1
|
Taberna GA, Samogin J, Zhao M, Marino M, Guarnieri R, Cuartas Morales E, Ganzetti M, Liu Q, Mantini D. Large-scale analysis of neural activity and connectivity from high-density electroencephalographic data. Comput Biol Med 2024; 178:108704. [PMID: 38852398 DOI: 10.1016/j.compbiomed.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION High-density electroencephalography (hdEEG) is a technique used for the characterization of the neural activity and connectivity in the human brain. The analysis of EEG data involves several steps, including signal pre-processing, head modelling, source localization and activity/connectivity quantification. Visual check of the analysis steps is often necessary, making the process time- and resource-consuming and, therefore, not feasible for large datasets. FINDINGS Here we present the Noninvasive Electrophysiology Toolbox (NET), an open-source software for large-scale analysis of hdEEG data, running on the cross-platform MATLAB environment. NET combines all the tools required for a complete hdEEG analysis workflow, from raw signals to final measured values. By relying on reconstructed neural signals in the brain, NET can perform traditional analyses of time-locked neural responses, as well as more advanced functional connectivity and brain mapping analyses. The extracted quantitative neural data can be exported to provide broad compatibility with other software. CONCLUSIONS NET is freely available (https://github.com/bind-group-kul/net) under the GNU public license for non-commercial use and open-source development, together with a graphical user interface (GUI) and a user tutorial. While NET can be used interactively with the GUI, it is primarily aimed at unsupervised automation to process large hdEEG datasets efficiently. Its implementation creates indeed a highly customizable program suitable for analysis automation and tight integration into existing workflows.
Collapse
Affiliation(s)
- Gaia Amaranta Taberna
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Mingqi Zhao
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, 730000, Lanzhou, PR China
| | - Marco Marino
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Roberto Guarnieri
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Ernesto Cuartas Morales
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, 202017, Colombia
| | - Marco Ganzetti
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Roche Pharma Research and Early Development (pRED), pRED Data & Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Quanying Liu
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, PR China
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; KU Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Retsa C, Turpin H, Geiser E, Ansermet F, Müller-Nix C, Murray MM. Longstanding Auditory Sensory and Semantic Differences in Preterm Born Children. Brain Topogr 2024; 37:536-551. [PMID: 38010487 PMCID: PMC11199270 DOI: 10.1007/s10548-023-01022-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
More than 10% of births are preterm, and the long-term consequences on sensory and semantic processing of non-linguistic information remain poorly understood. 17 very preterm-born children (born at < 33 weeks gestational age) and 15 full-term controls were tested at 10 years old with an auditory object recognition task, while 64-channel auditory evoked potentials (AEPs) were recorded. Sounds consisted of living (animal and human vocalizations) and manmade objects (e.g. household objects, instruments, and tools). Despite similar recognition behavior, AEPs strikingly differed between full-term and preterm children. Starting at 50ms post-stimulus onset, AEPs from preterm children differed topographically from their full-term counterparts. Over the 108-224ms post-stimulus period, full-term children showed stronger AEPs in response to living objects, whereas preterm born children showed the reverse pattern; i.e. stronger AEPs in response to manmade objects. Differential brain activity between semantic categories could reliably classify children according to their preterm status. Moreover, this opposing pattern of differential responses to semantic categories of sounds was also observed in source estimations within a network of occipital, temporal and frontal regions. This study highlights how early life experience in terms of preterm birth shapes sensory and object processing later on in life.
Collapse
Affiliation(s)
- Chrysa Retsa
- The Radiology Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- The Sense Innovation and Research Center, Lausanne and Sion, Lausanne, Switzerland.
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| | - Hélène Turpin
- The Radiology Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- University Service of Child and Adolescent Psychiatry, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Eveline Geiser
- The Radiology Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - François Ansermet
- University Service of Child and Adolescent Psychiatry, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
- Department of Child and Adolescent Psychiatry, University Hospital, Geneva, Switzerland
| | - Carole Müller-Nix
- University Service of Child and Adolescent Psychiatry, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Micah M Murray
- The Radiology Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Xin Z, Wang F, Lu Z, Li Q. Characteristics of attentional bias in meditators: An ERP study. INTERNATIONAL JOURNAL OF PSYCHOLOGY 2023; 58:143-152. [PMID: 36683258 DOI: 10.1002/ijop.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Attentional bias is closely related to individual mental health. To explore the effect of mindfulness meditation on attentional bias, we use the dot-probe task to measure and compare the attentional bias of 16 Shaolin monks with meditation experience (meditator group) and 18 ordinary people without meditation experience (control group). The results were as follows: (1) The control group showed attentional bias to anger stimuli, while the meditator group did not show attentional bias; (2) The P1 amplitude induced by emotion stimuli was significantly less in the meditator group than in the control group; (3) When the control group observed angry-neutral faces, the P2 amplitude was greater than when they saw neutral-neutral faces. In comparison, there was no significant difference in P2 amplitude when the meditator group viewed faces with different emotions. This leads us to contend that people highly practiced in meditation can reduce their attentional bias to negative information, and show the cognitive characteristics of "impartial" treatment to external information.
Collapse
Affiliation(s)
- Zhaoyang Xin
- School of Psychology, Henan University, Kaifeng, China
| | - Fei Wang
- School of Psychology, Henan University, Kaifeng, China
| | - Zilu Lu
- School of Psychology, Henan University, Kaifeng, China
| | - Qiaoling Li
- School of Psychology, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Rupawala M, Bucsea O, Laudiano-Dray MP, Whitehead K, Meek J, Fitzgerald M, Olhede S, Jones L, Fabrizi L. A developmental shift in habituation to pain in human neonates. Curr Biol 2023; 33:1397-1406.e5. [PMID: 36931271 DOI: 10.1016/j.cub.2023.02.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Habituation to recurrent non-threatening or unavoidable noxious stimuli is an important aspect of adaptation to pain. Neonates, especially if preterm, are exposed to repeated noxious procedures during their clinical care. They can mount strong behavioral, autonomic, spinal, and cortical responses to a single noxious stimulus; however, it is not known whether the developing nervous system can adapt to the recurrence of these inputs. Here, we used electroencephalography to investigate changes in cortical microstates (representing the complex sequential processing of noxious inputs) following two consecutive clinically required heel lances in term and preterm infants. We show that stimulus repetition dampens the engagement of initial microstates and associated behavioral and autonomic responses in term infants, while preterm infants do not show signs of habituation. Nevertheless, both groups engage different longer-latency cortical microstates to each lance, which is likely to reflect changes in higher-level stimulus processing with repeated stimulation. These data suggest that while both age groups are capable of encoding contextual differences in pain, the preterm brain does not regulate the initial cortical, behavioral, and autonomic responses to repeated noxious stimuli. Habituation mechanisms to pain are already in place at term age but mature over the equivalent of the last trimester of gestation and are not fully functional in preterm neonates.
