1
|
Al Bandari M, Nagy L, Cruz V, Hewson S, Hossain A, Inbar-Feigenberg M. Management and Outcomes of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD Deficiency): A Retrospective Chart Review. Int J Neonatal Screen 2024; 10:29. [PMID: 38651394 PMCID: PMC11036265 DOI: 10.3390/ijns10020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a rare genetic condition affecting the mitochondrial beta-oxidation of long-chain fatty acids. This study reports on the clinical outcomes of patients diagnosed by newborn screening with VLCAD deficiency comparing metabolic parameters, enzyme activities, molecular results, and clinical management. It is a single-center retrospective chart review of VLCAD deficiency patients who met the inclusion criteria between January 2002 and February 2020. The study included 12 patients, 7 of whom had an enzyme activity of more than 10%, and 5 patients had an enzyme activity of less than 10%. The Pearson correlation between enzyme activity and the C14:1 level at newborn screening showed a p-value of 0.0003, and the correlation between enzyme activity and the C14:1 level at diagnosis had a p-value of 0.0295. There was no clear correlation between the number of documented admissions and the enzyme activity level. Patients who had a high C14:1 value at diagnosis were started on a diet with a lower percentage of energy from long-chain triglycerides. The C14:1 result at diagnosis is the value that has been guiding our initial clinical management in asymptomatic diagnosed newborns. However, the newborn screening C14:1 value is the most sensitive predictor of low enzyme activity and may help guide dietary management.
Collapse
Affiliation(s)
- Maria Al Bandari
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
| | - Laura Nagy
- Division of Clinical and Metabolic Genetics, Department of Clinical Dietetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
| | - Vivian Cruz
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Division of Clinical and Metabolic Genetics, Lawrence S, Bloomberg, Faculty of Nursing, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - Stacy Hewson
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Alomgir Hossain
- Clinical Research Services (CRS), The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
2
|
Inui A, Ko JS, Chongsrisawat V, Sibal A, Hardikar W, Chang MH, Treepongkaruna S, Arai K, Kim KM, Chen HL. Update on the diagnosis and management of neonatal intrahepatic cholestasis caused by citrin deficiency: Expert review on behalf of the Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2024; 78:178-187. [PMID: 38374571 DOI: 10.1002/jpn3.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 02/21/2024]
Abstract
Citrin deficiency is an autosomal recessive metabolic liver disease caused by mutations in the SLC25A13 gene. The disease typically presents with cholestasis, elevated liver enzymes, hyperammonemia, hypercitrullinemia, and fatty liver in young infants, resulting in a phenotype known as "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD). The diagnosis relies on clinical manifestation, biochemical evidence of hypercitrullinemia, and identifying mutations in the SLC25A13 gene. Several common mutations have been found in patients of East Asian background. The mainstay treatment is nutritional therapy in early infancy utilizing a lactose-free and medium-chain triglyceride formula. This approach leads to the majority of patients recovering liver function by 1 year of age. Some patients may remain asymptomatic or undiagnosed, but a small proportion of cases can progress to cirrhosis and liver failure, necessitating liver transplantation. Recently, advancements in newborn screening methods have improved the age of diagnosis. Early diagnosis and timely management improve patient outcomes. Further studies are needed to elucidate the long-term follow-up of NICCD patients into adolescence and adulthood.
Collapse
Affiliation(s)
- Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamshi Tobu Hospital, Yokohama, Japan
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Voranush Chongsrisawat
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Winita Hardikar
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Australia
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Suporn Treepongkaruna
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Katsuhiro Arai
- Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
- Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Lin J, Lin W, Lin Y, Peng W, Zheng Z. Clinical and genetic analysis of 26 Chinese patients with neonatal intrahepatic cholestasis due to citrin deficiency. Clin Chim Acta 2024; 552:117617. [PMID: 37890575 DOI: 10.1016/j.cca.2023.117617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Neonatal intrahepatic cholestasis due to citrin deficiency (NICCD) is an autosomal recessive disorder caused by SLC25A13 genetic mutations. We retrospectively analyzed 26 Chinese infants with NICCD (years 2014-2022) in Quanzhou City. METHODS The plasma citrulline (CIT) concentration analyzed by tandem mass spectrometry (MS/MS), biochemical parameters and molecular analysis results are presented. RESULTS Twelve genotypes were discovered. The relationship between the CIT concentration and genotype is uncertain. In total, 8 mutations were detected, with 4 variations, c.851_854delGTAT, c.615 + 5G > A, c.1638_1660dup and IVS16ins3kb, constituting the high-frequency mutations. Specifically, we demonstrated 2 patients with NICCD combined with another inborn errors of metabolism (IEM). Patient No. 22 possessed compound heterozygous mutations of c.615 + 5G > A and c.790G > A in the SLC25A13 gene accompanied by compound heterozygous variations of c.C259T and c.A155G in the PTS gene. Additionally, Patient No. 26 carried c.51C > G and c.760C > T in the SLC22A5 gene as well as c.615 + 5G > A and IVS16ins3kb in the SLC25A13 gene. CONCLUSIONS We report a case of the simultaneous occurrence of primary carnitine deficiency (PCD) and NICCD.
Collapse
Affiliation(s)
- Jiansheng Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze street, Quanzhou, Fujian Province 362000, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze street, Quanzhou, Fujian Province 362000, China
| | - Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze street, Quanzhou, Fujian Province 362000, China
| | - Weilin Peng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze street, Quanzhou, Fujian Province 362000, China.
| | - Zhenzhu Zheng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze street, Quanzhou, Fujian Province 362000, China.
| |
Collapse
|
4
|
Ding S, Ling S, Liang L, Qiu W, Zhang H, Chen T, Zhan X, Xu F, Gu X, Han L. Late-onset cblC defect: clinical, biochemical and molecular analysis. Orphanet J Rare Dis 2023; 18:306. [PMID: 37770946 PMCID: PMC10536707 DOI: 10.1186/s13023-023-02890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND cblC defect is the most common type of methylmalonic acidemia in China. Patients with late-onset form (>1 year) are often misdiagnosed due to heterogeneous symptoms. This study aimed to describe clinical characteristics and evaluate long-term outcomes of Chinese patients with late-onset cblC defect. METHODS A total of 85 patients with late-onset cblC defect were enrolled. Clinical data, including manifestations, metabolites, molecular diagnosis, treatment and outcome, were summarized and analyzed. RESULTS The age of onset ranged from 2 to 32.8 years old (median age 8.6 years, mean age 9.4 years). The time between first symptoms and diagnosis ranged from a few days to 20 years (median time 2 months, mean time 20.7 months). Neuropsychiatric symptoms were presented as first symptoms in 68.2% of cases, which were observed frequently in schoolchildren or adolescents. Renal involvement and cardiovascular disease were observed in 20% and 8.2% of cases, respectively, which occurred with the highest prevalence in preschool children. Besides the initial symptoms, the disease progressed in most patients and cognitive decline became the most frequent symptom overall. The levels of propionylcarnitine, propionylcarnitine / acetylcarnitine ratio, methylmalonic acid, methylcitric acid and homocysteine, were decreased remarkably after treatment (P<0.001). Twenty-four different mutations of MMACHC were identified in 78 patients, two of which were novel. The c.482G>A variant was the most frequent mutated allele in this cohort (25%). Except for 16 patients who recovered completely, the remaining patients were still left with varying degrees of sequelae in a long-term follow-up. The available data from 76 cases were analyzed by univariate analysis and multivariate logistic regression analysis, and the results showed that the time from onset to diagnosis (OR = 1.025, P = 0. 024) was independent risk factors for poor outcomes. CONCLUSIONS The diagnosis of late-onset cblC defect is often delayed due to poor awareness of its various and nonspecific symptoms, thus having an adverse effect on the prognosis. It should be considered in patients with unexplained neuropsychiatric and other conditions such as renal involvement, cardiovascular diseases or even multiple organ damage. The c.482G>A variant shows the highest frequency in these patients. Prompt treatment appears to be beneficial.
Collapse
Affiliation(s)
- Si Ding
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Shiying Ling
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Sun W, Zhang X, Su H, Wang X, Qin F, Gong X, Wang B, Yu F. Genetic and clinical features of patients with intrahepatic cholestasis caused by citrin deficiency. J Pediatr Endocrinol Metab 2023:jpem-2022-0616. [PMID: 37146272 DOI: 10.1515/jpem-2022-0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVES Citrin deficiency (CD) is an autosomal recessive disease caused by mutations of the SLC25A13 gene, plasma bile acid profiles detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) could be an efficient approach for early diagnosis of intrahepatic cholestasis. The aim of this study was to investigate the genetic testing and clinical characteristics of a series of patients with CD, and to analyse plasma bile acid profiles in CD patients. METHODS We retrospectively analysed data from 14 patients (12 males and 2 females, age 1-18 months, mean 3.6 months) with CD between 2015 and 2021, including demographics, biochemical parameters, genetic test results, treatment, and clinical outcomes. In addition, 30 cases (15 males and 15 females, age 1-20 months, mean 3.8 months) with idiopathic cholestasis (IC) served as a control group. Plasma 15 bile acid profiles were compared between the CD and IC groups. RESULTS Eight different mutations of the SLC25A13 gene were detected in the 14 patients diagnosed with CD, of which three novel variants of the SLC25A13 gene were investigated, the c.1043C>T (p.P348L) in exon11, the c.1216dupG (p.A406 Gfs*13) in exon12 and the c.135G>C (p.L45F) in exon3. More than half of the patients with CD had prolonged neonatal jaundice, which was associated with significantly higher alpha-fetoprotein (AFP) levels, hyperlactatemia and hypoglycemia. The majority of patients were ultimately self-limited. Only one patient developed liver failure and died at the age of 1 year due to abnormal coagulation function. In addition, the levels of glycochenodeoxycholic acid (GCDCA), taurocholate (TCA), and taurochenodeoxycholic acid (TCDCA) were significantly increased in the CD group compared with those in the IC group. CONCLUSIONS Three novel variants of the SLC25A13 gene were identified for the first time, providing a reliable molecular reference and expanding the SLC25A13 gene spectrum in patients with CD. Plasma bile acid profiles could be a potential biomarker for non-invasive early diagnosis of patients with intrahepatic cholestasis caused by CD.
