There was a reduction of 63% in the ChT activity after 12 months on treatment (p < .001). There is no evidence that higher ChT levels are associated with a more severe symptomatology in untreated GD patients. The pretreatment ChT levels appear to be mainly dependent on the presence/absence of the dup24 allele.
Collapse
Affiliation(s)
- Fernanda Sperb-Ludwig
- BRAIN Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bianca Lúcia Heineck
- BRAIN Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Taciane Alegra
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ida Vanessa Doederlein Schwartz
- BRAIN Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
30
|
Kumar A, Zhang KYJ. Human Chitinases: Structure, Function, and Inhibitor Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:221-251. [PMID: 31102249 DOI: 10.1007/978-981-13-7318-3_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitinases are glycosyl hydrolases that hydrolyze the β-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
31
|
van der Lienden MJC, Gaspar P, Boot R, Aerts JMFG, van Eijk M. Glycoprotein Non-Metastatic Protein B: An Emerging Biomarker for Lysosomal Dysfunction in Macrophages. Int J Mol Sci 2018; 20:E66. [PMID: 30586924 PMCID: PMC6337583 DOI: 10.3390/ijms20010066] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.
Collapse
Affiliation(s)
| | - Paulo Gaspar
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Rolf Boot
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Marco van Eijk
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
32
|
Reed MC, Bauernfreund Y, Cunningham N, Beaton B, Mehta AB, Hughes DA. Generation of osteoclasts from type 1 Gaucher patients and correlation with clinical and genetic features of disease. Gene 2018; 678:196-206. [DOI: 10.1016/j.gene.2018.08.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 01/18/2023]
|
33
|
Tylki-Szymańska A, Szymańska-Rożek P, Hasiński P, Ługowska A. Plasma chitotriosidase activity versus plasma glucosylsphingosine in wide spectrum of Gaucher disease phenotypes - A statistical insight. Mol Genet Metab 2018. [PMID: 29530534 DOI: 10.1016/j.ymgme.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Deficiency of beta-glucocerebrosidase (GBA) leads to Gaucher disease (GD), an inherited disorder characterised by storage of glucosylceramide (GlcCer) in lysosomes of tissue macrophages. Macrophages activated by accumulated GlcCer secrete chitotriosidase. Plasma chitotriosidase activity is significantly elevated in patients with active GD and has been suggested to indicate total body Gaucher cell load. There are two biomarkers used to assess the severity of GD - chitotriosidase has been measured for over 20 years, and deacylated GlcCer, known as glucosylsphingosine (GlcSph) is thought to be even more adequate, as it is almost a direct storage substrate. In this paper we focused entirely on statistical analysis, performing a thorough search of possible relations, dependencies and differences in the levels of these two biomarkers in a cohort of 64 Polish GD patients. We found that the treatment of GD with enzyme replacement therapy (ERT) changes the distribution of the disease biomarkers; their levels follow a normal distribution only in untreated patients. The variable "disease biomarker level" was found dependent of the binary variable "treated with ERT or not". It was found independent of the following variables: "disease type", "splenectomized or not", and "heterozygous for 24-bp duplication for CHIT1 variant" or "CHIT1 wild type". An almost perfect linear correlation (coefficient of determination R2 = 0.99) between the chitotriosidase activity and GlcSph level was revealed in splenectomized patients.
Collapse
Affiliation(s)
- Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | - Piotr Hasiński
- Department of Internal Medicine and Gastroenterology, Municipal Hospital, Tychy, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
34
|
Gras-Colomer E, Martínez-Gómez MA, Climente-Martí M, Fernandez-Zarzoso M, Almela-Tejedo M, Giner-Galvañ V, Marcos-Rodríguez JA, Rodríguez-Fernández A, Torralba-Cabeza MÁ, Merino-Sanjuan M. Relationship Between Glucocerebrosidase Activity and Clinical Response to Enzyme Replacement Therapy in Patients With Gaucher Disease Type I. Basic Clin Pharmacol Toxicol 2018; 123:65-71. [PMID: 29418074 DOI: 10.1111/bcpt.12977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
The quantification of enzyme activity in the patient treated with enzyme replacement therapy (ERT) has been suggested as a tool for dosage individualization, so we conducted a study to evaluate the relationship between glucocerebrosidase activity and clinical response in patients with Gaucher disease type I (GD1) to ERT. The study included patients diagnosed with GD1, who were being treated with ERT, and healthy individuals. Markers based on glucocerebrosidase activity measurement in patients' leucocytes were studied: enzyme activity at 15 min. post-infusion (Act75 ) reflects the amount of enzyme that is distributed in the body post-ERT infusion, and accumulated glucocerebrosidase activity during ERT infusion (Act75-0 ) indicates the total drug exposure during infusion. The clinical response was evaluated based on criteria established by Pastores et al. and Gaucher Severity Score Index. Statistical analysis included ROC analysis and area under the curve test. Act75 and Act75-0 were found to be moderate predictive markers of an optimal clinical response (area under the ROC of Act75 was 0.733 and Act75-0 was 0.817). Act75-0 showed statistical significance in its discriminative capacity (p < 0.05) for obtaining an optimal response to ERT. The cut-off point was 58% (RR = 1.800; 95% CI: 1.003-3.229; p < 0.05). Moreover, Act75 showed a significant and inverse correlation with the Gaucher Severity Score Index, and Act75 and Act75-0 presented a significant correlation with residual enzyme activity at diagnosis. Markers based on glucocerebrosidase activity have a good correlation with clinical response to ERT. Therefore, it could provide supporting clinical data for dose management in GD1 patients.