Collapse
Affiliation(s)
- Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Oana Bucsea
- Faculty of Health, Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E 6DB, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Sofia Olhede
- Department of Statistical Science, University College London, London WC1E 6BT, UK; Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Bechtold L, Bellebaum C, Ghio M. When a Sunny Day Gives You Butterflies: An Electrophysiological Investigation of Concreteness and Context Effects in Semantic Word Processing. J Cogn Neurosci 2023; 35:241-258. [PMID: 36378899 DOI: 10.1162/jocn_a_01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Theories on controlled semantic cognition assume that word concreteness and linguistic context interact during semantic word processing. Methodological approaches and findings on how this interaction manifests at the electrophysiological and behavioral levels are heterogeneous. We measured ERPs and RTs applying a validated cueing paradigm with 19 healthy participants, who performed similarity judgments on concrete or abstract words (e.g., "butterfly" or "tolerance") after reading contextual and irrelevant sentential cues. Data-driven analyses showed that concreteness increased and context decreased negative-going deflections in broadly distributed bilateral clusters covering the N400 and N700/late positive component time range, whereas both reduced RTs. Crucially, within a frontotemporal cluster in the N400 time range, contextual (vs. irrelevant) information reduced negative-going amplitudes in response to concrete but not abstract words, whereas a contextual cue reduced RTs only in response to abstract but not concrete words. The N400 amplitudes did not explain additional variance in the RT data, which showed a stronger contextual facilitation for abstract than concrete words. Our results support separate but interacting effects of concreteness and context on automatic and controlled stages of contextual semantic processing and suggest that effects on the electrophysiological versus behavioral level obtained with this paradigm are dissociated.
Collapse
|
6
|
Plasticity Changes in Central Auditory Systems of School-Age Children Following a Brief Training With a Remote Microphone System. Ear Hear 2023:00003446-990000000-00109. [PMID: 36706057 DOI: 10.1097/aud.0000000000001329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The objective of this study was to investigate whether a brief speech-in-noise training with a remote microphone (RM) system (favorable listening condition) would contribute to enhanced post-training plasticity changes in the auditory system of school-age children. DESIGN Before training, event-related potentials (ERPs) were recorded from 49 typically developing children, who actively identified two syllables in quiet and in noise (+5 dB signal-to-noise ratio [SNR]). During training, children completed the same syllable identification task as in the pre-training noise condition, but received feedback on their performance. Following random assignment, half of the sample used an RM system during training (experimental group), while the other half did not (control group). That is, during training' children in the experimental group listened to a more favorable speech signal (+15 dB SNR) than children from the control group (+5 dB SNR). ERPs were collected after training at +5 dB SNR to evaluate the effects of training with and without the RM system. Electrical neuroimaging analyses quantified the effects of training in each group on ERP global field power (GFP) and topography, indexing response strength and network changes, respectively. Behavioral speech-perception-in-noise skills of children were also evaluated and compared before and after training. We hypothesized that training with the RM system (experimental group) would lead to greater enhancement of GFP and greater topographical changes post-training than training without the RM system (control group). We also expected greater behavioral improvement on the speech-perception-in-noise task when training with than without the RM system. RESULTS GFP was enhanced after training only in the experimental group. These effects were observed on early time-windows corresponding to traditional P1-N1 (100 to 200 msec) and P2-N2 (200 to 400 msec) ERP components. No training effects were observed on response topography. Finally, both groups increased their speech-perception-in-noise skills post-training. CONCLUSIONS Enhanced GFP after training with the RM system indicates plasticity changes in the neural representation of sound resulting from listening to an enriched auditory signal. Further investigation of longer training or auditory experiences with favorable listening conditions is needed to determine if that results in long-term speech-perception-in-noise benefits.
Collapse
|
7
|
Ferrera D, Gómez-Esquer F, Peláez I, Barjola P, Fernandes-Magalhaes R, Carpio A, De Lahoz ME, Martín-Buro MC, Mercado F. Working memory dysfunction in fibromyalgia is associated with genotypes of the catechol- O-methyltransferase gene: an event-related potential study. Eur Arch Psychiatry Clin Neurosci 2023; 273:25-40. [PMID: 36100778 PMCID: PMC9958168 DOI: 10.1007/s00406-022-01488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Recent findings have associated different COMT genotypes with working memory capacity in patients with fibromyalgia. Although it is thought that the COMT gene may influence neural correlates (P2 and P3 ERP components) underlying working memory impairment in this chronic-pain syndrome, it has not yet been explored. Therefore, the aim of the present research was to investigate the potential effect of the COMT gene in fibromyalgia patients on ERP working memory indices (P2 and P3 components). For this purpose, 102 participants (51 patients and 51 healthy control participants) took part in the experiment. Event-related potentials and behavioral responses were recorded while participants performed a spatial n-back task. Participants had to decide if the stimulus coincided or not in the same location as the one presented one (1-back condition) or two (2-back condition) trials before. Genotypes of the COMT gene were determined through a saliva sample from all participants. Present results significantly showed lower working memory performance (p < 0.05) in patients with fibromyalgia as compared to control participants (higher rate of errors and slower reaction times). At neural level, we found that patients exhibited enhanced frontocentral and parieto-occipital P2 amplitudes compared to control participants (p < 0.05). Interestingly, we also observed that only fibromyalgia patients carrying the Val/Val genotype of the COMT gene showed higher frontocentral P2 amplitudes than control participants (p < 0.05). Current results (behavioral outcomes and P2 amplitudes) confirmed the presence of an alteration in working memory functioning in fibromyalgia. The enhancement of frontocentral P2 could be reflecting that these patients would manifest an inefficient way of activating executive attention processes, in carriers of the Val/Val genotype of COMT. To our knowledge, the present findings are the first linking neural indices of working memory dysfunctions and COMT genotypes in fibromyalgia. Applying a subgroup of patient's strategy based on this genetic marker could be useful to establish more tailored therapeutical approaches.