Collapse
Affiliation(s)
- Wenjun Sun
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaoxi Zhang
- Department of Urology, Tian You Hospital Affiliated to Wuhan University of Science & Technology, Wuhan, China
| | - Hang Su
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaoxia Wang
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Fang Qin
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiangling Gong
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Bo Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Fei Yu
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
6
|
Thadchanamoorthy V, Dayasiri K. Unexplained Tachypneoa and Severe Metabolic Acidosis in a Three-Month-Old Child: A Rare Presentation of Beta-Ketothiolose Deficiency. Cureus 2022; 14:e21934. [PMID: 35273875 PMCID: PMC8900828 DOI: 10.7759/cureus.21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/05/2022] Open
|
7
|
Lin Y, Wang W, Lin C, Zheng Z, Fu Q, Peng W, Chen D. Biochemical and molecular features of Chinese patients with glutaric acidemia type 1 detected through newborn screening. Orphanet J Rare Dis 2021; 16:339. [PMID: 34344405 PMCID: PMC8335863 DOI: 10.1186/s13023-021-01964-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Background Glutaric acidemia type 1 (GA1) is a treatable disorder affecting cerebral organic acid metabolism caused by a defective glutaryl-CoA dehydrogenase (GCDH) gene. GA1 diagnosis reports following newborn screening (NBS) are scarce in the Chinese population. This study aimed to assess the acylcarnitine profiles and genetic characteristics of patients with GA1 identified through NBS. Results
From January 2014 to September 2020, 517,484 newborns were screened by tandem mass spectrometry, 102 newborns with elevated glutarylcarnitine (C5DC) levels were called back. Thirteen patients were diagnosed with GA1, including 11 neonatal GA1 and two maternal GA1 patients. The incidence of GA1 in the Quanzhou region was estimated at 1 in 47,044 newborns. The initial NBS results showed that all but one of the patients had moderate to markedly increased C5DC levels. Notably, one neonatal patient with low free carnitine (C0) level suggest primary carnitine deficiency (PCD) but was ultimately diagnosed as GA1. Nine neonatal GA1 patients underwent urinary organic acid analyses: eight had elevated GA and 3HGA levels, and one was reported to be within the normal range. Ten distinct GCDH variants were identified. Eight were previously reported, and two were newly identified. In silico prediction tools and protein modeling analyses suggested that the newly identified variants were potentially pathogenic. The most common variant was c.1244-2 A>C, which had an allelic frequency of 54.55% (12/22), followed by c.1261G>A (p.Ala421Thr) at 9.09% (2/22). Conclusions Neonatal GA1 patients with increased C5DC levels can be identified through NBS. Maternal GA1 patients can also be detected using NBS due to the low C0 levels in their infants. Few neonatal GA1 patients may have atypical acylcarnitine profiles that are easy to miss during NBS; therefore, multigene panel testing should be performed in newborns with low C0 levels. This study indicates that the GCDH variant spectra were heterogeneous in this southern Chinese cohort. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01964-5.
Collapse
Affiliation(s)
- Yiming Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Wenjun Wang
- Hangzhou Biosan Clinical Laboratory, Hangzhou, 310007, Zhejiang Province, China
| | - Chunmei Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Zhenzhu Zheng
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Qingliu Fu
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weilin Peng
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| | - Dongmei Chen
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
8
|
Lund AM, Wibrand F, Skogstrand K, Bækvad-Hansen M, Gregersen N, Andresen BS, Hougaard DM, Dunø M, Olsen RKJ. Use of Molecular Genetic Analyses in Danish Routine Newborn Screening. Int J Neonatal Screen 2021; 7:ijns7030050. [PMID: 34449524 PMCID: PMC8395600 DOI: 10.3390/ijns7030050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Historically, the analyses used for newborn screening (NBS) were biochemical, but increasingly, molecular genetic analyses are being introduced in the workflow. We describe the application of molecular genetic analyses in the Danish NBS programme and show that second-tier molecular genetic testing is useful to reduce the false positive rate while simultaneously providing information about the precise molecular genetic variant and thus informing therapeutic strategy and easing providing information to parents. When molecular genetic analyses are applied as second-tier testing, valuable functional data from biochemical methods are available and in our view, such targeted NGS technology should be implemented when possible in the NBS workflow. First-tier NGS technology may be a promising future possibility for disorders without a reliable biomarker and as a general approach to increase the adaptability of NBS for a broader range of genetic diseases, which is important in the current landscape of quickly evolving new therapeutic possibilities. However, studies on feasibility, sensitivity, and specificity are needed as well as more insight into what views the general population has towards using genetic analyses in NBS. This may be sensitive to some and could have potentially negative consequences for the NBS programme.
Collapse
Affiliation(s)
- Allan Meldgaard Lund
- Center for Inherited Metabolic Disorders, Departments of Clinical Genetics and Pediatrics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence: ; Fax: +45-35454072
| | - Flemming Wibrand
- Metabolic Laboratory, Department of Clinical Genetics, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Kristin Skogstrand
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Marie Bækvad-Hansen
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (N.G.); (R.K.J.O.)
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - David M. Hougaard
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Morten Dunø
- Molecular Genetics Laboratory, Department of Clinical Genetics, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (N.G.); (R.K.J.O.)
| |
Collapse
|
9
|
Touati G, Gorce M, Oliver-Petit I, Broué P, Ausseil J. [New Inborn Errors of Metabolism added in the French program of neonatal screening]. Med Sci (Paris) 2021; 37:507-518. [PMID: 34003097 DOI: 10.1051/medsci/2021057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inborn Errors of Metabolism (IEM) are rare and heterogenous disorders. For most IEMs, clinical signs are non-specific or belated. Late diagnosis is frequent, leading to death or severe sequelae. Some IEM induce intermediate metabolites circulating in the blood. They may be detected by tandem mass spectrometry. This method allows the simultaneous detection of many IEM in different metabolic pathways. In France, newborn screening (NBS) program for IEM, limited to phenylketonuria for decades, has been recently extended to medium chain acyl-CoA dehydrogenase deficiency. Rationale, methodology and organization of this new NBS program are described. Seven other IEM (maple syrup urine disease, homocystinuria, tyrosinemia type I, glutaric aciduria type I, isovaleric acidemia, long chain hydroxy-acyl-CoA dehydrogenase deficiency, carnitine uptake disorder) should be screened in the next program extension. Efforts are needed to fully understand the predictive value of each abnormal testing at birth, decrease the false positive rate, and develop the adequate management strategies.
Collapse
Affiliation(s)
- Guy Touati
- Centre de référence en maladies héréditaires du métabolisme, Hôpital des enfants, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| | - Magali Gorce
- Centre de référence en maladies héréditaires du métabolisme, Hôpital des enfants, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| | - Isabelle Oliver-Petit
- Centre régional de dépistage néonatal. Groupe hospitalier Purpan, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| | - Pierre Broué
- Centre de référence en maladies héréditaires du métabolisme, Hôpital des enfants, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| | - Jérôme Ausseil
- Infinity, Inserm UMR1291, CNRS UMR5051, Université de Toulouse III, 31000 Toulouse, France. - Centre régional de dépistage néonatal, Institut fédératif de biologie, Groupe hospitalier Purpan, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| |
Collapse
|
10
|
Loeber JG, Platis D, Zetterström RH, Schielen PJCI. [Neonatal screening in Europe revisited: An ISNS-perspective on the current state and developments since 2010]. Med Sci (Paris) 2021; 37:441-456. [PMID: 34003089 DOI: 10.1051/medsci/2021059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neonatal screening (NBS) was initiated in Europe during the 1960s with the screening for phenylketonuria. The panel of screened disorders ("conditions") then gradually expanded, with a boost in the late 1990's with the introduction of tandem mass spectrometry (MS/MS), making it possible to screen for 40-50 conditions in one blood spot. The most recent additions to screening programmes (screening for cystic fibrosis, severe combined immunodeficiency and spinal muscular atrophy) were assisted by or realised through the introduction of molecular genetics techniques. For this survey we collected data from 51 European countries. We report on the developments between 2010 and 2020, and highlight the achievements made during this period. We also identify areas where further progress can be made, mainly by exchanging knowledge and learning from experiences in neighbouring countries. Between 2010 and 2020, most NBS programmes in geographical Europe have matured considerably, both in terms of methodology (modernised) and with regards to the panel of conditions screened (expanded). These developments indicate that more collaboration in Europe through European organisations is gaining momentum. Only by working together can we accomplish the timely detection of newborn infants potentially suffering from one of the many rare diseases and take appropriate actions.