Collapse
Affiliation(s)
- Elena Gras-Colomer
- Department of Pharmacy, University Hospital Doctor Peset of Valencia, Valencia, Spain.,Foundation for the Promotion of Health and Biomedical Research of Valencia (FISABIO), Valencia, Spain
| | - María-Amparo Martínez-Gómez
- Department of Pharmacy, University Hospital Doctor Peset of Valencia, Valencia, Spain.,Foundation for the Promotion of Health and Biomedical Research of Valencia (FISABIO), Valencia, Spain
| | - Mónica Climente-Martí
- Department of Pharmacy, University Hospital Doctor Peset of Valencia, Valencia, Spain.,Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | | | | | - Vicente Giner-Galvañ
- Department of Internal Medicine, Hospital Virgen de los Lirios of Alcoi, Alcoi, Spain
| | | | | | | | - Matilde Merino-Sanjuan
- Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain.,Molecular Recognition and Technological Development Institute, Mixed Unit Polytechnic University of Valencia, University of Valencia, Valencia, Spain
| |
Collapse
|
35
|
Razek AAKA, Abdalla A, Barakat T, El-Taher H, Ali K. Assessment of the liver and spleen in children with Gaucher disease type I with diffusion-weighted MR imaging. Blood Cells Mol Dis 2018; 68:139-142. [DOI: 10.1016/j.bcmd.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
|
36
|
Jian J, Chen Y, Liberti R, Fu W, Hu W, Saunders-Pullman R, Pastores GM, Chen Y, Sun Y, Grabowski GA, Liu CJ. Chitinase-3-like Protein 1: A Progranulin Downstream Molecule and Potential Biomarker for Gaucher Disease. EBioMedicine 2018; 28:251-260. [PMID: 29396296 PMCID: PMC5835567 DOI: 10.1016/j.ebiom.2018.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022] Open
Abstract
We recently reported that progranulin (PGRN) is a novel regulator of glucocerebrosidase and its deficiency associates with Gaucher Diseases (GD) (Jian et al., 2016a; Jian et al., 2018). To isolate the relevant downstream molecules, we performed a whole genome microarray and mass spectrometry analysis, which led to the isolation of Chitinase-3-like-1 (CHI3L1) as one of the up-regulated genes in PGRN null mice. Elevated levels of CHI3L1 were confirmed by immunoblotting and immunohistochemistry. In contrast, treatment with recombinant Pcgin, a derivative of PGRN, as well as imigluerase, significantly reduced the expressions of CHI3L1 in both PGRN null GD model and the fibroblasts from GD patients. Serum levels of CHIT1, a clinical biomarker for GD, were significantly higher in GD patients than healthy controls (51.16±2.824ng/ml vs 35.07±2.099ng/ml, p<0.001). Similar to CHIT1, serum CHI3L1 was also significantly increased in GD patients compared with healthy controls (1736±152.1pg/ml vs 684.7±68.20pg/ml, p<0.001). Whereas the PGRN level is significantly reduced in GD patients as compared to the healthy control (91.56±3.986ng/ml vs 150.6±4.501, p<0.001). Collectively, these results indicate that CHI3L1 may be a previously unrecognized biomarker for diagnosing GD and for evaluating the therapeutic effects of new GD drug(s).
Collapse
Affiliation(s)
- Jinlong Jian
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Rossella Liberti
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Wenhuo Hu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | | | - Gregory M Pastores
- Department of Neurology, New York University School of Medicine, 550 First Ave, New York, NY 10016, USA
| | - Ying Chen
- Depression Evaluation Service, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gregory A Grabowski
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
37
|
Bondar C, Mucci J, Crivaro A, Ormazabal M, Ceci R, Oliveri B, González D, Rozenfeld P. In vitro osteoclastogenesis from Gaucher patients' cells correlates with bone mineral density but not with Chitotriosidase. Bone 2017; 103:262-269. [PMID: 28736246 DOI: 10.1016/j.bone.2017.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/06/2017] [Accepted: 07/19/2017] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by mutations on the gene encoding for the lysosomal enzyme glucocerebrosidase. Type I GD (GD1) patients present anemia, hepatosplenomegaly and bone alterations. In spite of treatment, bone alterations in GD patients persist, including poor bone mineral density (BMD). Mechanisms leading to bone damage are not completely understood, but previous reports suggest that osteoclasts are involved. Chitotriosidase (CHIT) is the most reliable biomarker used in the follow up of patients, although its correlation with bone status is unknown. The aim of this work was to study the pro-osteoclastogenic potential in patients and to evaluate its correlation with CHIT activity levels and clinical parameters. PBMCs from treated patients and healthy controls were cultured in the presence of M-CSF, and mature osteoclasts were counted. BMD, blood CHIT activity and serum levels of CTX, BAP, and cytokines were evaluated in patients. We found that blood CHIT activity and osteoclast differentiation were significantly increased in patients, but no correlation between them was observed. Interestingly, osteoclast numbers but not CHIT, presented a negative correlation with BMD expressed as Z-score. CTX, BAP and serum cytokines involved in bone remodeling were found altered in GD1 patients. These results show for the first time a correlation between osteoclast differentiation and BMD in GD1 patients, supporting the involvement of osteoclasts in the bone pathology of GD1. Our results also suggest that an altered immune response may play an important role in bone damage.