Collapse
Affiliation(s)
- David Ferrera
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Gómez-Esquer
- grid.28479.300000 0001 2206 5938Emerging Research Group of Anatomical, Molecular and Human Development Bases, Department of Basic Health Sciences, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Irene Peláez
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Paloma Barjola
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Roberto Fernandes-Magalhaes
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Alberto Carpio
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - María Eugenia De Lahoz
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - María Carmen Martín-Buro
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Mercado
- Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
8
|
Accurate Emotion Recognition Utilizing Extracted EEG Sources as Graph Neural Network Nodes. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Optimal Number of Clusters by Measuring Similarity Among Topographies for Spatio-Temporal ERP Analysis. Brain Topogr 2022; 35:537-557. [DOI: 10.1007/s10548-022-00903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
|
10
|
Breitinger E, Pokorny L, Biermann L, Jarczok TA, Dundon NM, Roessner V, Bender S. What makes somatosensory short-term memory maintenance effective? An EEG study comparing contralateral delay activity between sighted participants and participants who are blind. Neuroimage 2022; 259:119407. [PMID: 35752414 DOI: 10.1016/j.neuroimage.2022.119407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Somatosensory short-term memory is essential for object recognition, sensorimotor learning, and, especially, Braille reading for people who are blind. This study examined how visual sensory deprivation and a compensatory focus on somatosensory information influences memory processes in this domain. We measured slow cortical negativity developing during short-term tactile memory maintenance (tactile contralateral delay activity, tCDA) in frontal and somatosensory areas while a sample of 24 sighted participants and 22 participants who are blind completed a tactile change-detection task where varying loads of Braille pin patterns served as stimuli. Auditory cues, appearing at varying latencies between sample arrays, could be used to reduce memory demands during maintenance. Participants who are blind (trained Braille readers) outperformed sighted participants behaviorally. In addition, while task-related frontal activation featured in both groups, participants who are blind uniquely showed higher tCDA amplitudes specifically over somatosensory areas. The site specificity of this component's functional relevance in short-term memory maintenance was further supported by somatosensory tCDA amplitudes first correlating across the whole sample with behavioral performance, and secondly showing sensitivity to varying memory load. The results substantiate sensory recruitment models and provide new insights into the effects of visual sensory deprivation on tactile processing. Between-group differences in the interplay between frontal and somatosensory areas during somatosensory maintenance also suggest that efficient maintenance of complex tactile stimuli in short-term memory is primarily facilitated by lateralized activity in somatosensory cortex.
Collapse
Affiliation(s)
- Eva Breitinger
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany.
| | - Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Lea Biermann
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Tomasz Antoni Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, KJF Klinik Josefinum, Augsburg, Germany
| | - Neil M Dundon
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Germany; Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Faculty of Medicine, University Hospital C. G. Carus, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| |
Collapse
|
11
|
Chabin T, Pazart L, Gabriel D. Vocal melody and musical background are simultaneously processed by the brain for musical predictions. Ann N Y Acad Sci 2022; 1512:126-140. [PMID: 35229293 DOI: 10.1111/nyas.14755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
Musical pleasure is related to the capacity to predict and anticipate the music. By recording early cerebral responses of 16 participants with electroencephalography during periods of silence inserted in known and unknown songs, we aimed to measure the contribution of different musical attributes to musical predictions. We investigated the mismatch between past encoded musical features and the current sensory inputs when listening to lyrics associated with vocal melody, only background instrumental material, or both attributes grouped together. When participants were listening to chords and lyrics for known songs, the brain responses related to musical violation produced event-related potential responses around 150-200 ms that were of a larger amplitude than for chords or lyrics only. Microstate analysis also revealed that for chords and lyrics, the global field power had an increased stability and a longer duration. The source localization identified that the right superior temporal and frontal gyri and the inferior and medial frontal gyri were activated for a longer time for chords and lyrics, likely caused by the increased complexity of the stimuli. We conclude that grouped together, a broader integration and retrieval of several musical attributes at the same time recruit larger neuronal networks that lead to more accurate predictions.
Collapse
Affiliation(s)
- Thibault Chabin
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France
| | - Lionel Pazart
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Bourgogne Franche-Comté, France
| | - Damien Gabriel
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
12
|
Pell MD, Sethi S, Rigoulot S, Rothermich K, Liu P, Jiang X. Emotional voices modulate perception and predictions about an upcoming face. Cortex 2022; 149:148-164. [DOI: 10.1016/j.cortex.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022]
|
13
|
Mercado F, Ferrera D, Fernandes-Magalhaes R, Peláez I, Barjola P. Altered sub-processes of working memory in fibromyalgia patients: An ERP study using N-back task. PAIN MEDICINE 2021; 23:475-487. [PMID: 34145889 DOI: 10.1093/pm/pnab190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Cognitive dysfunction in fibromyalgia has become a key symptom considered by patients as more disabling than pain itself. Experimental evidence from neuropsychological and neuroimaging studies indicates that such cognitive impairments are especially robust when patients need to set in motion working memory processes, suggesting the existence of an altered functioning underlying the cerebral cortices of the frontoparietal memory network. However, the temporal dynamics of working memory sub-processes have not yet been explored in fibromyalgia. SUBJECTS Thirty-six right-handed women participated in the experiment: comprising eighteen patients with fibromyalgia and eighteen healthy controls. METHODS Event-related potentials (ERPs) and behavioural responses were recorded while participants were engaged in a 2-back working memory task. Principal Component Analyses (PCA) were used to define and quantify the ERP components associated with working memory processes. RESULTS Fibromyalgia patients exhibited worse performance than the control group, as revealed by their number of errors in the working memory task. Moreover, both scalp parieto-occipital P2 and parieto-occipital P3 amplitudes were lower for patients than for healthy control participants. Regression analyses revealed that lower P3 amplitudes were observed in those patients with fibromyalgia reporting higher pain ratings. CONCLUSIONS Current results suggest that both encoding of information (as reflected by P2) and subsequently, context updating and the replacement (as seen in lower P3 amplitudes), as a part of working memory sub-processes, are impaired in fibromyalgia. Studying the temporal dynamics of working memory using ERP methodology is a helpful approach to detect specific cognitive impaired mechanisms in this chronic pain syndrome. These new data could be used to develop more specific treatments adapted for each patient.