Collapse
Affiliation(s)
- J Gerard Loeber
- International Society for Neonatal Screening (ISNS) Office, Bilthoven, Pays-Bas
| | - Dimitris Platis
- Department of Newborn Screening, Institute of Child Health, Athènes, Grèce
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Disease, Karolinska Institute, Stockholm, Suède
| | | |
Collapse
|
11
|
Lin Y, Yang Z, Yang C, Hu H, He H, Niu T, Liu M, Wang D, Sun Y, Shen Y, Li X, Yan H, Kong Y, Huang X. C4OH is a potential newborn screening marker-a multicenter retrospective study of patients with beta-ketothiolase deficiency in China. Orphanet J Rare Dis 2021; 16:224. [PMID: 34001203 PMCID: PMC8130433 DOI: 10.1186/s13023-021-01859-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background Beta-ketothiolase deficiency (BKTD) is an autosomal recessive disorder caused by biallelic mutation of ACAT1 that affects both isoleucine catabolism and ketolysis. There is little information available regarding the incidence, newborn screening (NBS), and mutational spectrum of BKTD in China. Results We collected NBS, biochemical, clinical, and ACAT1 mutation data from 18 provinces or municipalities in China between January 2009 and May 2020, and systematically assessed all available published data from Chinese BKTD patients. A total of 16,088,190 newborns were screened and 14 patients were identified through NBS, with an estimated incidence of 1 per 1 million newborns in China. In total, twenty-nine patients were genetically diagnosed with BKTD, 12 of which were newly identified. Most patients exhibited typical blood acylcarnitine and urinary organic acid profiles. Interestingly, almost all patients (15/16, 94%) showed elevated 3-hydroxybutyrylcarnitine (C4OH) levels. Eighteen patients presented with acute metabolic decompensations and displayed variable clinical symptoms. The acute episodes of nine patients were triggered by infections, diarrhea, or an inflammatory response to vaccination. Approximately two-thirds of patients had favorable outcomes, one showed a developmental delay and three died. Twenty-seven distinct variants were identified in ACAT1, among which five were found to be novel. Conclusion This study presented the largest series of BKTD cohorts in China. Our results indicated that C4OH is a useful marker for the detection of BKTD. The performance of BKTD NBS could be improved by the addition of C4OH to the current panel of 3-hydroxyisovalerylcarnitine and tiglylcarnitine markers in NBS. The mutational spectrum and molecular profiles of ACAT1 in the Chinese population were expanded with five newly identified variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01859-5.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, China.,Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Zhantao Yang
- Continuing Medical Education and Research Center, Dian Diagnostics Group Co., Ltd, 329 Jinpeng Street, Xihu District, Hangzhou, 310030, China
| | - Chiju Yang
- Jining Maternal and Child Health Family Service Center, Jining, China
| | - Haili Hu
- Neonatal Disease Screening Center, Hefei Maternal and Child Health, Family Planning Service Center, Anhui, China
| | - Haiyan He
- Wuhu Maternal and Child Health Family Planning Service Center, Anhui, China
| | - Tingting Niu
- Shandong Provincial Maternal and Child Health Care Hospital, Shandong, China
| | - Mingfang Liu
- Liaocheng Maternal and Child Health Hospital, Shandong, China
| | - Dongjuan Wang
- Center for Clinical Molecular Medicine/Newborn Screening Center, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Yun Sun
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Jiangsu, China
| | - Yuyan Shen
- Neonatal Disease Screening Center, Huaihua Maternal and Child Health Hospital, Huaihua, China
| | - Xiaole Li
- Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Huiming Yan
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Yuanyuan Kong
- Department of Newborn Screening, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
12
|
Pajares S, Arranz JA, Ormazabal A, Del Toro M, García-Cazorla Á, Navarro-Sastre A, López RM, Meavilla SM, de Los Santos MM, García-Volpe C, de Aledo-Castillo JMG, Argudo A, Marín JL, Carnicer C, Artuch R, Tort F, Gort L, Fernández R, García-Villoria J, Ribes A. Implementation of second-tier tests in newborn screening for the detection of vitamin B 12 related acquired and genetic disorders: results on 258,637 newborns. Orphanet J Rare Dis 2021; 16:195. [PMID: 33931066 PMCID: PMC8086297 DOI: 10.1186/s13023-021-01784-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Alteration of vitamin B12 metabolism can be genetic or acquired, and can result in anemia, failure to thrive, developmental regression and even irreversible neurologic damage. Therefore, early diagnosis and intervention is critical. Most of the neonatal cases with acquired vitamin B12 deficiency have been detected by clinical symptoms and only few of them trough NBS programs. We aim to assess the usefulness of the second-tier test: methylmalonic acid (MMA), methylcitric acid (MCA) and homocysteine (Hcys) in our newborn screening program and explore the implications on the detection of cobalamin (vitamin B12) related disorders, both genetic and acquired conditions. METHODS A screening strategy using the usual primary markers followed by the analysis of MMA, MCA and Hcys as second tier-test in the first dried blood spot (DBS) was developed and evaluated. RESULTS During the period 2015-2018 a total of 258,637 newborns were screened resulting in 130 newborns with acquired vitamin B12 deficiency (incidence 1:1989), 19 with genetic disorders (incidence 1:13,613) and 13 were false positive. No false negatives were notified. Concerning the second-tier test, the percentage of cases with MMA above the cut-off levels, both for genetic and acquired conditions was very similar (58% and 60%, respectively). Interestingly, the percentage of cases with increased levels of Hcys was higher in acquired conditions than in genetic disorders (87% and 47%, respectively). In contrast, MCA was high only in 5% of the acquired conditions versus in 53% of the genetic disorders, and it was always very high in all patients with propionic acidemia. CONCLUSIONS When screening for methylmalonic acidemia and homocystinuria, differential diagnosis with acquired vitamin B12 deficiency should be done. The results of our strategy support the inclusion of this acquired condition in the NBS programs, as it is easily detectable and allows the adoption of corrective measures to avoid the consequences of its deficiency.
Collapse
Affiliation(s)
- Sonia Pajares
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain
| | | | - Aida Ormazabal
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mireia Del Toro
- Unit of Metabolic Diseases, Hospital Vall D'Hebrón, Barcelona, Spain
| | - Ángeles García-Cazorla
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Aleix Navarro-Sastre
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain
| | - Rosa María López
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Camila García-Volpe
- Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jose Manuel González de Aledo-Castillo
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain
| | - Ana Argudo
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain
| | - Jose Luís Marín
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain
| | - Clara Carnicer
- Unit of Metabolic Diseases, Hospital Vall D'Hebrón, Barcelona, Spain
| | - Rafael Artuch
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Frederic Tort
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Gort
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Fernández
- Maternal and Child Health Service, Public Health Agency of Catalonia, Health Department, Government of Catalonia, Barcelona, Spain
| | - Judit García-Villoria
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain.,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonia Ribes
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica Y Genética Molecular, Hospital Clínic de Barcelona, C/ Mejía Lequerica S/N, Edificio Helios III, 08028, Barcelona, Spain. .,Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain. .,Biomedical Research Institute, August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
13
|
Loeber JG, Platis D, Zetterström RH, Almashanu S, Boemer F, Bonham JR, Borde P, Brincat I, Cheillan D, Dekkers E, Dimitrov D, Fingerhut R, Franzson L, Groselj U, Hougaard D, Knapkova M, Kocova M, Kotori V, Kozich V, Kremezna A, Kurkijärvi R, La Marca G, Mikelsaar R, Milenkovic T, Mitkin V, Moldovanu F, Ceglarek U, O'Grady L, Oltarzewski M, Pettersen RD, Ramadza D, Salimbayeva D, Samardzic M, Shamsiddinova M, Songailiené J, Szatmari I, Tabatadze N, Tezel B, Toromanovic A, Tovmasyan I, Usurelu N, Vevere P, Vilarinho L, Vogazianos M, Yahyaoui R, Zeyda M, Schielen PCJI. Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int J Neonatal Screen 2021; 7:ijns7010015. [PMID: 33808002 PMCID: PMC8006225 DOI: 10.3390/ijns7010015] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Neonatal screening (NBS) was initiated in Europe during the 1960s with the screening for phenylketonuria. The panel of screened disorders ("conditions") then gradually expanded, with a boost in the late 1990s with the introduction of tandem mass spectrometry (MS/MS), making it possible to screen for 40-50 conditions using a single blood spot. The most recent additions to screening programmes (screening for cystic fibrosis, severe combined immunodeficiency and spinal muscular atrophy) were assisted by or realised through the introduction of molecular technologies. For this survey, we collected data from 51 European countries. We report the developments between 2010 and 2020 and highlight the achievements reached with the progress made in this period. We also identify areas where further progress can be made, mainly by exchanging knowledge and learning from experiences in neighbouring countries. Between 2010 and 2020, most NBS programmes in geographical Europe matured considerably, both in terms of methodology (modernised) and with regard to the panel of conditions screened (expanded). These developments indicate that more collaboration in Europe through European organisations is gaining momentum. We can only accomplish the timely detection of newborn infants potentially suffering from one of the many rare diseases and take appropriate action by working together.
Collapse
Affiliation(s)
- J Gerard Loeber
- International Society for Neonatal Screening (ISNS) Office, 3721CK Bilthoven, The Netherlands
| | - Dimitris Platis
- Department of Newborn Screening, Institute of Child Health, 11527 Athens, Greece
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institute, SE-17 76 Stockholm, Sweden
| | - Shlomo Almashanu
- Newborn Screening Laboratories, Tel-HaShomer, 52621 Ramat Gan, Israel
| | | | - James R Bonham
- Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK
| | - Patricia Borde
- Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Ian Brincat
- Mater Dei Hospital, Tal-Qroqq Msida, MSD2090 Msida, Malta
| | | | - Eugenie Dekkers