Collapse
Affiliation(s)
- C Bondar
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, 47 y 115, 1900 La Plata, Argentina
| | - J Mucci
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, 47 y 115, 1900 La Plata, Argentina
| | - A Crivaro
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, 47 y 115, 1900 La Plata, Argentina
| | - M Ormazabal
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, 47 y 115, 1900 La Plata, Argentina
| | - R Ceci
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, 47 y 115, 1900 La Plata, Argentina
| | - B Oliveri
- Laboratorio de Osteoporosis y Enfermedades Metabólicas Óseas. Instituto de inmunología, Genética y Metabolismo (INIGEM) CONICET-UBA Hospital de Clínicas, Buenos Aires, Argentina
| | - D González
- Mautalen, Salud e Investigación, Bs As, Argentina
| | - P Rozenfeld
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, 47 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
38
|
Regenboog M, Bohte AE, Akkerman EM, Stoker J, Hollak CE. Iron storage in liver, bone marrow and splenic Gaucheroma reflects residual disease in type 1 Gaucher disease patients on treatment. Br J Haematol 2017; 179:635-647. [DOI: 10.1111/bjh.14915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Martine Regenboog
- Department of Internal Medicine; Division of Endocrinology & Metabolism; Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
- Department of Radiology; Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| | - Anneloes E. Bohte
- Department of Radiology; Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| | - Erik M. Akkerman
- Department of Radiology; Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| | - Jaap Stoker
- Department of Radiology; Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| | - Carla E.M. Hollak
- Department of Internal Medicine; Division of Endocrinology & Metabolism; Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
39
|
Elstein D, Mellgard B, Dinh Q, Lan L, Qiu Y, Cozma C, Eichler S, Böttcher T, Zimran A. Reductions in glucosylsphingosine (lyso-Gb1) in treatment-naïve and previously treated patients receiving velaglucerase alfa for type 1 Gaucher disease: Data from phase 3 clinical trials. Mol Genet Metab 2017; 122:113-120. [PMID: 28851512 DOI: 10.1016/j.ymgme.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 11/30/2022]
Abstract
Gaucher disease (GD), an autosomal recessive lipid storage disorder, arises from mutations in the GBA1 (β-glucocerebrosidase) gene, resulting in glucosylceramide accumulation in tissue macrophages. Lyso-Gb1 (glucosylsphingosine, lyso-GL1), a downstream metabolic product of glucosylceramide, has been identified as a promising biomarker for the diagnosis and monitoring of patients with GD. This retrospective, exploratory analysis of data from phase 3 clinical trials of velaglucerase alfa in patients with type 1 GD evaluated the potential of lyso-Gb1 as a specific and sensitive biomarker for GD. A total of 22 treatment-naïve patients and 21 patients previously treated with imiglucerase (switch patients) were included in the analysis. Overall, demographics between the two groups were similar. Mean lyso-Gb1 concentrations were reduced by 302.2ng/mL from baseline to week 209 in treatment-naïve patients and by 57.3ng/mL from baseline to week 161 in switch patients, corresponding to relative reductions of 82.7% and 52.0%, respectively. In both the treatment-naïve and switch groups, baseline mean lyso-Gb1 was higher for patients with at least one N370S mutation (363.9ng/mL and 90.7ng/mL, respectively) than for patients with non-N370S mutations (184.6ng/mL and 28.3ng/mL, respectively). Moderate correlations between decreasing lyso-Gb1 levels and increasing platelet counts, and with decreasing spleen volumes, were observed at some time points in the treatment-naïve group but not in the switch group. These findings support the utility of lyso-Gb1 as a sensitive and reliable biomarker for GD, and suggest that quantitation of this biomarker could serve as an indicator of disease burden and response to treatment.
Collapse
Affiliation(s)
| | | | - Quinn Dinh
- Shire, 300 Shire Way, Lexington, MA, USA.
| | - Lan Lan
- Shire, 300 Shire Way, Lexington, MA, USA.
| | | | - Claudia Cozma
- Centogene AG, Schillingallee 68, 18057 Rostock, Germany.
| | | | | | - Ari Zimran
- Gaucher Clinic, Shaare Zedek Medical Center, the Hebrew University-Hadassah Medical School, Shmu'el Bait St 12, Jerusalem, Israel.