Collapse
Affiliation(s)
- Francisco Mercado
- Psychobiology Unit, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - David Ferrera
- Psychobiology Unit, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Roberto Fernandes-Magalhaes
- Psychobiology Unit, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain.,Clinical Foundation of the Rey Juan Carlos University, Madrid, Spain
| | - Irene Peláez
- Psychobiology Unit, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Paloma Barjola
- Psychobiology Unit, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
14
|
Kim K, Duc NT, Choi M, Lee B. EEG microstate features for schizophrenia classification. PLoS One 2021; 16:e0251842. [PMID: 33989352 PMCID: PMC8121321 DOI: 10.1371/journal.pone.0251842] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. However, previous studies have only reported differences in each microstate feature and have not determined whether microstate features are suitable for schizophrenia classification. Therefore, it is necessary to validate microstate features for schizophrenia classification. Nineteen microstate features, including duration, occurrence, and coverage as well as thirty-one conventional EEG features, including statistical, frequency, and temporal characteristics were obtained from resting-state EEG recordings of 14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-learning based multivariate analysis was used to evaluate classification performance. EEG recordings of patients and controls showed different microstate features. More importantly, when differentiating among patients and controls, EEG microstate features outperformed conventional EEG ones. The performance of the microstate features exceeded that of conventional EEG, even after optimization using recursive feature elimination. EEG microstate features applied with conventional EEG features also showed better classification performance than conventional EEG features alone. The current study is the first to validate the use of microstate features to discriminate schizophrenia, suggesting that EEG microstate features are useful for schizophrenia classification.
Collapse
Affiliation(s)
- Kyungwon Kim
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Nguyen Thanh Duc
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnel Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Min Choi
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
| |
Collapse
|
15
|
Ruiz-Padial E, Mercado F. In exogenous attention, time is the clue: Brain and heart interactions to survive threatening stimuli. PLoS One 2021; 16:e0243117. [PMID: 33979346 PMCID: PMC8115771 DOI: 10.1371/journal.pone.0243117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
The capture of exogenous attention by negative stimuli has been interpreted as adaptive for survival in a diverse and changing environment. In the present paper, we investigate the neural responses towards two discrete negative emotions with different biological meanings, disgust and fear, and its potential relationships with heart rate variability (HRV) as an index of emotional regulation. With that aim, 30 participants performed a digit categorization task while fear, disgust and neutral distractor pictures were presented. Resting HRV at baseline, behavioral responses, and event-related potentials were recorded. Whereas P1 amplitudes were highest to fear distractors, the disgust stimulation led to augmented P2 amplitudes compared to the rest of distractors. Interestingly, increased N2 amplitudes were also found to disgust distractors, but only in high HRV participants. Neural source estimation data point to the involvement of the insula in this exogenous attentional response to disgust. Additionally, disgust distractors provoked longer reaction times than fear and neutral distractors in the high HRV group. Present findings are interpreted in evolutionary terms suggesting that exogenous attention is captured by negative stimuli following a different time course for fear and disgust. Possible HRV influences on neural mechanisms underlying exogenous attention are discussed considering the potential important role of this variable in emotional regulation processes.
Collapse
Affiliation(s)
| | - Francisco Mercado
- Psychobiology Unit, Department of Psychology Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
16
|
The song of Anorexia Nervosa: a specific evoked potential response to musical stimuli in affected participants. Eat Weight Disord 2021; 26:807-816. [PMID: 32372322 DOI: 10.1007/s40519-020-00898-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/31/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Research applying electroencephalography (EEG) to Anorexia Nervosa (AN) is still limited, even though in other psychiatric disorders EEG has permitted to find out the hallmarks of the disorder. The aim of the study was to explore whether EEG basal activity and reactivity to musical stimulation differ in participants with AN as compared to healthy subjects (HS). METHODS Twenty female participants (respectively 10 with AN and 10 healthy controls) were administered a battery of psychometric tests and underwent EEG under three different conditions: (1) at baseline; (2) after a generic music stimulation; and (3) after a favorite musical stimulation. RESULTS In participants with AN, basal EEG showed the higher absolute amplitude of cortical slow waves (theta) in the parieto-occipital and temporal derivations, with a deficit in the beta band. In AN, there was a higher N100 latency and a reduced P300 latency compared to HS. While the N100 and P300 latencies were sensitive to the musical stimulus in HS, there was no difference after music stimulation in AN. CONCLUSION These data suggest that AN is accompanied by a state of brain hyperarousal with abnormal reactivity to environmental stimuli, similar to the state of HS after musical stimulation. If confirmed, this finding may have treatment implications. LEVEL OF EVIDENCE III, Evidence obtained from well-designed cohort or case-control analytic studies.
Collapse
|
17
|
De Zorzi L, Ranfaing S, Honoré J, Sequeira H. Autonomic reactivity to emotion: A marker of sub-clinical anxiety and depression symptoms? Psychophysiology 2021; 58:e13774. [PMID: 33538013 DOI: 10.1111/psyp.13774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Anxiety and depression are both characterized by dysregulated autonomic reactivity to emotion. However, most experiments until now have focused on autonomic reactivity to stimuli presented in central vision (CV) even if affective saliency is also observed in peripheral vision (PV). We compared autonomic reactivity to CV and PV emotional stimulation in 58 participants with high anxious (HA) or low anxious (LA) and high depressive (HD) or low depressive (LD) symptomatology, based on STAI-B and BDI scores, respectively. Unpleasant (U), pleasant (P), and neutral (N) pictures from IAPS were presented at three eccentricities (0°: CV; -12 and 12°: PV). Skin conductance (SC), skin temperature, pupillary diameter, and heart rate (HR) were recorded. First, HA participants showed greater pupil dilation to emotional than to neutral stimuli in PV than in CV. Second, in contrast to HD, the valence effect indexed by SC and emotional arousal effect indexed by skin temperature were observed in LD. Third, both anxiety and depression lead to a valence effect indexed by pupillary light reflex and heart rate. These results suggest a hyperreactivity to emotion and hypervigilance to PV in anxiety. Depression is associated with an attenuation of positive effect and a global blunted autonomic reactivity to emotion. Moreover, anxiety mostly modulates the early processes of autonomic reactivity whereas depression mainly affects the later processes. The differential impact of emotional information over the visual field suggests the use of new stimulation strategies in order to attenuate anxious and depressive symptoms.