- Centre for Population Research, National Institue for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands
| | - Dobry Dimitrov
- National Genetic Laboratory, Hospital Maichin Dom, 1431 Sofia, Bulgaria
| | - Ralph Fingerhut
- Neonatal Screening Laboratory, Children's Hospital, CH-8032 Zürich, Switzerland
| | - Leifur Franzson
- Department Genetics & Molecular Medicine, Landspitali, Reykjavik 108, Iceland
| | - Urh Groselj
- University Children's Hospital, 1000 Ljubljana, Slovenia
| | | | - Maria Knapkova
- Newborn Screening Centre, Banska Bystrica 97401, Slovakia
| | | | - Vjosa Kotori
- University Clinical Centre, Pristina 10000, Kosovo
| | - Viktor Kozich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague 12808, Czech Republic
| | | | - Riikka Kurkijärvi
- Newborn Screening Centre, Turku University Hospital, 20521 Turku, Finland
| | | | - Ruth Mikelsaar
- Medical Faculty, University of Tartu, 50411 Tart, Estonia
| | - Tatjana Milenkovic
- Mother and Child Health Care Institute of Serbia, Belgrade 11070, Serbia
| | | | | | | | | | | | - Rolf D Pettersen
- Norwegian National Unit for Newborn Screening, 0424 Oslo, Norway
| | - Danijela Ramadza
- University Hospital Medical Centre Zagreb, 10000 Zagreb, Croatia
| | - Damilya Salimbayeva
- Republican Scientific Centre for Gynaecology and Perinatology, Almaty 050020, Kazakhstan
| | - Mira Samardzic
- Institute for Sick Children, 81000 Podgorica, Montenegro
| | | | | | | | - Nazi Tabatadze
- NeugoGenetic and Metabolic Center, Tbilisi 0194, Georgia
| | - Basak Tezel
- Child and Adolescent Health Department, 06430 Ankara, Turkey
| | - Alma Toromanovic
- Department of Pediatrics, University Clinical Centre, Tuzla 75000, Bosnia and Herzegovina
| | | | - Natalia Usurelu
- National Centre Health and Reproductive & Medical Genetics, 2062 Chisinau, Moldova
| | | | | | | | - Raquel Yahyaoui
- Málaga Regional University Hospital. Institute of Biomedical Research IBIMA, 29011 Málaga, Spain
| | - Maximilian Zeyda
- Department of Pediatrics and Adolescent Medicine, 1090 Vienna, Austria
| | - Peter C J I Schielen
- International Society for Neonatal Screening (ISNS) Office, 3721CK Bilthoven, The Netherlands
| |
Collapse
|
14
|
Bourque DK, Mellin‐Sanchez LE, Bullivant G, Cruz V, Feigenbaum A, Hewson S, Raiman J, Schulze A, Siriwardena K, Mercimek‐Andrews S. Outcomes of patients with cobalamin C deficiency: A single center experience. JIMD Rep 2021; 57:102-114. [PMID: 33473346 PMCID: PMC7802631 DOI: 10.1002/jmd2.12179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
Biallelic variants in MMACHC results in the combined methylmalonic aciduria and homocystinuria, called cobalamin (cbl) C (cblC) deficiency. We report 26 patients with cblC deficiency with their phenotypes, genotypes, biochemical parameters, and treatment outcomes, who were diagnosed and treated at our center. We divided all cblC patients into two groups: group 1: SX group: identified after manifestations of symptoms (n = 11) and group 2: NB group: identified during the asymptomatic period via newborn screening (NBS) or positive family history of cblC deficiency (n = 15). All patients in the SX group had global developmental delay and/or cognitive dysfunction at the time of the diagnosis and at the last assessment. Seizure, stroke, retinopathy, anemia, cerebral atrophy, and thin corpus callosum in brain magnetic resonance imaging (MRI) were common in patients in the SX group. Global developmental delay and cognitive dysfunction was present in nine patients in the NB group at the last assessment. Retinopathy, anemia, and cerebral atrophy and thin corpus callosum in brain MRI were less frequent. We report favorable outcomes in patients identified in the neonatal period and treated pre-symptomatically. Identification of cblC deficiency by NBS is crucial to improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Danielle K. Bourque
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Lizbeth E. Mellin‐Sanchez
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Garrett Bullivant
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Vivian Cruz
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Anette Feigenbaum
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Stacy Hewson
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Julian Raiman
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Andreas Schulze
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - Komudi Siriwardena
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Saadet Mercimek‐Andrews
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
15
|
Citrin deficiency mimicking mitochondrial depletion syndrome. BMC Pediatr 2020; 20:518. [PMID: 33176737 PMCID: PMC7659096 DOI: 10.1186/s12887-020-02409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Neonatal intrahepatic cholestasis caused by citrin deficiency (CD) is a rare inborn error of metabolism due to variants in the SLC25A13 gene encoding the calcium-binding protein citrin. Citrin is an aspartate-glutamate carrier located within the inner mitochondrial membrane. Case presentation We report on two siblings of Romanian-Vietnamese ancestry with citrin deficiency. Patient 1 is a female who presented at age 8 weeks with cholestasis, elevated lactate levels and recurrent severe hypoglycemia. Diagnosis was made by whole exome sequencing and revealed compound heterozygosity for the frameshift variant c.852_855del, p.Met285Profs*2 and a novel deletion c.(69 + 1_70–1)_(212 + 1_231–1)del in SLC25A13. The girl responded well to dietary treatment with a lactose-free, MCT-enriched formula. Her younger brother (Patient 2) was born 1 year later and also found to be carrying the same gene variants. Dietary treatment from birth was able to completely prevent clinical manifestation until his current age of 4.5 months. Conclusions As CD is a well-treatable disorder it should be ruled out early in the differential diagnosis of neonatal cholestasis. Due to the combination of hepatopathy, lactic acidosis and recurrent hypoglycemia the clinical presentation of CD may resemble hepatic mitochondrial depletion syndrome.
Collapse
|
16
|
Development of Strategies to Decrease False Positive Results in Newborn Screening. Int J Neonatal Screen 2020; 6:ijns6040084. [PMID: 33147868 PMCID: PMC7712114 DOI: 10.3390/ijns6040084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 01/11/2023] Open
Abstract
The expansion of national newborn screening (NBS) programmes has provided significant benefits in the diagnosis and early treatment of several rare, heritable conditions, preventing adverse health outcomes for most affected infants. New technological developments have enabled the implementation of testing panel covering over 50 disorders. Consequently, the increment of false positive rate has led to a high number of healthy infants recalled for expensive and often invasive additional testing, opening a debate about the harm-benefit ratio of the expanded newborn screening. The false-positive rate represents a challenge for healthcare providers working in NBS systems. Here, we give an overview on the most commonly used strategies for decreasing the adverse effects due to inconclusive screening results. The focus is on NBS performance improvement through the implementation of analytical methods, the application of new and more informative biomarkers, and by using post-analytical interpretive tools. These strategies, used as part of the NBS process, can to enhance the positive predictive value of the test and reduce the parental anxiety and healthcare costs related to the unnecessary tests and procedures.
Collapse
|
17
|
Lin Y, Lin W, Chen Y, Lin C, Zheng Z, Zhuang J, Fu Q. Combined primary carnitine deficiency with neonatal intrahepatic cholestasis caused by citrin deficiency in a Chinese newborn. BMC Pediatr 2020; 20:478. [PMID: 33050909 PMCID: PMC7552534 DOI: 10.1186/s12887-020-02372-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Primary carnitine deficiency (PCD) is an autosomal recessive disorder affecting the carnitine cycle and resulting in defective fatty acid oxidation. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder and one of the main causes of inherited neonatal cholestasis. Both PCD and NICCD are included in the current expanded newborn screening (NBS) targets. Case presentation Targeted exome sequencing was performed on a Chinese proband, and Sanger sequencing was utilised to validate the detected mutations. The patient who was initially suspected to have PCD based on the NBS results presented with neonatal intrahepatic cholestasis and ventricular septal defect. Further investigations not only confirmed PCD but also revealed the presence of NICCD. Four distinct mutations were detected, including c.51C > G (p.F17L) and c.760C > T (p.R254X) in SLC22A5 as well as c.615 + 5G > A and IVS16ins3kb in SLC25A13. Conclusions This is the first reported case of PCD and NICCD occurring in the same patient. The dual disorders in a newborn broaden our understanding of inherited metabolic diseases. Thus, this study highlighted the importance of further genetic testing in patients presenting with unusual metabolic screening findings.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Yanru Chen
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Zhenzhu Zheng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
18
|
Tangeraas T, Sæves I, Klingenberg C, Jørgensen J, Kristensen E, Gunnarsdottir G, Hansen EV, Strand J, Lundman E, Ferdinandusse S, Salvador CL, Woldseth B, Bliksrud YT, Sagredo C, Olsen ØE, Berge MC, Trømborg AK, Ziegler A, Zhang JH, Sørgjerd LK, Ytre-Arne M, Hogner S, Løvoll SM, Kløvstad Olavsen MR, Navarrete D, Gaup HJ, Lilje R, Zetterström RH, Stray-Pedersen A, Rootwelt T, Rinaldo P, Rowe AD, Pettersen RD. Performance of Expanded Newborn Screening in Norway Supported by Post-Analytical Bioinformatics Tools and Rapid Second-Tier DNA Analyses. Int J Neonatal Screen 2020; 6:51. [PMID: 33123633 PMCID: PMC7570219 DOI: 10.3390/ijns6030051] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March 2012 and 29 February 2020, 461,369 newborns were screened for 20 IEMs in addition to phenylketonuria (PKU). Excluding PKU, there were 75 true-positive (TP) (1:6151) and 107 (1:4311) false-positive IEM cases. Twenty-one percent of the TP cases were symptomatic at the time of the NBS results, but in two-thirds, the screening result directed the exact diagnosis. Eighty-two percent of the TP cases had good health outcomes, evaluated in 2020. The yearly positive predictive value was increased from 26% to 54% by the use of the Region 4 Stork post-analytical interpretive tool (R4S)/Collaborative Laboratory Integrated Reports 2.0 (CLIR), second-tier biochemical testing and genetic confirmation using DNA extracted from the original dried blood spots. The incidence of IEMs increased by 46% after eNBS was introduced, predominantly due to the finding of attenuated phenotypes. The next step is defining which newborns would truly benefit from screening at the milder end of the disease spectrum. This will require coordinated international collaboration, including proper case definitions and outcome studies.