| |
Collapse
|
40
|
Drugan C, Drugan T, Caillaud C, Grigorescu-Sido P, Nistor T, Crăciun AM. Laboratory diagnosis and follow-up of Romanian Gaucher disease patients. REV ROMANA MED LAB 2017. [DOI: 10.1515/rrlm-2017-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background: Gaucher disease (GD) is caused by a recessively inherited deficiency of glucocerebrosidase which is encoded by the GBA gene in which nearly 450 mutations have been described. However, only a few genotype- phenotype correlations have been clearly established. The aim of this study was to investigate molecular features of GD in Romanian patients and to evaluate their impact on treatment response. Material and methods: 69 patients, diagnosed between 1997 and 2014 at our national referral laboratory, were included in this study. Frequent point mutations (N370S, L444P, 84GG, R463C) were detected by amplification and restriction enzyme digestion. Recombinant alleles (recTL, recNciI, recA456P) were screened by DNA sequencing. Plasma chitotriosidase served as a biomarker of disease severity throughout the follow-up period. Results: 66 patients had the non-neuronopathic (type 1) form of GD and 3 had the chronic neuronopathic (type 3) phenotype. We identified 79% of the mutant alleles, among which the most frequent mutations were N370S (54%) and L444P (18%). We found a statistically significant (p<0.001) and moderate to good correlation between the total therapeutic dose and the residual chitotriosidase activity (R = 0.621). After two years of treatment, we noticed statistically significant variations in chitotriosidase activity corresponding to the most frequent genotypes (N370S/ unknown allele, N370S/L444P, N370S/N370S and N370S/R463Q). Conclusions: Allele distribution displayed specific features in Romanian GD patients, such as the high prevalence of the N370S allele. Chitotriosidase activity measurement allowed the investigation of genotype influence on treatment outcome.
Collapse
Affiliation(s)
- Cristina Drugan
- Department of Medical Biochemistry, „Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca , Romania
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, „Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca , Romania
| | - Catherine Caillaud
- Laboratoire de Biochimie, Métabolomique et Protéomique, Hôpital Necker‐Enfants Malades, University Paris Descartes , France
| | - Paula Grigorescu-Sido
- Department of Paediatrics I, „Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca , Romania
| | - Tiberiu Nistor
- Department of Medical Biochemistry, „Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca , Romania
| | - Alexandra M. Crăciun
- Department of Medical Biochemistry, „Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca , Romania
| |
Collapse
|
41
|
Arends M, Wijburg FA, Wanner C, Vaz FM, van Kuilenburg ABP, Hughes DA, Biegstraaten M, Mehta A, Hollak CEM, Langeveld M. Favourable effect of early versus late start of enzyme replacement therapy on plasma globotriaosylsphingosine levels in men with classical Fabry disease. Mol Genet Metab 2017; 121:157-161. [PMID: 28495078 DOI: 10.1016/j.ymgme.2017.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND The level of plasma globotriaosylsphingosine (lysoGb3) is an indication of disease severity in Fabry disease (FD) and its decrease during enzyme replacement therapy could be a reflection of treatment efficacy. Early treatment of FD may improve clinical outcome, but data to support this hypothesis are scarce. In this study we compared lysoGb3 decrease after ERT initiation in men with classical FD who started ERT before the age of 25 (early-treatment) with those who started later in life (late-treatment). METHODS Treatment naïve men with classical FD from three centers of excellence in Europe were included. Measurements of lysoGb3 levels by tandem mass spectroscopy and antibodies by an inhibitory assay were performed in a single laboratory. Results were adjusted for lysoGb3 at baseline, first ERT (i.e. agalsidase alfa or beta) and the average ERT dose. RESULTS 85 patients were included, 21 in the early-treatment and 64 in the late-treatment group. LysoGb3 level at baseline was not different between the two groups (112 vs 114nmol/L, p=0.92). The adjusted odds ratio for reaching a lysoGb3 level<20nmol/L was 7.38 for the early-treatment versus late-treatment group (95% CI: 1.91-34.04, p=0.006). The adjusted lysoGb3 levels one year after ERT initiation was 12.9nmol/L lower in the early-treatment (95% CI: -20.1--5.8, p<0.001) compared to the late-treatment group. CONCLUSION The current retrospective cohort study shows that initiation of ERT at younger age in men with classical Fabry disease results in a better biochemical response.
Collapse
Affiliation(s)
- Maarten Arends
- Department of Endocrinology and Metabolism, Academic Medical Center, The Netherlands.
| | - Frits A Wijburg
- Department of Pediatrics, Academic Medical Center, The Netherlands.
| | - Christoph Wanner
- Department of Internal Medicine I, Division of Nephrology and Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital Wuerzburg, Germany.
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - André B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Derralynn A Hughes
- Department of Haematology, Royal Free London NHS Foundation Trust and University College London, United Kingdom.
| | - Marieke Biegstraaten
- Department of Endocrinology and Metabolism, Academic Medical Center, The Netherlands.
| | - Atul Mehta
- Department of Haematology, Royal Free London NHS Foundation Trust and University College London, United Kingdom.
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, Academic Medical Center, The Netherlands.