Collapse
Affiliation(s)
- Lucas De Zorzi
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Stéphane Ranfaing
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Jacques Honoré
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Henrique Sequeira
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| |
Collapse
|
18
|
Jia W, Zeng Y. EEG signals respond differently to idea generation, idea evolution and evaluation in a loosely controlled creativity experiment. Sci Rep 2021; 11:2119. [PMID: 33483583 PMCID: PMC7822831 DOI: 10.1038/s41598-021-81655-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/10/2021] [Indexed: 11/09/2022] Open
Abstract
Many neurocognitive studies endeavor to understand neural mechanisms of basic creative activities in strictly controlled experiments. However, little evidence is available regarding the neural mechanisms of interactions between basic activities underlying creativity in such experiments. Moreover, strictly controlled experiments might limit flexibility/freedom needed for creative exploration. Thus, this study investigated the whole-brain neuronal networks' interactions between three modes of thinking: idea generation, idea evolution, and evaluation in a loosely controlled creativity experiment. The loosely controlled creativity experiment will provide a degree of flexibility/freedom for participants to incubate creative ideas through extending response time from a few seconds to 3 min. In the experiment, participants accomplished a modified figural Torrance Test of Creative Thinking (TTCT-F) while their EEG signals were recorded. During idea generation, a participant was instructed to complete a sketch that was immediately triggered by a sketch stimulus at first sight. During idea evolution, a participant was instructed to complete a sketch that is radically distinctive from what was immediately triggered by the sketch stimulus. During the evaluation, a participant was instructed to evaluate difficulties of thinking and drawing during idea generation and evolution. It is expected that participants would use their experience to intuitively complete a sketch during idea generation while they could use more divergent and imaginative thinking to complete a possible creative sketch during idea evolution. Such an experimental design is named as a loosely controlled creativity experiment, which offers an approach to studying creativity in an ecologically valid manner. The validity of the loosely controlled creativity experiment could be verified through comparing its findings on phenomena that have been effectively studied by validated experimental research. It was found from our experiment that alpha power decreased significantly from rest to the three modes of thinking. These findings are consistent with that from visual creativity research based on event-related (de)synchronization (ERD/ERS) and task-related power changes (TRP). Specifically, in the lower alpha band (8-10 Hz), the decreases of alpha power were significantly lower over almost the entire scalp during idea evolution compared to the other modes of thinking. This finding indicated that idea evolution requires less general attention demands than the other two modes of thinking since the lower alpha ERD has been reported as being more likely to reflect general task demands such as attentional processes. In the upper alpha band (10-12 Hz), the decreases of alpha power were significantly higher over central sites during the evaluation compared to idea evolution. This finding indicated that evaluation involves more task-specific demands since the upper alpha ERD has been found as being more likely to reflect task-specific demands such as memory and intelligence, as was defined in the literature. In addition, new findings were obtained since the loosely controlled creativity experiment could activate multiple brain networks to accomplish the tasks involving the three modes of thinking. EEG microstate analysis was used to structure the unstructured EEG data to detect the activation of multiple brain networks. Combined EEG-fMRI and EEG source localization studies have indicated that EEG microstate classes are closely associated with the resting-state network as identified using fMRI. It was found that the default mode network was more active during idea evolution compared to the other two modes of thinking, while the cognitive control network was more active during the evaluation compared to the other two modes of thinking. This finding indicated that idea evolution might be more associated with unconscious and internal directed attention processes. Taken together, the loosely controlled creativity experiment with the support of EEG microstate analysis appears to offer an effective approach to investigating the real-world complex creativity activity.
Collapse
Affiliation(s)
- Wenjun Jia
- Concordia Institute for Information Systems Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, Canada
| | - Yong Zeng
- Concordia Institute for Information Systems Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Mendoza-Medialdea MT, Ruiz-Padial E. Understanding the capture of exogenous attention by disgusting and fearful stimuli: The role of interoceptive accuracy. Int J Psychophysiol 2021; 161:53-63. [PMID: 33453302 DOI: 10.1016/j.ijpsycho.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The aim of the study was to explore the role of interoceptive accuracy (IA) on exogenous attention to disgusting and fearful distractors of a main concurrent task. Participants were thirty university students previously identified as high (N = 16) or normal IA according their performance in a heartbeat detection task. Event-related potentials and behavioural responses were recorded. The results showed that disgusting stimuli capture exogenous attention in a first stage as reflected by the augmented amplitude of the P100 component of the ERPs in high IA participants. Fearful distractors may capture attention in a later moment in all participants as revealed by a marginally significant effect on the amplitude of N200. At behavioural level, disgusting distractors provoked a higher number of errors than neutral in normal IA participants. The time course of the effect of disgust and fearful eliciting distractors on exogenous attention appeared to depend on the individual characteristic of participants.
Collapse
|
20
|
Zani A, Proverbio AM. Spatial attention modulates earliest visual processing: An electrical neuroimaging study. Heliyon 2020; 6:e05570. [PMID: 33294702 PMCID: PMC7695965 DOI: 10.1016/j.heliyon.2020.e05570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/03/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
Several studies showed that shifting of visuospatial attention modulates sensory processing at multiple levels of the visual pathways and beyond, including the occipital striate cortices level. However, inconsistent findings have been reported thus leaving these issues still disputed. 21 participants took part to the present study (the EEG signals of 4 of them were discarded due to artifacts). We used ERPs and their neural sources to investigate whether shifting spatial attention in space across the horizontal meridian of the visual field affected striate cortices activation at the earliest latency. Time-series of scalp topographical maps indicated that, unlike ERPs to attentional-neutral central cues, ERPs to attention-directing local cues showed earliest polarity inversions as a function of stimulated field and processing latency range considered, at occipital-parietal electrodes. In between 60-75 ms, attentional shifting cues elicited a positivity for both visual fields, whereas at a later latency (75–90 ms) they elicited a positivity and a negativity for the upper and lower visual hemifields, respectively. Computed neural sources included striate, besides extrastriate, cortices for both visual hemifields and latency ranges. Conjointly, behavioral responses to targets were faster when they were preceded by local than by neutral cues, and when presented in the upper than the lower hemifield. Our findings support the hypothesis that attention shifts may affect early sensory processing in visual cortices.