Collapse
Affiliation(s)
- Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Ingjerd Sæves
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Claus Klingenberg
- Department of Paediatrics, University Hospital of North Norway, 9019 Tromsø, Norway;
- Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, 9019 Tromsø, Norway
| | - Jens Jørgensen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Erle Kristensen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
- Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, 9019 Tromsø, Norway
| | - Gunnþórunn Gunnarsdottir
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
| | | | - Janne Strand
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Emma Lundman
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, AZ 1105 Amsterdam, The Netherlands;
| | - Cathrin Lytomt Salvador
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Berit Woldseth
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Yngve T Bliksrud
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Carlos Sagredo
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Øyvind E Olsen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mona C Berge
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Anette Kjoshagen Trømborg
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Anders Ziegler
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Jin Hui Zhang
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Linda Karlsen Sørgjerd
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mari Ytre-Arne
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Silje Hogner
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Siv M Løvoll
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mette R Kløvstad Olavsen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Dionne Navarrete
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Hege J Gaup
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Rina Lilje
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Solna, Sweden, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden;
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Terje Rootwelt
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY 55902, USA;
| | - Alexander D Rowe
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Rolf D Pettersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| |
Collapse
|
19
|
Lin Y, Liu Y, Zhu L, Le K, Shen Y, Yang C, Chen X, Hu H, Ma Q, Shi X, Hu Z, Yang J, Shen Y, Lin CH, Huang C, Huang X. Combining newborn metabolic and genetic screening for neonatal intrahepatic cholestasis caused by citrin deficiency. J Inherit Metab Dis 2020; 43:467-477. [PMID: 31845334 DOI: 10.1002/jimd.12206] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
To evaluate the feasibility of incorporating genetic screening for neonatal intrahepatic cholestasis, caused by citrin deficiency (NICCD), into the current newborn screening (NBS) program. We designed a high-throughput iPLEX genotyping assay to detect 28 SLC25A13 mutations in the Chinese population. From March 2018 to June 2018, 237 630 newborns were screened by tandem mass spectrometry at six hospitals. Newborns with citrulline levels between 1/2 cutoff and cutoff values of the upper limit were recruited for genetic screening using the newly developed assay. The sensitivity and specificity of the iPLEX genotyping assay both reached 100% in clinical practice. Overall, 29 364 (12.4%) newborns received further genetic screening. Five patients with conclusive genotypes were successfully identified. The most common SLC25A13 mutation was c.851_854del, with an allele frequency of 60%. In total, 658 individuals with one mutant allele were identified as carriers. Eighteen different mutations were observed, yielding a carrier rate of 1/45. Notably, Quanzhou in southern China had a carrier rate of up to 1/28, whereas Jining in northern China had a carrier rate higher than that of other southern and border cities. The high throughput iPLEX genotyping assay is an effective and reliable approach for NICCD genotyping. The combined genetic screening could identify an additional subgroup of patients with NICCD, undetectable by conventional NBS. Therefore, this study demonstrates the viability of incorporating genetic screening for NICCD into the current NBS program.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Yaru Liu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhu
- Department of Translational Medicine, Hangzhou Genuine Clinical Laboratory Co. Ltd, Hangzhou, China
| | - Kaixing Le
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyan Shen
- Neonatal Disease Screening Center, Huaihua Maternal and Child Health Hospital, Huaihua, China
| | - Chiju Yang
- Neonatal Disease Screening Center, Jining Maternal and Child Health Family Service Center, Jining, China
| | - Xigui Chen
- Neonatal Disease Screening Center, Jining Maternal and Child Health Family Service Center, Jining, China
| | - Haili Hu
- Neonatal Disease Screening Center, Hefei Women and Children's Health Care Hospital, Hefei, China
| | - Qingqing Ma
- Neonatal Disease Screening Center, Hefei Women and Children's Health Care Hospital, Hefei, China
| | - Xueqin Shi
- Department of Pediatrics, Yancheng Maternity and Child Health Care Hospital, Yancheng, China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaping Shen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chien-Hsing Lin
- Department of Research and Development, Feng Chi Biotech Corp, Taipei, Taiwan
| | - Chenggang Huang
- Research and Development Center, Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
20
|
Yamada K, Osawa Y, Kobayashi H, Hasegawa Y, Fukuda S, Yamaguchi S, Taketani T. Serum C14:1/C12:1 ratio is a useful marker for differentiating affected patients with very long-chain acyl-CoA dehydrogenase deficiency from heterozygous carriers. Mol Genet Metab Rep 2019; 21:100535. [PMID: 31844625 PMCID: PMC6895747 DOI: 10.1016/j.ymgmr.2019.100535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/20/2019] [Indexed: 10/28/2022] Open
Abstract
Introduction Various markers, such as C14:1 and the C14:1/C2 ratio, are used as diagnostic markers of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). However, the levels of these markers in patients with VLCADD overlap with those in heterozygous carriers and even healthy subjects. Materials and methods In twenty-three affected patients and 15 heterozygous carriers with VLCADD, the accuracies of C14:1, C14:1/C12:1, C14:1/C2, and C14:1/C16 in dried blood spots (DBS) and serum were statistically estimated. Results Among the serum markers, the sensitivity, specificity, positive predictive value, negative predictive value, false-positive rate, false-negative rate, and validity of C14:1/C12:1 were superior to those of C14:1, C14:1/C2, and C14:1/C16, but C14:1/C2 demonstrated a statistical advantage compared with only C14:1 and C14:1/C16. Elevation in serum C14:1/C12:1 was observed in only one heterozygous carrier, whereas almost half of the carriers displayed false positive results for the other markers. Among the DBS markers, although the accuracy of C14:1/C2 was ostensibly the best, no statistical significance was observed. Discussion Serum C14:1/C12:1 might be useful for differentiating patients with VLCADD from heterozygous carriers. Although serum C14:1/C2 was significantly useful for the detection of VLCADD, this marker could not distinguish the affected patients from carriers. C14:1/C12:1 might be optimal compared with the other markers.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Yoshimitsu Osawa
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan.,Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hironori Kobayashi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Yuki Hasegawa
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Seiji Fukuda
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
21
|
Ismail IT, Showalter MR, Fiehn O. Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites 2019; 9:metabo9100242. [PMID: 31640247 PMCID: PMC6835511 DOI: 10.3390/metabo9100242] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds associated with these pathways. While IEMs may present with multiple overlapping symptoms and metabolites, early and accurate diagnosis of IEMs is critical for the long-term health of affected subjects. The prevalence of IEMs differs between countries, likely because different IEM classifications and IEM screening methods are used. Currently, newborn screening programs exclusively use targeted metabolic assays that focus on limited panels of compounds for selected IEM diseases. Such targeted approaches face the problem of false negative and false positive diagnoses that could be overcome if metabolic screening adopted analyses of a broader range of analytes. Hence, we here review the prospects of using untargeted metabolomics for IEM screening. Untargeted metabolomics and lipidomics do not rely on predefined target lists and can detect as many metabolites as possible in a sample, allowing to screen for many metabolic pathways simultaneously. Examples are given for nontargeted analyses of IEMs, and prospects and limitations of different metabolomics methods are discussed. We conclude that dedicated studies are needed to compare accuracy and robustness of targeted and untargeted methods with respect to widening the scope of IEM diagnostics.
Collapse
Affiliation(s)
- Israa T Ismail
- National Liver Institute, Menoufia University, Shebeen El Kom 55955, Egypt.
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Megan R Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Wang B, Zhang Q, Gao A, Wang Q, Ma J, Li H, Wang T. New Ratios for Performance Improvement for Identifying Acyl-CoA Dehydrogenase Deficiencies in Expanded Newborn Screening: A Retrospective Study. Front Genet 2019; 10:811. [PMID: 31620161 PMCID: PMC6759686 DOI: 10.3389/fgene.2019.00811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Some success in identifying acyl-CoA dehydrogenase (ACAD) deficiencies before they are symptomatic has been achieved through tandem mass spectrometry. However, there has been several challenges that need to be confronted, including excess false positives, the occasional false negatives and indicators selection. To select ideal indicators and evaluate their performance for identifying ACAD deficiencies, data from 352,119 newborn babies, containing 20 cases, were used in this retrospective study. A total of three new ratios, C4/C5DC+C6-OH, C8/C14:1, and C14:1/C16-OH, were selected from 43 metabolites. Around 903 ratios derived from pairwise combinations of all metabolites via multivariate logistic regression analysis were used. In the current study, the regression analysis was performed to identify short chain acyl-CoA dehydrogenase (SCAD) deficiency, medium chain acyl-CoA dehydrogenase (MCAD) deficiency, and very long chain acyl-CoA dehydrogenase (VLCAD) deficiency. In both model-building and testing data, the C4/C5DC+C6-OH, C8/C14:1 and C14:1/C16-OH were found to be better indicators for SCAD, MCAD and VLCAD deficiencies, respectively, compared to [C4, (C4, C4/C2)], [C8, (C6, C8, C8/C2, C4DC+C5-OH/C8:1)], and [C14:1, (C14:1, C14:1/C16, C14:1/C2)], respectively. In addition, 22 mutations, including 5 novel mutations and 17 reported mutations, in ACADS, ACADM, and ACADL genes were detected in 20 infants with ACAD deficiency by using high-thorough sequencing based on target capture. The pathogenic mutations of c.1031A > G in ACADS, c.449_452delCTGA in ACADM and c.1349G > A in ACADL were found to be hot spots in Suzhou patients with SCAD, MCAD, and VLCAD, respectively. In conclusion, we had identified three new ratios that could improve the performance for ACAD deficiencies compared to the used indicators. We considered to utilize C4/C5DC+C6-OH, C8/C14:1, and C14:1/C16-OH as primary indicators for SCAD, MCAD, and VLCAD deficiency, respectively, in further expanded newborn screening practice. In addition, the spectrum of mutations in Suzhou population enriches genetic data of Chinese patients with one of ACAD deficiencies.
Collapse
Affiliation(s)
- Benjing Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ang Gao
- Genetic Clinic, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qi Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Ma
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Infertility Clinic, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
23
|
Yang Y, Wang L, Wang B, Liu S, Yu B, Wang T. Application of Next-Generation Sequencing Following Tandem Mass Spectrometry to Expand Newborn Screening for Inborn Errors of Metabolism: A Multicenter Study. Front Genet 2019; 10:86. [PMID: 30838026 PMCID: PMC6382741 DOI: 10.3389/fgene.2019.00086] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
This study explored the effectiveness of expanding newborn screening (NBS) by tandem mass spectrometry (TMS) and gene diagnosis by next-generation sequencing (NGS). First, we described the characteristics of gene variants in Jiangsu Province. We collected clinical data from three NBS centers. All infants followed a unified screening and diagnosis process. After obtaining informed consent, dried blood spots (DBSs) were collected and analyzed by TMS. If the results fell outside of the cut-off value, repeat analysis was performed. If the re-test results remained abnormal, the infant was recalled for further assessment. We performed targeted sequencing using the extended edition panel of inborn errors of metabolism (IEM) to detect 306 genes using the Illumina HiSeq 2500 platform. A total of 536,008 babies underwent NBS by TMS in three NBS centres. In total, 194 cases were eventually diagnosed with various types of inherited metabolic diseases, with an overall incidence of 1/2763. There were 23 types of diseases, including ten amino acid disorders (43.5%), eight organic acidaemias (34.8%) and five fatty acid oxidation defects (21.7%). In these infants, we clearly identified variants of disease-causing genes by next-generation sequencing (NGS). Most had two variants and others had one or three variants: 88% of gene variants were heterozygous and 12% were homozygous. There is a certain incidence of IEM in Jiangsu Province and it is necessary to carry out screening for 27 diseases. Meanwhile, NGS combined with TMS offers an enhanced plan for NBS for IEM.