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Academic Medical Center, The Netherlands.
| |
Collapse
|
42
|
Raskovalova T, Deegan PB, Yang R, Pavlova E, Stirnemann J, Labarère J, Zimran A, Mistry PK, Berger M. Plasma chitotriosidase activity versus CCL18 level for assessing type I Gaucher disease severity: protocol for a systematic review with meta-analysis of individual participant data. Syst Rev 2017; 6:87. [PMID: 28427477 PMCID: PMC5397740 DOI: 10.1186/s13643-017-0483-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by deficiency in acid beta-glucosidase. GD exhibits a wide clinical spectrum of disease severity with an unpredictable natural course. Plasma chitotriosidase activity and CC chemokine ligand 18 (CCL18) have been exchangeably used for monitoring GD activity and response to enzyme replacement therapy in conjunction with clinical assessment. Yet, a large-scale head-to-head comparison of these two biomarkers is currently lacking. We propose a collaborative systematic review with meta-analysis of individual participant data (IPD) to compare the accuracy of plasma chitotriosidase activity and CCL18 in assessing type I (i.e., non-neuropathic) GD severity. METHODS Eligible studies include cross-sectional, cohort, and randomized controlled studies recording both plasma chitotriosidase activity and CCL18 level at baseline and/or at follow-up in consecutive children or adult patients with type I GD. Pre-specified surrogate outcomes reflecting GD activity include liver and spleen volume, hemoglobin concentration, platelet count, and symptomatic bone events with imaging confirmation. Primary studies will be identified by searching Medline (1995 onwards), EMBASE (1995 onwards), and Cochrane Central Register of Controlled Trials (CENTRAL). Electronic search will be complemented by contacting research groups in order to identify unpublished relevant studies. Where possible, IPD will be extracted from published articles. Corresponding authors will be invited to collaborate by supplying IPD. The methodological quality of retrieved studies will be appraised for each study outcome, using a checklist adapted from the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The primary outcome will be a composite of liver volume >1.25 multiple of normal (MN), spleen volume >5 MN, hemoglobin concentration <11 g/dL, or platelet count <100 × 109/L. Effect size estimates for biomarker comparative accuracy in predicting outcomes will be reported as differences in areas under receiver operating characteristic curves along with 95% confidence intervals. Effect size estimates will be reported as (weighted) mean differences along with 95% confidence intervals for each biomarker according to outcomes. IPD meta-analysis will be conducted with both one- and two-stage approaches. DISCUSSION Valid and precise accuracy estimates will be derived for CCL18 relative to plasma chitotriosidase activity in discriminating patients according to GD severity. SYSTEMATIC REVIEW REGISTRATION PROSPERO 2015 CRD42015027243.
Collapse
Affiliation(s)
- Tatiana Raskovalova
- Département d'hématologie biologique, Centre Hospitalier Universitaire Estaing, F-63003, Clermont-Ferrand, France.,Laboratoire d'immunologie, Grenoble University Hospital, Grenoble Alpes University, F-38043, Grenoble, France
| | - Patrick B Deegan
- Lysosomal Disorders Unit, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ruby Yang
- Department of internal medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Elena Pavlova
- Lysosomal Disorders Unit, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Jérome Stirnemann
- Department of General Internal Medicine, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - José Labarère
- UMR CNRS 5525 TIMC-IMAG, Grenoble Alpes University, F-38043, Grenoble, France. .,Quality of care unit, CIC 1406 INSERM, Centre Hospitalier Universitaire, CS 10217, 38043, Grenoble Cedex 9, France.
| | - Ari Zimran
- Gaucher Clinic, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Pramod K Mistry
- Department of internal medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Marc Berger
- Département d'hématologie biologique, Centre Hospitalier Universitaire Estaing, F-63003, Clermont-Ferrand, France
| |
Collapse
|
43
|
Consensus recommendation for a diagnostic guideline for acid sphingomyelinase deficiency. Genet Med 2017; 19:967-974. [PMID: 28406489 PMCID: PMC5589980 DOI: 10.1038/gim.2017.7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/04/2017] [Indexed: 11/08/2022] Open
Abstract
Disclaimer:This diagnostic guideline is intended as an educational resource and represents the opinions of the authors, and is not representative of recommendations or policy of the American College of Medical Genetics and Genomics (ACMG). The information should be considered a consensus based on expert opinion, as more comprehensive levels of evidence were not available in the literature in all cases. BACKGROUND Acid sphingomyelinase deficiency (ASMD) is a rare, progressive, and often fatal lysosomal storage disease. The underlying metabolic defect is deficiency of the enzyme acid sphingomyelinase that results in progressive accumulation of sphingomyelin in target tissues. ASMD manifests as a spectrum of severity ranging from rapidly progressive severe neurovisceral disease that is uniformly fatal to more slowly progressive chronic neurovisceral and chronic visceral forms. Disease management is aimed at symptom control and regular assessments for multisystem involvement. PURPOSE AND METHODS An international panel of experts in the clinical and laboratory evaluation, diagnosis, treatment/management, and genetic aspects of ASMD convened to review the evidence base and share personal experience in order to develop a guideline for diagnosis of the various ASMD phenotypes. CONCLUSIONS Although care of ASMD patients is typically provided by metabolic disease specialists, the guideline is directed at a wide range of providers because it is important for primary care providers (e.g., pediatricians and internists) and specialists (e.g., pulmonologists, hepatologists, and hematologists) to be able to identify ASMD.Genet Med advance online publication 13 April 2017.