Collapse
Affiliation(s)
- Alberto Zani
- School of Psychology, Vita Salute San Raffaele University, Milan, Italy.,Neuro-Mi Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Alice Mado Proverbio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Neuro-Mi Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
21
|
Mahini R, Li Y, Ding W, Fu R, Ristaniemi T, Nandi AK, Chen G, Cong F. Determination of the Time Window of Event-Related Potential Using Multiple-Set Consensus Clustering. Front Neurosci 2020; 14:521595. [PMID: 33192239 PMCID: PMC7610058 DOI: 10.3389/fnins.2020.521595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/09/2020] [Indexed: 01/27/2023] Open
Abstract
Clustering is a promising tool for grouping the sequence of similar time-points aimed to identify the attention blocks in spatiotemporal event-related potentials (ERPs) analysis. It is most likely to elicit the appropriate time window for ERP of interest if a suitable clustering method is applied to spatiotemporal ERP. However, how to reliably estimate a proper time window from entire individual subjects' data is still challenging. In this study, we developed a novel multiset consensus clustering method in which several clustering results of multiple subjects were combined to retrieve the best fitted clustering for all the subjects within a group. Then, the obtained clustering was processed by a newly proposed time-window detection method to determine the most suitable time window for identifying the ERP of interest in each condition/group. Applying the proposed method to the simulated ERP data and real data indicated that the brain responses from the individual subjects can be collected to determine a reliable time window for different conditions/groups. Our results revealed more precise time windows to identify N2 and P3 components in the simulated data compared to the state-of-the-art methods. Additionally, our proposed method achieved more robust performance and outperformed statistical analysis results in the real data for N300 and prospective positivity components. To conclude, the proposed method successfully estimates the time window for ERP of interest by processing the individual data, offering new venues for spatiotemporal ERP processing.
Collapse
Affiliation(s)
- Reza Mahini
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Yansong Li
- Reward, Competition and Social Neuroscience Lab, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Weiyan Ding
- Department of Psychiatry, Chinese PLA 967th Hospital, Dalian, China
| | - Rao Fu
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Tapani Ristaniemi
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Asoke K. Nandi
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, United Kingdom
| | - Guoliang Chen
- Department of Psychiatry, Chinese PLA 967th Hospital, Dalian, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
- School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province, Dalian University of Technology, Dalian, China
| |
Collapse
|
22
|
Volpert-Esmond HI, Bartholow BD. Explicit Categorization Goals Affect Attention-Related Processing of Race and Gender During Person Construal. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2020; 85. [PMID: 32831396 DOI: 10.1016/j.jesp.2019.103839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Faces are categorized by gender and race very quickly, seemingly without regard to perceivers' goals or motivations, suggesting an automaticity to these judgments that has downstream consequences for evaluations, stereotypes, and social interactions. The current study investigated the extent to which early neurocognitive processes involved in the categorization of faces vary when participants' tasks goals were to categorize faces by race or by gender. In contrast to previous findings, task-related differences were found, such that differentiation in the P2 event-related potential (ERP) according to perceived gender was facilitated by having an explicit task goal of categorizing faces by gender; however, the P2 was sensitive to race regardless of task goals. Use of principal components analysis (PCA) revealed two underlying components that comprised the P2 and that were differentially sensitive to the gender and race of the faces, depending on participants' top-down task goals. Results suggest that top-down task demands facilitate discrimination of faces along the attended dimension within less than 200 ms, but that the effect of top-down task demands may not be evident when examining early ERP components that reflect more than one distinct underlying process.
Collapse
|
23
|
Depression restricts visual capture and promotes the perception of negative information. Biol Psychol 2020; 154:107923. [DOI: 10.1016/j.biopsycho.2020.107923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/29/2020] [Accepted: 06/20/2020] [Indexed: 11/19/2022]
|
24
|
Papp S, Tombor L, Kakuszi B, Balogh L, Réthelyi JM, Bitter I, Czobor P. Impaired early information processing in adult ADHD: a high-density ERP study. BMC Psychiatry 2020; 20:292. [PMID: 32522183 PMCID: PMC7288676 DOI: 10.1186/s12888-020-02706-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 05/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children with attention-deficit/hyperactivity disorder (ADHD) often demonstrate sensory processing difficulties in the form of altered sensory modulation, which may contribute to their symptomatology. Our objective was to investigate the neurophysiological correlates of sensory processing deficits and the electrophysiological characteristics of early information processing in adult ADHD, measured by the P1 event-related potential (ERP). METHODS We obtained ERPs during a Go/NoGo task from 26 adult patients with ADHD and 25 matched controls using a high-density 128-channel BioSemi ActiveTwo recording system. RESULTS ADHD patients had a significantly reduced P1 component at occipital and inferotemporal scalp areas compared to controls. The reduction was associated with inattention and hyperactivity symptom severity, as measured by the Conners' Adult ADHD Rating Scale. ADHD patients with higher inattention scores had significantly smaller P1 amplitudes at posterior scalp sites, while higher hyperactivity scores were associated with higher P1 amplitudes. CONCLUSIONS Deficits in early sensory processing, as measured by the P1 ERP component, are present in adult ADHD patients and are associated with symptom severity. These findings are suggestive of bottom-up cognitive deficits in ADHD driven by impairments in early visual processing, and provide evidence that sensory processing problems are present at the neurophysiological level in this population.
Collapse
Affiliation(s)
- Szilvia Papp
- Department of Psychiatry and Psychotherapy, Semmelweis University, HU1083, Balassa utca 6., Budapest, Hungary.