Collapse
Affiliation(s)
- Yuqi Yang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Leilei Wang
- Lianyungang Maternal and Child Health Hospital Affiliated to Yangzhou University, Lianyungang, China
| | - Benjing Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shuang Liu
- Lianyungang Maternal and Child Health Hospital Affiliated to Yangzhou University, Lianyungang, China
| | - Bin Yu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Ting Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
24
|
Wang W, Yang J, Xue J, Mu W, Zhang X, Wu W, Xu M, Gong Y, Liu Y, Zhang Y, Xie X, Gu W, Bai J, Cram DS. A comprehensive multiplex PCR based exome-sequencing assay for rapid bloodspot confirmation of inborn errors of metabolism. BMC MEDICAL GENETICS 2019; 20:3. [PMID: 30612563 PMCID: PMC6322297 DOI: 10.1186/s12881-018-0731-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Tandem mass spectrometry (MS MS) and simple fluorometric assays are currently used in newborn screening programs to detect inborn errors of metabolism (IEM). The aim of the study was to evaluate the clinical utility of exome sequencing as a second tier screening method to assist clinical diagnosis of the newborn. METHODS A novel PCR-exome amplification and re-sequencing (PEARS) assay was designed and used to detect mutations in 122 genes associated with 101 IEM. Newborn bloodspots positive by biochemical testing were analysed by PEARS assay to detect pathogenic mutations relevant to the IEM. RESULTS In initial validation studies of genomic DNA samples, PEARS assay correctly detected 25 known mutations associated with 17 different IEM. Retrospective gene analysis of newborns with clinical phenylketonuria (PKU), identified compound heterozygote phenylalanine hydroxylase (PAH) gene mutations in eight of nine samples (89%). Prospective analysis of 211 bloodspots correctly identified the two true PKU samples, yielding positive and negative predictive values of 100%. Testing of 8 true positive MS MS samples correctly identified potentially pathogenic compound heterozygote genotypes in 2 cases of citrullinemia type 1 and one case each of methylmalonic acidemia, isobutyryl-CoA dehydrogenase deficiency, short chain acyl-CoA dehydrogenase deficiency and glutaric acid type II and heterozygous genotypes in 2 cases of autosomal dominant methioninemia. Analysis of 11 of 12 false positive MS MS samples for other IEM identified heterozygous carriers in 8 cases for the relevant genes associated with the suspected IEM. In the remaining 3 cases, the test revealed compound heterozygote mutations in other metabolic genes not associated with the suspected IEM, indicating a misinterpretation of the original MS MS data. CONCLUSIONS The PEARS assay has clinical utility as a rapid and cost effective second-tier test to assist the clinician to accurately diagnose newborns with a suspected IEM.
Collapse
Affiliation(s)
- Wenjie Wang
- Children and Women's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Jianping Yang
- Children and Women's Hospital of Shanxi, Newborn Disease Screening Center of Shanxi Province, Taiyuan, Shanxi, China
| | - Jinjie Xue
- Children and Women's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Wenjuan Mu
- Children and Women's Hospital of Shanxi, Newborn Disease Screening Center of Shanxi Province, Taiyuan, Shanxi, China
| | - Xiaogang Zhang
- Children and Women's Hospital of Shanxi, Newborn Disease Screening Center of Shanxi Province, Taiyuan, Shanxi, China
| | - Wang Wu
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Mengnan Xu
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Yuyan Gong
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Yiqian Liu
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Yu Zhang
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Xiaobing Xie
- Beijing Chigene Translational Medicial Research Center Co., Beijing, 101111, China
| | - Weiyue Gu
- Beijing Chigene Translational Medicial Research Center Co., Beijing, 101111, China
| | - Jigeng Bai
- Children and Women's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - David S Cram
- Children and Women's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China. .,Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China.
| |
Collapse
|
25
|
Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J Hum Genet 2018; 64:73-85. [PMID: 30401918 DOI: 10.1038/s10038-018-0527-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency. VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent genotype-phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be promising for the treatment of FAODs, though further studies are required.
Collapse
|
26
|
Fukao T, Sasai H, Aoyama Y, Otsuka H, Ago Y, Matsumoto H, Abdelkreem E. Recent advances in understanding beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase, T2) deficiency. J Hum Genet 2018; 64:99-111. [PMID: 30393371 DOI: 10.1038/s10038-018-0524-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 02/08/2023]
Abstract
Beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase, T2) deficiency (OMIM #203750, *607809) is an inborn error of metabolism that affects isoleucine catabolism and ketone body metabolism. This disorder is clinically characterized by intermittent ketoacidotic crises under ketogenic stresses. In addition to a previous 26-case series, four series of T2-deficient patients were recently reported from different regions. In these series, most T2-deficient patients developed their first ketoacidotic crises between the ages of 6 months and 3 years. Most patients experienced less than three metabolic crises. Newborn screening (NBS) for T2 deficiency is performed in some countries but some T2-deficient patients have been missed by NBS. Therefore, T2 deficiency should be considered in patients with severe metabolic acidosis, even in regions where NBS for T2 deficiency is performed. Neurological manifestations, especially extrapyramidal manifestations, can occur as sequelae to severe metabolic acidosis; however, this can also occur in patients without any apparent metabolic crisis or before the onset of metabolic crisis.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 500-1194, Japan. .,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan.
| | - Hideo Sasai
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 500-1194, Japan
| | - Yuka Aoyama
- Department of Biomedical Sciences, College of Life and Health Sciences, Education and Training Center of Medical Technology, Chubu University, Kasugai, Japan
| | - Hiroki Otsuka
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 500-1194, Japan
| | - Yasuhiko Ago
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 500-1194, Japan
| | - Hideki Matsumoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 500-1194, Japan
| | - Elsayed Abdelkreem
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 500-1194, Japan.,Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
27
|
Lotz-Havla AS, Röschinger W, Schiergens K, Singer K, Karall D, Konstantopoulou V, Wortmann SB, Maier EM. Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. Orphanet J Rare Dis 2018; 13:122. [PMID: 30029694 PMCID: PMC6053800 DOI: 10.1186/s13023-018-0875-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency are long-chain fatty acid oxidation disorders with particularly high morbidity and mortality. Outcome can be favorable if diagnosed in time, prompting the implementation in newborn screening programs. Sporadic cases missed by the initial screening sample have been reported. However, little is known on pitfalls during confirmatory testing resulting in fatal misconception of the diagnosis. Results We report a series of three patients with MTP and LCHAD deficiency, in whom diagnosis was missed by newborn screening, resulting in life-threatening metabolic decompensations within the first half year of life. Two of the patients showed elevated concentrations of primary markers C16-OH and C18:1-OH but were missed by confirmatory testing performed by the maternity clinic. A metabolic center was not consulted. Confirmatory testing consisted of analyses of acylcarnitines in blood and organic acids in urine, the finding of normal excretion of organic acids led to rejection and underestimation of the diagnosis, respectively. The third patient, a preterm infant, was not identified in the initial screening sample due to only moderate elevations of C16-OH and C18:1-OH and normal secondary markers and analyte ratios. Conclusion Our observations highlight limitations of newborn screening for MTP/LCHAD deficiency. They confirm that analyses of acylcarnitines in blood and organic acids in urine alone are not suitable for confirmatory testing and molecular or functional analysis is crucial in diagnosing MTP/LCHAD deficiency. Mild elevations of primary biomarkers in premature infants need to trigger confirmatory testing. Our report underscores the essential role of specialized centers in confirming or ruling out diagnoses in suspicious screening results.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Wulf Röschinger
- Becker and colleagues laboratory, Fuehrichstr. 70, 81671, Munich, Germany
| | - Katharina Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina Singer
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Daniela Karall
- Clinic for Pediatrics, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Saskia B Wortmann
- Department of Pediatrics, Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
28
|
Getting to the Heart of the Matter: Lysosomal Storage Diseases That Manifest a Cardiac Phenotype. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Boy N, Mengler K, Thimm E, Schiergens KA, Marquardt T, Weinhold N, Marquardt I, Das AM, Freisinger P, Grünert SC, Vossbeck J, Steinfeld R, Baumgartner MR, Beblo S, Dieckmann A, Näke A, Lindner M, Heringer J, Hoffmann GF, Mühlhausen C, Maier EM, Ensenauer R, Garbade SF, Kölker S. Newborn screening: A disease-changing intervention for glutaric aciduria type 1. Ann Neurol 2018; 83:970-979. [DOI: 10.1002/ana.25233] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/02/2018] [Accepted: 04/07/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Katharina Mengler
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Eva Thimm
- Division of Experimental Pediatrics and Metabolism, Department of General Pediatrics; Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | | | - Thorsten Marquardt
- Department of General Pediatrics; Metabolic Diseases, University Children's Hospital Münster; Münster Germany
| | - Natalie Weinhold
- Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Center for Chronically Sick Children; Berlin Germany
| | - Iris Marquardt
- Department of Child Neurology; Children's Hospital Oldenburg; Oldenburg Germany
| | - Anibh M. Das
- Department of Pediatrics; Pediatric Metabolic Medicine, Hannover Medical School; Hannover Germany
| | | | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine, and Neonatology, Faculty of Medicine; Medical Center, University of Freiburg; Freiburg Germany
| | - Judith Vossbeck
- Department of Pediatric and Adolescent Medicine; Ulm University Medical School; Ulm Germany
| | - Robert Steinfeld
- Department of Pediatrics and Pediatric Neurology; University Medical Center; Göttingen Germany
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research Center; University Children's Hospital Zurich; Zurich Switzerland
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents; Center for Pediatric Research Leipzig, University Hospitals, University of Leipzig; Leipzig Germany
| | - Andrea Dieckmann
- Center for Inborn Metabolic Disorders, Department of Neuropediatrics; Jena University Hospital; Jena Germany
| | - Andrea Näke
- Children's Hospital Carl Gustav Carus; Technical University Dresden; Dresden Germany
| | - Martin Lindner
- Division of Pediatric Neurology; University Children's Hospital Frankfurt; Frankfurt Germany
| | - Jana Heringer
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Chris Mühlhausen
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Esther M. Maier
- Dr von Hauner Children's Hospital; Ludwig Maximilian University; Munich Germany
| | - Regina Ensenauer
- Division of Experimental Pediatrics and Metabolism, Department of General Pediatrics; Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| |
Collapse
|
30
|
Schlune A, Riederer A, Mayatepek E, Ensenauer R. Aspects of Newborn Screening in Isovaleric Acidemia. Int J Neonatal Screen 2018; 4:7. [PMID: 33072933 PMCID: PMC7548899 DOI: 10.3390/ijns4010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Isovaleric acidemia (IVA), an inborn error of leucine catabolism, is caused by mutations in the isovaleryl-CoA dehydrogenase (IVD) gene, resulting in the accumulation of derivatives of isovaleryl-CoA including isovaleryl (C5)-carnitine, the marker metabolite used for newborn screening (NBS). The inclusion of IVA in NBS programs in many countries has broadened knowledge of the variability of the condition, whereas prior to NBS, two distinct clinical phenotypes were known, an "acute neonatal" and a "chronic intermittent" form. An additional biochemically mild and potentially asymptomatic form of IVA and its association with a common missense mutation, c.932C>T (p.A282V), was discovered in subjects identified through NBS. Deficiency of short/branched chain specific acyl-CoA dehydrogenase (2-methylbutyryl-CoA dehydrogenase), a defect of isoleucine degradation whose clinical significance remains unclear, also results in elevated C5-carnitine, and may therefore be detected by NBS for IVA. Treatment strategies for the long-term management of symptomatic IVA comprise the prevention of catabolism, dietary restriction of natural protein or leucine intake, and supplementation with l-carnitine and/or l-glycine. Recommendations on how to counsel and manage individuals with the mild phenotype detected by NBS are required.