Collapse
|
44
|
Drugan C, Drugan TC, Grigorescu-Sido P, Naşcu I. Modelling long-term evolution of chitotriosidase in non-neuronopathic Gaucher disease. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:275-282. [DOI: 10.1080/00365513.2017.1303191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, Levade T, Astudillo L, Serratrice J, Brassier A, Rose C, Billette de Villemeur T, Berger MG. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int J Mol Sci 2017; 18:ijms18020441. [PMID: 28218669 PMCID: PMC5343975 DOI: 10.3390/ijms18020441] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD, ORPHA355) is a rare, autosomal recessive genetic disorder. It is caused by a deficiency of the lysosomal enzyme, glucocerebrosidase, which leads to an accumulation of its substrate, glucosylceramide, in macrophages. In the general population, its incidence is approximately 1/40,000 to 1/60,000 births, rising to 1/800 in Ashkenazi Jews. The main cause of the cytopenia, splenomegaly, hepatomegaly, and bone lesions associated with the disease is considered to be the infiltration of the bone marrow, spleen, and liver by Gaucher cells. Type-1 Gaucher disease, which affects the majority of patients (90% in Europe and USA, but less in other regions), is characterized by effects on the viscera, whereas types 2 and 3 are also associated with neurological impairment, either severe in type 2 or variable in type 3. A diagnosis of GD can be confirmed by demonstrating the deficiency of acid glucocerebrosidase activity in leukocytes. Mutations in the GBA1 gene should be identified as they may be of prognostic value in some cases. Patients with type-1 GD-but also carriers of GBA1 mutation-have been found to be predisposed to developing Parkinson's disease, and the risk of neoplasia associated with the disease is still subject to discussion. Disease-specific treatment consists of intravenous enzyme replacement therapy (ERT) using one of the currently available molecules (imiglucerase, velaglucerase, or taliglucerase). Orally administered inhibitors of glucosylceramide biosynthesis can also be used (miglustat or eliglustat).
Collapse
Affiliation(s)
- Jérôme Stirnemann
- Department of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1211 Genève, Switzerland.
| | - Nadia Belmatoug
- Department of Internal Medicine, Reference Center for Lysosomal Storage Diseases, Hôpitaux Universitaires Paris Nord Val de Seine, site Beaujon, Assistance Publique-Hôpitaux de Paris, 100 boulevard du Général Leclerc, F-92110 Clichy la Garenne, France.
| | - Fabrice Camou
- Réanimation Médicale, Hôpital Saint André, CHU de Bordeaux, 1 rue Jean Burguet, F-33075 Bordeaux, France.
| | - Christine Serratrice
- Department of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1211 Genève, Switzerland.
| | - Roseline Froissart
- Service de Biochimie et Biologie Moléculaire Grand Est, unité des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, F-69677 Bron, France.
| | - Catherine Caillaud
- Inserm U1151, Institut Necker Enfants Malades, Université Paris Descartes, Laboratoire de Biochimie, Métabolomique et Protéomique, Hôpital Universitaire Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, 149 rue de Sèvres, F-75005 Paris, France.
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France.
| | - Leonardo Astudillo
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Equipe Labellisée Ligue Contre le Cancer 2013, Centre de Recherches en Cancerologie de Toulouse (CRCT), Université de Toulouse, Service de Médecine Interne, CHU Purpan, F-31059 Toulouse, France.
| | - Jacques Serratrice
- Department of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1211 Genève, Switzerland.
| | - Anaïs Brassier
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte (MaMEA), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Institut Imagine, F-75012 Paris, France.
| | - Christian Rose
- Service d'onco-hématologie, Saint-Vincent de Paul Hospital, Boulevard de Belfort, Université Catholique de Lille, Univ. Nord de France, F-59000 Lille, France.
| | - Thierry Billette de Villemeur
- Service de Neuropédiatrie, Pathologie du développement, Sorbonne Université, Reference Center for Lysosomal Diseases, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, 24 Avenue du docteur Arnold Netter, F-75012 Paris, France.
| | - Marc G Berger
- CHU Estaing et Université Clermont Auvergne, Hematology (Biology) et EA 7453 CHELTER, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
46
|
Bobillo Lobato J, Jiménez Hidalgo M, Jiménez Jiménez LM. Biomarkers in Lysosomal Storage Diseases. Diseases 2016; 4:diseases4040040. [PMID: 28933418 PMCID: PMC5456325 DOI: 10.3390/diseases4040040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
A biomarker is generally an analyte that indicates the presence and/or extent of a biological process, which is in itself usually directly linked to the clinical manifestations and outcome of a particular disease. The biomarkers in the field of lysosomal storage diseases (LSDs) have particular relevance where spectacular therapeutic initiatives have been achieved, most notably with the introduction of enzyme replacement therapy (ERT). There are two main types of biomarkers. The first group is comprised of those molecules whose accumulation is directly enhanced as a result of defective lysosomal function. These molecules represent the storage of the principal macro-molecular substrate(s) of a specific enzyme or protein, whose function is deficient in the given disease. In the second group of biomarkers, the relationship between the lysosomal defect and the biomarker is indirect. In this group, the biomarker reflects the effects of the primary lysosomal defect on cell, tissue, or organ functions. There is no “gold standard” among biomarkers used to diagnosis and/or monitor LSDs, but there are a number that exist that can be used to reasonably assess and monitor the state of certain organs or functions. A number of biomarkers have been proposed for the analysis of the most important LSDs. In this review, we will summarize the most promising biomarkers in major LSDs and discuss why these are the most promising candidates for screening systems.