| | - László Tombor
- grid.11804.3c0000 0001 0942 9821Department of Psychiatry and Psychotherapy, Semmelweis University, HU1083, Balassa utca 6., Budapest, Hungary
| | - Brigitta Kakuszi
- grid.11804.3c0000 0001 0942 9821Department of Psychiatry and Psychotherapy, Semmelweis University, HU1083, Balassa utca 6., Budapest, Hungary
| | - Lívia Balogh
- grid.11804.3c0000 0001 0942 9821Department of Psychiatry and Psychotherapy, Semmelweis University, HU1083, Balassa utca 6., Budapest, Hungary
| | - János M. Réthelyi
- grid.11804.3c0000 0001 0942 9821Department of Psychiatry and Psychotherapy, Semmelweis University, HU1083, Balassa utca 6., Budapest, Hungary
| | - István Bitter
- grid.11804.3c0000 0001 0942 9821Department of Psychiatry and Psychotherapy, Semmelweis University, HU1083, Balassa utca 6., Budapest, Hungary
| | - Pál Czobor
- grid.11804.3c0000 0001 0942 9821Department of Psychiatry and Psychotherapy, Semmelweis University, HU1083, Balassa utca 6., Budapest, Hungary
| |
Collapse
|
25
|
Iturrate I, Chavarriaga R, Millán JDR. General principles of machine learning for brain-computer interfacing. HANDBOOK OF CLINICAL NEUROLOGY 2020; 168:311-328. [PMID: 32164862 DOI: 10.1016/b978-0-444-63934-9.00023-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brain-computer interfaces (BCIs) are systems that translate brain activity patterns into commands that can be executed by an artificial device. This enables the possibility of controlling devices such as a prosthetic arm or exoskeleton, a wheelchair, typewriting applications, or games directly by modulating our brain activity. For this purpose, BCI systems rely on signal processing and machine learning algorithms to decode the brain activity. This chapter provides an overview of the main steps required to do such a process, including signal preprocessing, feature extraction and selection, and decoding. Given the large amount of possible methods that can be used for these processes, a comprehensive review of them is beyond the scope of this chapter, and it is focused instead on the general principles that should be taken into account, as well as discussing good practices on how these methods should be applied and evaluated for proper design of reliable BCI systems.
Collapse
Affiliation(s)
- Iñaki Iturrate
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Ricardo Chavarriaga
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Institute of Applied Information Technology (InIT), Zurich University of Applied Sciences ZHAW, Winterthur, Switzerland.
| | - José Del R Millán
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States; Department of Neurology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
26
|
Gupta RS, Kujawa A, Vago DR. The neural chronometry of threat-related attentional bias: Event-related potential (ERP) evidence for early and late stages of selective attentional processing. Int J Psychophysiol 2019; 146:20-42. [PMID: 31605728 PMCID: PMC6905495 DOI: 10.1016/j.ijpsycho.2019.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023]
Abstract
Rapid and accurate detection of threat is adaptive. Yet, threat-related attentional biases, including hypervigilance, avoidance, and attentional disengagement delays, may contribute to the etiology and maintenance of anxiety disorders. Behavioral measures of attentional bias generally indicate that threat demands more attentional resources; however, indices exploring differential allocation of attention using reaction time fail to clarify the time course by which attention is deployed under threatening circumstances in healthy and anxious populations. In this review, we conduct an interpretive synthesis of 28 attentional bias studies focusing on event-related potentials (ERPs) as a primary outcome to inform an ERP model of the neural chronometry of attentional bias in healthy and anxious populations. The model posits that both healthy and anxious populations display modulations of early ERP components, including the P1, N170, P2, and N2pc, in response to threatening and emotional stimuli, suggesting that both typical and abnormal patterns of attentional bias are characterized by enhanced allocation of attention to threat and emotion at earlier stages of processing. Compared to anxious populations, healthy populations more clearly demonstrate modulations of later components, such as the P3, indexing conscious and evaluative processing of threat and emotion and disengagement difficulties at later stages of processing. Findings from the interpretive synthesis, existing bias models, and extant neural literature on attentional systems are then integrated to inform a conceptual model of the processes and substrates underlying threat appraisal and resource allocation in healthy and anxious populations. To conclude, we discuss therapeutic interventions for attentional bias and future directions.
Collapse
Affiliation(s)
- Resh S Gupta
- Contemplative Neuroscience & Integrative Medicine Laboratory, Osher Center for Integrative Medicine, Vanderbilt University Medical Center, 3401 West End Ave., Suite 380, Nashville, TN 37203, USA.
| | - Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, Peabody College #552, 230 Appleton Place, Nashville, TN 37203-5721, USA.
| | - David R Vago
- Contemplative Neuroscience & Integrative Medicine Laboratory, Osher Center for Integrative Medicine, Vanderbilt University Medical Center, 3401 West End Ave., Suite 380, Nashville, TN 37203, USA; Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, 2201 Children's Way, Suite 1318, Nashville, TN 37212, USA.
| |
Collapse
|
27
|
Pace-Schott EF, Amole MC, Aue T, Balconi M, Bylsma LM, Critchley H, Demaree HA, Friedman BH, Gooding AEK, Gosseries O, Jovanovic T, Kirby LA, Kozlowska K, Laureys S, Lowe L, Magee K, Marin MF, Merner AR, Robinson JL, Smith RC, Spangler DP, Van Overveld M, VanElzakker MB. Physiological feelings. Neurosci Biobehav Rev 2019; 103:267-304. [DOI: 10.1016/j.neubiorev.2019.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
28
|
Peláez I, Ferrera D, Barjola P, Fernandes R, Mercado F. Subliminal emotional pictures are capable of modulating early cerebral responses to pain in fibromyalgia. PLoS One 2019; 14:e0217909. [PMID: 31166997 PMCID: PMC6550399 DOI: 10.1371/journal.pone.0217909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Pain experience involves a complex relationship between sensory and both emotional and cognitive factors, which appear to be mediated by different neural pathways. Previous evidence has shown that whereas conscious processing of unpleasant stimuli enhances pain perception, the influence of emotions on pain under unaware conditions is much less known. The need to better characterise the relationship between pain processing and emotional factors is crucial for dealing with chronic pain conditions. Therefore, the present study aimed to explore the neural correlates relating to the influence of visual masking emotional stimulation on the processing of painful stimuli in chronic pain patients suffering from fibromyalgia (FM). Twenty FM and 22 healthy control (HC) women participated in the study. The experimental masking paradigm consisted of a rapid succession of two types of stimuli, where a masked picture (neutral, negative or pain-related) was followed by a laser stimulus (painful or not painful). LEP activity was recorded at sixty scalp electrodes. An LEP-amplitude approach was used to quantify the main cerebral waves linked to pain response. ANOVAs indicated that the posterior regions of the P1 component were sensitive to experimental manipulation (p<0.05). Specifically, FM patients showed higher amplitudes to painful stimuli preceded by pain-related pictures compared with painful trials preceded by other emotional pictures. The FM group also showed greater amplitudes than those in the HC group in P2a and P2b waves. In addition to the scalp data, at the neural level the posterior cingulate cortex, lingual gyrus and insular cortex showed higher activation in the FM group than in the HC group. Our findings show an early cerebral modulation of pain (as reflected by the P1) in FM patients, suggesting that only pain-related information, even when it is unconsciously perceived, is capable to enhance exogenous (automatic) attention, increasing the neural activity involved in processing painful stimulation. Further research is needed to fully understand unconscious emotional influences on pain in fibromyalgia.