Collapse
Affiliation(s)
- Andrea Schlune
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Anselma Riederer
- Department of Obstetrics and Gynecology, Hospital Altötting-Burghausen, Teaching Hospital of the Ludwig-Maximilians-Universität München, Vinzenz-von-Paul-Strasse 10, 84503 Altötting, Germany
| | - Ertan Mayatepek
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Regina Ensenauer
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-17687
| |
Collapse
|
31
|
Monostori P, Klinke G, Richter S, Baráth Á, Fingerhut R, Baumgartner MR, Kölker S, Hoffmann GF, Gramer G, Okun JG. Simultaneous determination of 3-hydroxypropionic acid, methylmalonic acid and methylcitric acid in dried blood spots: Second-tier LC-MS/MS assay for newborn screening of propionic acidemia, methylmalonic acidemias and combined remethylation disorders. PLoS One 2017; 12:e0184897. [PMID: 28915261 PMCID: PMC5600371 DOI: 10.1371/journal.pone.0184897] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022] Open
Abstract
Background and aims Increased propionylcarnitine levels in newborn screening are indicative for a group of potentially severe disorders including propionic acidemia (PA), methylmalonic acidemias and combined remethylation disorders (MMACBL). This alteration is relatively non-specific, resulting in the necessity of confirmation and differential diagnosis in subsequent tests. Thus, we aimed to develop a multiplex approach for concurrent determination of 3-hydroxypropionic acid, methylmalonic acid and methylcitric acid from the same dried blood spot (DBS) as in primary screening (second-tier test). We also set out to validate the method using newborn and follow-up samples of patients with confirmed PA or MMACBL. Methods The assay was developed using liquid chromatography–tandem mass spectrometry and clinically validated with retrospective analysis of DBS samples from PA or MMACBL patients. Results Reliable determination of all three analytes in DBSs was achieved following simple and fast (<20 min) sample preparation without laborious derivatization or any additional pipetting steps. The method clearly distinguished the pathological and normal samples and differentiated between PA and MMACBL in all stored newborn specimens. Methylcitric acid was elevated in all PA samples; 3-hydroxypropionic acid was also high in most cases. Methylmalonic acid was increased in all MMACBL specimens; mostly together with methylcitric acid. Conclusions A liquid chromatography–tandem mass spectrometry assay allowing simultaneous determination of the biomarkers 3-hydroxypropionic acid, methylmalonic acid and methylcitric acid in DBSs has been developed. The assay can use the same specimen as in primary screening (second-tier test) which may reduce the need for repeated blood sampling. The presented preliminary findings suggest that this method can reliably differentiate patients with PA and MMACBL in newborn screening. The validated assay is being evaluated prospectively in a pilot project for extension of the German newborn screening panel (‟Newborn screening 2020”; Newborn Screening Center, University Hospital Heidelberg).
Collapse
Affiliation(s)
- Péter Monostori
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Glynis Klinke
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sylvia Richter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ákos Baráth
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Ralph Fingerhut
- Children’s Research Center, Division of Metabolism, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Matthias R. Baumgartner
- Children’s Research Center, Division of Metabolism, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefan Kölker
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F. Hoffmann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Gwendolyn Gramer
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G. Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Grünert SC, Schmitt RN, Schlatter SM, Gemperle-Britschgi C, Balcı MC, Berg V, Çoker M, Das AM, Demirkol M, Derks TGJ, Gökçay G, Uçar SK, Konstantopoulou V, Christoph Korenke G, Lotz-Havla AS, Schlune A, Staufner C, Tran C, Visser G, Schwab KO, Fukao T, Sass JO. Clinical presentation and outcome in a series of 32 patients with 2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency. Mol Genet Metab 2017; 122:67-75. [PMID: 28689740 DOI: 10.1016/j.ymgme.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/25/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022]
Abstract
2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency, also known as beta-ketothiolase deficiency, is an inborn error of ketone body utilization and isoleucine catabolism. It is caused by mutations in the ACAT1 gene and may present with metabolic ketoacidosis. In order to obtain a more comprehensive view on this disease, we have collected clinical and biochemical data as well as information on ACAT1 mutations of 32 patients from 12 metabolic centers in five countries. Patients were between 23months and 27years old, more than half of them were offspring of a consanguineous union. 63% of the study participants presented with a metabolic decompensation while most others were identified via newborn screening or family studies. In symptomatic patients, age at manifestation ranged between 5months and 6.8years. Only 7% developed a major mental disability while the vast majority was cognitively normal. More than one third of the identified mutations in ACAT1 are intronic mutations which are expected to disturb splicing. We identified several novel mutations but, in agreement with previous reports, no clear genotype-phenotype correlation could be found. Our study underlines that the prognosis in MAT deficiency is good and MAT deficient individuals may remain asymptomatic, if diagnosed early and preventive measures are applied.
Collapse
Affiliation(s)
- Sarah Catharina Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Robert Niklas Schmitt
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sonja Marina Schlatter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Corinne Gemperle-Britschgi
- Clinical Chemistry & Biochemistry and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Mehmet Cihan Balcı
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | - Mahmut Çoker
- Metabolism Unit, Department of Pediatrics, Ege University Medical Faculty, Izmir, Turkey
| | - Anibh M Das
- University Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Mübeccel Demirkol
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gülden Gökçay
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sema Kalkan Uçar
- Metabolism Unit, Department of Pediatrics, Ege University Medical Faculty, Izmir, Turkey
| | | | | | | | - Andrea Schlune
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Staufner
- Department of General Pediatrics, Division of Neuropediatrics and Pediatric Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Christel Tran
- Center for Molecular Diseases, Divison of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Gepke Visser
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Karl Otfried Schwab
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, and Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Jörn Oliver Sass
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Clinical Chemistry & Biochemistry and Children's Research Center, University Children's Hospital, Zürich, Switzerland; Bioanalytics & Biochemistry, Department of Natural Sciences, University of Applied Sciences, Rheinbach, Germany.
| |
Collapse
|
33
|
Wojcik MH, Wierenga KJ, Rodan LH, Sahai I, Ferdinandusse S, Genetti CA, Towne MC, Peake RWA, James PM, Beggs AH, Brownstein CA, Berry GT, Agrawal PB. Beta-Ketothiolase Deficiency Presenting with Metabolic Stroke After a Normal Newborn Screen in Two Individuals. JIMD Rep 2017; 39:45-54. [PMID: 28726122 DOI: 10.1007/8904_2017_45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/16/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022] Open
Abstract
Beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase) deficiency is a genetic disorder characterized by impaired isoleucine catabolism and ketone body utilization that predisposes to episodic ketoacidosis. It results from biallelic pathogenic variants in the ACAT1 gene, encoding mitochondrial beta-ketothiolase. We report two cases of beta-ketothiolase deficiency presenting with acute ketoacidosis and "metabolic stroke." The first patient presented at 28 months of age with metabolic acidosis and pallidal stroke in the setting of a febrile gastrointestinal illness. Although 2-methyl-3-hydroxybutyric acid and trace quantities of tiglylglycine were present in urine, a diagnosis of glutaric acidemia type I was initially suspected due to the presence of glutaric and 3-hydroxyglutaric acids. A diagnosis of beta-ketothiolase deficiency was ultimately made through whole exome sequencing which revealed compound heterozygous variants in ACAT1. Fibroblast studies for beta-ketothiolase enzyme activity were confirmatory. The second patient presented at 6 months of age with ketoacidosis, and was found to have elevations of urinary 2-methyl-3-hydroxybutyric acid, 2-methylacetoacetic acid, and tiglylglycine. Sequencing of ACAT1 demonstrated compound heterozygous presumed causative variants. The patient exhibited choreoathethosis 2 months after the acute metabolic decompensation. These cases highlight that, similar to a number of other organic acidemias and mitochondrial disorders, beta-ketothiolase deficiency can present with metabolic stroke. They also illustrate the variability in clinical presentation, imaging, and biochemical evaluation that make screening for and diagnosis of this rare disorder challenging, and further demonstrate the value of whole exome sequencing in the diagnosis of metabolic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. .,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Klaas J Wierenga
- Department of Pediatrics, Section of Genetics, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Inderneel Sahai
- New England Newborn Screening Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meghan C Towne
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Roy W A Peake
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip M James
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. .,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Boy N, Mühlhausen C, Maier EM, Heringer J, Assmann B, Burgard P, Dixon M, Fleissner S, Greenberg CR, Harting I, Hoffmann GF, Karall D, Koeller DM, Krawinkel MB, Okun JG, Opladen T, Posset R, Sahm K, Zschocke J, Kölker S. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017; 40:75-101. [PMID: 27853989 DOI: 10.1007/s10545-016-9999-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Chris Mühlhausen
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Birgit Assmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Peter Burgard
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Sandra Fleissner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Cheryl R Greenberg
- Department of Pediatrics, Children's Hospital Health Sciences Centre and University of Manitoba, Winnipeg, MB, R3A 1R9, Canada
- Department of Biochemistry and Medical Genetics, Children's Hospital Health Sciences Centre and University of Manitoba, Winnipeg, MB, R3A 1R9, Canada
| | - Inga Harting
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Daniela Karall
- Clinic for Paediatrics I, Inherited Metabolic Disorders, Medical, University of Innsbruck, Innsbruck, Austria
| | - David M Koeller
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Michael B Krawinkel
- Justus Liebig University Giessen, Institute of Nutritional Science, Giessen, Germany
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Thomas Opladen
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Roland Posset
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Katja Sahm
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
35
|
Wilson C, Knoll D, de Hora M, Kyle C, Glamuzina E, Webster D. The Risk of Fatty Acid Oxidation Disorders and Organic Acidemias in Children with Normal Newborn Screening. JIMD Rep 2016; 35:53-58. [PMID: 27928776 DOI: 10.1007/8904_2016_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 01/11/2023] Open
Abstract
New Zealand has undertaken expanded newborn screening since 2006. During that period there have been no reported cases of fatty acid oxidation disorders or organic acidemias that have been diagnosed clinically that the screening programme missed. However there may have been patients that presented clinically that were not diagnosed correctly or notified.In order to investigate the false-negative screening rate a case-control study was undertaken whereby the clinical coding data and relevant medical records were reviewed for 150 controls and 525 cases. The cases had normal newborn screening but with key analytes and/or ratios just below the notification level for individual disorders and thus in theory were most at risk of having metabolic disease.Two cases had medical histories suggestive of metabolic disease and thus could represent a false-negative screen. One of these had marginally elevated octanoyl carnitine levels and thus possible medium-chain acyl Co-A dehydrogenase deficiency (MCADD) while the other had elevated isovaleryl carnitine and thus may have been a case of isovaleric acidemia (IVA). However, subsequent molecular analysis revealed that the diagnosis of MCADD and IVA was unlikely.Despite relatively high cut-offs the New Zealand Newborn Metabolic Screening Programme does not appear to have missed any confirmed cases of fatty acid oxidation disorders and organic acidemias in its first 8 years of expanded newborn screening. This would suggest a similar low false-negative screening rate in centres with comparable screening protocols and would indicate that the risk of fatty acid oxidation disorders and classical organic acidemias in children who had normal newborn screening is low.