Collapse
Affiliation(s)
- Joaquin Bobillo Lobato
- Servicio de Bioquímica Clínica, Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Nuestra Señora de Valme, 41014-Sevilla, Spain.
| | - Maria Jiménez Hidalgo
- Servicio de Fisiopatología Celular y Bioenergética, Servicios Centrales de Investigación, Universidad Pablo de Olavide, 41013-Sevilla, Spain.
| | - Luis M Jiménez Jiménez
- Servicio de Fisiopatología Celular y Bioenergética, Servicios Centrales de Investigación, Universidad Pablo de Olavide, 41013-Sevilla, Spain.
| |
Collapse
|
47
|
Ortiz-Cabrera N, Gallego-Merlo J, Vélez-Monsalve C, de Nicolas R, Mas SF, Ayuso C, Trujillo-Tiebas M. Nine-year experience in Gaucher disease diagnosis at the Spanish reference center Fundación Jiménez Díaz. Mol Genet Metab Rep 2016; 9:79-85. [PMID: 27872820 PMCID: PMC5109262 DOI: 10.1016/j.ymgmr.2016.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fundación Jiménez Díaz (FJD) is a reference center for genetic diagnosis of Gaucher disease (GD) in Spain. Genetic analyses of acid β-glucosidase (GBA) gene using different techniques were performed to search for new mutations, in addition to those previously and most frequently found in the Spanish population. Additionally, the study of the chitotriosidase (CHIT1) gene was used to assess the inflammatory status of patients in the follow-up of enzyme replacement therapy (ERT). We present the genetic data gathered during the last nine years at FJD. METHODS Blood samples from patients with suspected GD were collected for enzymatic and genetic analyses. The genetic analysis was performed on DNA from 124 unrelated suspected cases and 57 relatives from 2007 to 2015, starting with a mutational screening kit, followed by Sanger sequencing of the entire gene and other techniques to look for deletions. CHIT1 was also studied to assess the reliability of this biomarker. RESULTS In 46 out of 93 GD patients (49.5%) the two mutant alleles were found. We detected 21 different mutations. The most common mutation was N370S (c.126A > G; p.Asp409Ser current nomenclature) (in 50.5% of patients), followed by L444P (c.1448T > C; p.Leu483Pro current nomenclature) (in 24.7%). The most common heterozygous compound genotype observed (18.3%) was c.1226A > G/c.1448T > C (N370S/L444P). Two novel mutations were found (del. Ex.4-11 and c.1296G > T; pW432C), as well as p.S146L, only once previously reported. Two patients showed the homozygous state for the duplication of CHIT1. CONCLUSION N370S and L444P are the most common mutations and other mutations associated to Parkinson's disease have been observed. This should be taken into account in the genetic counseling of GD patients.
Collapse
Affiliation(s)
- N.V. Ortiz-Cabrera
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
- Department of Clinical Analysis, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - J. Gallego-Merlo
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Vélez-Monsalve
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
| | - R. de Nicolas
- Diabetes, Nephrology and Vascular Pathology Research Laboratory, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
| | - S. Fontao Mas
- Diabetes, Nephrology and Vascular Pathology Research Laboratory, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
| | - C. Ayuso
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Instituto de Salud Carlos III, Madrid, Spain
| | - M.J. Trujillo-Tiebas
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
48
|
Outcome of Gaucher Disease in India: Lessons from Prevalent Diagnostic and Therapeutic Practices. Indian Pediatr 2016; 53:685-8. [PMID: 27395836 DOI: 10.1007/s13312-016-0910-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To study disease severity and response to enzyme replacement therapy in Gaucher disease. METHODS Updated data was captured from records of 37 patients (35 reported previously) with confirmed diagnosis of Gaucher disease from January 1995 through December 2011 (31, 83.8 %) and prospectively from January 2012 through June 2013 (6, 16.2 %). Severity of manifestations was determined by Gaucher disease Severity Score Index. Response to enzyme replacement therapy was assessed in terms of attainment of therapeutic goals. RESULTS Moderate to severe manifestations (domain score of > 2) were observed in treated patients at baseline (83%, 58%, 66% and 25% for anemia, thrombocytopenia, hepatomegaly and leucopenia, respectively and 100% for splenomegaly and elevated plasma chitotriosidase). None of the 11 patients treated with synthetic enzyme (average annual dose 23 to 53 units/kg) attained all therapeutic goals in the recommended time frame, particularly the visceral, skeletal and growth domains. CONCLUSION Early onset of moderate to severe disease in Indian patients mandates early therapy with optimum doses to ensure attainment of all recommended therapeutic goals.