Collapse
Affiliation(s)
- Callum Wilson
- National Metabolic Service, Starship Children's Hospital, PO Box 92024, Auckland, 1142, New Zealand.
| | - Detlef Knoll
- Newborn Metabolic Screening Unit, Auckland City Hospital, Auckland, New Zealand
| | - Mark de Hora
- Newborn Metabolic Screening Programme, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Campbell Kyle
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Emma Glamuzina
- National Metabolic Service, Starship Children's Hospital, PO Box 92024, Auckland, 1142, New Zealand
| | - Dianne Webster
- Newborn Metabolic Screening Programme, LabPlus, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
36
|
Villoria JG, Pajares S, López RM, Marin JL, Ribes A. Neonatal Screening for Inherited Metabolic Diseases in 2016. Semin Pediatr Neurol 2016; 23:257-272. [PMID: 28284388 DOI: 10.1016/j.spen.2016.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The scope of newborn screening (NBS) programs is continuously expanding. NBS programs are secondary prevention interventions widely recognized internationally in the "field of Public Health." These interventions are aimed at early detection of asymptomatic children affected by certain diseases, with the objective to establish a definitive diagnosis and apply the proper treatment to prevent further complications and sequelae and ensure a better quality of life. The most significant event in the history of neonatal screening was the discovery of phenylketonuria in 1934. This disease has been the paradigm of inherited metabolic diseases. The next paradigm was the introduction of tandem mass spectrometry in the NBS programs that make possible the simultaneous measurement of several metabolites and consequently, the detection of several diseases in one blood spot and in an unique analysis. We aim to review the current situation of neonatal screening in 2016 worldwide and show scientific evidence of the benefits for some diseases. We will also discuss future challenges. It should be taken into account that any consideration to expand an NBS panel should involve a rigorous process of decision-making that balances benefits against the risks of harm.
Collapse
Affiliation(s)
- Judit Garcia Villoria
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - Sonia Pajares
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - Rosa María López
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - José Luis Marin
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - Antonia Ribes
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain.
| |
Collapse
|
37
|
Ganetzky RD, Bedoukian E, Deardorff MA, Ficicioglu C. Argininosuccinic Acid Lyase Deficiency Missed by Newborn Screen. JIMD Rep 2016; 34:43-47. [PMID: 27515243 DOI: 10.1007/8904_2016_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/30/2022] Open
Abstract
Argininosuccinic acid lyase (ASL) deficiency, caused by mutations in the ASL gene (OMIM: 608310) is a urea cycle disorder that has pleiotropic presentations. On the mild end, ASL deficiency can manifest as nonspecific neurocognitive abnormalities without readily identifiable signs to differentiate it from other causes of intellectual disability or learning disabilities. Dietary management and arginine supplementation, if initiated early, may ameliorate symptoms.Because of the nonspecific nature of the symptoms and the possibility for therapeutic management, ASL deficiency is part of the recommended uniform screening panel for newborn screening in the USA. We report here a case of ASL deficiency that was missed on newborn screening in the USA.The case reported here has two known pathogenic mutations - one with no residual activity and one with reported 10% residual activity. Review of this newborn screening results showed subtle elevation of citrulline, overlapping the normal range. These findings suggest that newborn screening may be missing other patients with ASL deficiency with at least one hypomorphic allele. This case was diagnosed incidentally, but in retrospect had symptoms best attributed in full or in part to his ASA deficiency, including protein aversion, developmental delay, and seizures. This case highlights the importance of considering ASL deficiency in patients with nonspecific abnormal neurocognitive signs, such as epilepsy and developmental delay, even when newborn screening was normal.
Collapse
Affiliation(s)
- Rebecca D Ganetzky
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Emma Bedoukian
- Department of Pediatrics, Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Matthew A Deardorff
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Can Ficicioglu
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Abdelkreem E, Otsuka H, Sasai H, Aoyama Y, Hori T, Abd El Aal M, Mahmoud S, Fukao T. Beta-Ketothiolase Deficiency. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816636644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Elsayed Abdelkreem
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroki Otsuka
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hideo Sasai
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yuka Aoyama
- Department of Biomedical Sciences, College of Life and Health Sciences, Education and Training Center of Medical Technology, Chubu University, Kasugai, Japan
| | - Tomohiro Hori
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Mohamed Abd El Aal
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Shaimaa Mahmoud
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
39
|
Malvagia S, Haynes CA, Grisotto L, Ombrone D, Funghini S, Moretti E, McGreevy KS, Biggeri A, Guerrini R, Yahyaoui R, Garg U, Seeterlin M, Chace D, De Jesus VR, la Marca G. Heptadecanoylcarnitine (C17) a novel candidate biomarker for newborn screening of propionic and methylmalonic acidemias. Clin Chim Acta 2015; 450:342-8. [PMID: 26368264 DOI: 10.1016/j.cca.2015.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND 3-Hydroxypalmitoleoyl-carnitine (C16:1-OH) has recently been reported to be elevated in acylcarnitine profiles of patients with propionic acidemia (PA) or methylmalonic acidemia (MMA) during expanded newborn screening (NBS). High levels of C16:1-OH, combined with other hydroxylated long chain acylcarnitines are related to long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and trifunctional protein (TFP) deficiency. METHODS The acylcarnitine profile of two LCHADD patients was evaluated using liquid chromatography-tandem mass spectrometric method. A specific retention time was determined for each hydroxylated long chain acylcarnitine. The same method was applied to some neonatal dried blood spots (DBSs) from PA and MMA patients presenting abnormal C16:1-OH concentrations. RESULTS The retention time of the peak corresponding to C16:1-OH in LCHADD patients differed from those in MMA and PA patients. Heptadecanoylcarnitine (C17) has been identified as the novel biomarker specific for PA and MMA patients through high resolution mass spectrometry (Orbitrap) experiments. We found that 21 out of 23 neonates (22 MMA, and 1PA) diagnosed through the Tuscany region NBS program exhibited significantly higher levels of C17 compared to controls. Twenty-three maternal deficiency (21 vitamin B12 deficiency, 1 homocystinuria and 1 gastrin deficiency) samples and 82 false positive for elevated propionylcarnitine (C3) were also analyzed. CONCLUSIONS We have characterized a novel biomarker able to detect propionate disorders during expanded newborn screening (NBS). The use of this new biomarker may improve the analytical performances of NBS programs especially in laboratories where second tier tests are not performed.
Collapse
Affiliation(s)
- Sabrina Malvagia
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's University Hospital, Florence, Italy
| | - Christopher A Haynes
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Laura Grisotto
- Department of Statistics, Computer Science and Applications 'G. Parenti' University of Florence, Florence, Italy
| | - Daniela Ombrone
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's University Hospital, Florence, Italy
| | - Silvia Funghini
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's University Hospital, Florence, Italy
| | - Elisa Moretti
- Analytics and Early Formulations Department, Chiesi Farmaceutici S.P.A., Parma, Italy
| | - Kathleen S McGreevy
- Research, Innovation and International Relations Office, Meyer Children's University Hospital, Florence, Italy
| | - Annibale Biggeri
- Department of Statistics, Computer Science and Applications 'G. Parenti' University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Meyer Children's University Hospital, Viale Pieraccini 24, 50139 Florence, Italy
| | - Raquel Yahyaoui
- Newborn Screening and Clinical Laboratory, Málaga Regional Hospital, Málaga, Spain
| | - Uttam Garg
- Department of Pathology and laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Mary Seeterlin
- Newborn Screening Section, Michigan Department of Community Health, Bureau of Laboratories, Chemistry and Toxicology, Lansing, MI, USA
| | - Donald Chace
- The Pediatrix Center for Research, Education and Quality Pediatrix Medical Group, Concord Terrace Sunrise, FL, USA
| | - Victor R De Jesus
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Giancarlo la Marca
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's University Hospital, Florence, Italy.
| |
Collapse
|
40
|
Adolescent presentations of inborn errors of metabolism. J Adolesc Health 2015; 56:477-82. [PMID: 25907648 DOI: 10.1016/j.jadohealth.2015.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/30/2022]
Abstract
Several studies have shown that a large percentage of inborn errors of metabolism is present in adolescent patients. Individually, each diagnosis in this category of diseases is rare; therefore, there is often a significant delay in determining the etiology of a patient's complaints. These disorders can have a wide variety of multisystemic presentations, several of which overlap with more common disorders of adolescence. This review highlights the red-flag findings on history and physical examination indicating a possible inborn error of metabolism. In addition, a systematic approach for evaluating and categorizing these disorders is introduced and demonstrated through case examples. Primary care physicians play a crucial role in the early detection and prompt treatment of patients with late-onset inborn errors of metabolism.
Collapse
|
41
|
Ahrens-Nicklas RC, Serdaroglu E, Muraresku C, Ficicioglu C. Cobalamin C Disease Missed by Newborn Screening in a Patient with Low Carnitine Level. JIMD Rep 2015; 23:71-5. [PMID: 25772322 DOI: 10.1007/8904_2015_429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/12/2015] [Accepted: 02/18/2015] [Indexed: 01/11/2023] Open
Abstract
Cobalamin C (CblC) disease is the most common inherited disorder of intracellular cobalamin metabolism. It is a multisystemic disorder mainly affecting the eye and brain and characterized biochemically by methylmalonic aciduria, low methionine level, and homocystinuria. We report a patient found to have CblC disease who initially presented with low carnitine and normal propionylcarnitine (C3) levels on newborn screen. Newborn screening likely failed to detect CblC in this patient because of both his low carnitine level and the presence of a mild phenotype.
Collapse
|