Collapse
|
49
|
Kramer G, Wegdam W, Donker-Koopman W, Ottenhoff R, Gaspar P, Verhoek M, Nelson J, Gabriel T, Kallemeijn W, Boot RG, Laman JD, Vissers JPC, Cox T, Pavlova E, Moran MT, Aerts JM, van Eijk M. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models. FEBS Open Bio 2016; 6:902-13. [PMID: 27642553 PMCID: PMC5011488 DOI: 10.1002/2211-5463.12078] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
Gaucher disease is caused by inherited deficiency of lysosomal glucocerebrosidase. Proteome analysis of laser‐dissected splenic Gaucher cells revealed increased amounts of glycoprotein nonmetastatic melanoma protein B (gpNMB). Plasma gpNMB was also elevated, correlating with chitotriosidase and CCL18, which are established markers for human Gaucher cells. In Gaucher mice, gpNMB is also produced by Gaucher cells. Correction of glucocerebrosidase deficiency in mice by gene transfer or pharmacological substrate reduction reverses gpNMB abnormalities. In conclusion, gpNMB acts as a marker for glucosylceramide‐laden macrophages in man and mouse and gpNMB should be considered as candidate biomarker for Gaucher disease in treatment monitoring.
Collapse
Affiliation(s)
- Gertjan Kramer
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands; European Molecular Biology Laboratory Germany
| | - Wouter Wegdam
- Department of Gynecology Academic Medical Center Amsterdam The Netherlands
| | - Wilma Donker-Koopman
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Paulo Gaspar
- Organelle Biogenesis & Function Group Instituto de Investigação e Inovação em Saúde (I3S) Porto Portugal; Institute of Molecular and Cell Biology (IBMC) Universidade do Porto Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS) Universidade do Porto Portugal
| | - Marri Verhoek
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| | - Jessica Nelson
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Tanit Gabriel
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Wouter Kallemeijn
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| | - Jon D Laman
- Department of Neuroscience University Medical Center Groningen The Netherlands
| | | | - Timothy Cox
- Department of Internal Medicine Addenbrooke's Hospital Cambridge UK
| | - Elena Pavlova
- Department of Internal Medicine Addenbrooke's Hospital Cambridge UK
| | | | - Johannes M Aerts
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands; Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| |
Collapse
|
50
|
Smid BE, Ferraz MJ, Verhoek M, Mirzaian M, Wisse P, Overkleeft HS, Hollak CE, Aerts JM. Biochemical response to substrate reduction therapy versus enzyme replacement therapy in Gaucher disease type 1 patients. Orphanet J Rare Dis 2016; 11:28. [PMID: 27008851 PMCID: PMC4806476 DOI: 10.1186/s13023-016-0413-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/16/2016] [Indexed: 11/30/2022] Open
Abstract
Background We retrospectively compared biochemical responses in type 1 Gaucher disease patients to treatment with glycosphingolipid synthesis inhibitors miglustat and eliglustat and ERT. Methods Seventeen GD1 patients were included (n = 6 eliglustat, (two switched from ERT), n = 9 miglustat (seven switchers), n = 4 ERT (median dose 60U/kg/m). Plasma protein markers reflecting disease burden (chitotriosidase, CCL18) and lipids reflecting substrate accumulation (glucosylsphingosine, glucosylceramide) were determined. Also, liver and spleen volumes, hemoglobin, platelets, and fat fraction were measured. Results In patients naïve to treatment, chitotriosidase, CCL18 and glucosylsphingosine decreased comparably upon eliglustat and ERT treatment, while the response to miglustat was less. After 2 years, median decrease of chitotriosidase was 89 % (range 77–98), 88 % (78–92) and 37 % (29–46) for eliglustat, ERT and miglustat naïve patients respectively; decrease of CCL18 was 73 % (63–78), 54 % (43–86), and 10 % (3–18); decrease of glucosylsphingosine was 86 % (78–93), 78 % (65–91), 48 % (46–50). Plasma glucosylceramide in eliglustat treated patients (n = 4) reached values below the normal range (n = 20 healthy controls). Biochemical markers decreased or stabilized in switchers from ERT to eliglustat (n = 2), but less in miglustat switchers (n = 7). Clinical parameters responded comparably upon eliglustat and ERT treatment. Conclusions Our explorative study provides evidence that biochemical markers respond comparably in patients receiving eliglustat treatment and ERT, while the corresponding response to miglustat treatment is less.
Collapse
Affiliation(s)
- Bouwien E Smid
- Department of Endocrinology and Metabolism, Academic Medical Centre, Amsterdam, The Netherlands
| | - Maria J Ferraz
- Department of Medical Biochemistry, Academic Medical Centre, Amsterdam, The Netherlands
| | - Marri Verhoek
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Academic Medical Centre, Amsterdam, The Netherlands
| | - Patrick Wisse
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Carla E Hollak
- Department of Endocrinology and Metabolism, Academic Medical Centre, Amsterdam, The Netherlands
| | - Johannes M Aerts
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands. .,Leiden Institute of Chemistry, Gorlaeus Laboratory, room number 0.3.15, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|