Collapse
Affiliation(s)
- Irene Peláez
- Unit of Clinical Psychology, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - David Ferrera
- Unit of Clinical Psychology, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Paloma Barjola
- Unit of Clinical Psychology, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Roberto Fernandes
- Unit of Clinical Psychology, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Francisco Mercado
- Unit of Clinical Psychology, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
29
|
|
30
|
Gheza D, Paul K, Pourtois G. Dissociable effects of reward and expectancy during evaluative feedback processing revealed by topographic ERP mapping analysis. Int J Psychophysiol 2018; 132:213-225. [DOI: 10.1016/j.ijpsycho.2017.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
|
31
|
What's what in auditory cortices? Neuroimage 2018; 176:29-40. [DOI: 10.1016/j.neuroimage.2018.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022] Open
|
32
|
Knoth IS, Lajnef T, Rigoulot S, Lacourse K, Vannasing P, Michaud JL, Jacquemont S, Major P, Jerbi K, Lippé S. Auditory repetition suppression alterations in relation to cognitive functioning in fragile X syndrome: a combined EEG and machine learning approach. J Neurodev Disord 2018; 10:4. [PMID: 29378522 PMCID: PMC5789548 DOI: 10.1186/s11689-018-9223-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background Fragile X syndrome (FXS) is a neurodevelopmental genetic disorder causing cognitive and behavioural deficits. Repetition suppression (RS), a learning phenomenon in which stimulus repetitions result in diminished brain activity, has been found to be impaired in FXS. Alterations in RS have been associated with behavioural problems in FXS; however, relations between RS and intellectual functioning have not yet been elucidated. Methods EEG was recorded in 14 FXS participants and 25 neurotypical controls during an auditory habituation paradigm using repeatedly presented pseudowords. Non-phased locked signal energy was compared across presentations and between groups using linear mixed models (LMMs) in order to investigate RS effects across repetitions and brain areas and a possible relation to non-verbal IQ (NVIQ) in FXS. In addition, we explored group differences according to NVIQ and we probed the feasibility of training a support vector machine to predict cognitive functioning levels across FXS participants based on single-trial RS features. Results LMM analyses showed that repetition effects differ between groups (FXS vs. controls) as well as with respect to NVIQ in FXS. When exploring group differences in RS patterns, we found that neurotypical controls revealed the expected pattern of RS between the first and second presentations of a pseudoword. More importantly, while FXS participants in the ≤ 42 NVIQ group showed no RS, the > 42 NVIQ group showed a delayed RS response after several presentations. Concordantly, single-trial estimates of repetition effects over the first four repetitions provided the highest decoding accuracies in the classification between the FXS participant groups. Conclusion Electrophysiological measures of repetition effects provide a non-invasive and unbiased measure of brain responses sensitive to cognitive functioning levels, which may be useful for clinical trials in FXS. Electronic supplementary material The online version of this article (10.1186/s11689-018-9223-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inga Sophia Knoth
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada. .,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Tarek Lajnef
- Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada
| | - Simon Rigoulot
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada
| | - Karine Lacourse
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Phetsamone Vannasing
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Jacques L Michaud
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Faculty of Medicine, Université de Montréal, 2900 boulevard Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Sébastien Jacquemont
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Philippe Major
- Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Karim Jerbi
- Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal (CRIUSMM), 7401 Rue Hochelaga, Montréal, QC, H1N 3M5, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), 4565, chemin Queen-Mary, Montreal, QC, H3W 1W5, Canada
| | - Sarah Lippé
- Neuroscience of Early Development (NED), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Research Center of the CHU Sainte-Justine Mother and Child University Hospital Center, 3175 Chemin Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada.,Department of Psychology, Université de Montréal, 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,Centre de Recherche en Neuropsychologie et Cognition (CERNEC), 90 Avenue Vincent-D'indy, Montreal, QC, H2V 2S9, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boul Mont-Royal, Montreal, QC, H2V 2J2, Canada
| |
Collapse
|
33
|
Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage 2017; 180:577-593. [PMID: 29196270 DOI: 10.1016/j.neuroimage.2017.11.062] [Citation(s) in RCA: 550] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
The present review discusses a well-established method for characterizing resting-state activity of the human brain using multichannel electroencephalography (EEG). This method involves the examination of electrical microstates in the brain, which are defined as successive short time periods during which the configuration of the scalp potential field remains semi-stable, suggesting quasi-simultaneity of activity among the nodes of large-scale networks. A few prototypic microstates, which occur in a repetitive sequence across time, can be reliably identified across participants. Researchers have proposed that these microstates represent the basic building blocks of the chain of spontaneous conscious mental processes, and that their occurrence and temporal dynamics determine the quality of mentation. Several studies have further demonstrated that disturbances of mental processes associated with neurological and psychiatric conditions manifest as changes in the temporal dynamics of specific microstates. Combined EEG-fMRI studies and EEG source imaging studies have indicated that EEG microstates are closely associated with resting-state networks as identified using fMRI. The scale-free properties of the time series of EEG microstates explain why similar networks can be observed at such different time scales. The present review will provide an overview of these EEG microstates, available methods for analysis, the functional interpretations of findings regarding these microstates, and their behavioral and clinical correlates.
Collapse
Affiliation(s)
- Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; Lemanic Biomedical Imaging Centre (CIBM), Lausanne and Geneva, Switzerland.
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| |
Collapse
|
34
|
Exogenous testosterone affects early threat processing in socially anxious and healthy women. Biol Psychol 2017; 129:82-89. [DOI: 10.1016/j.biopsycho.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/14/2023]
|
35
|
Burra N, Kerzel D, George N. Early Left Parietal Activity Elicited by Direct Gaze: A High-Density EEG Study. PLoS One 2016; 11:e0166430. [PMID: 27880776 PMCID: PMC5120811 DOI: 10.1371/journal.pone.0166430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 10/30/2016] [Indexed: 11/18/2022] Open
Abstract
Gaze is one of the most important cues for human communication and social interaction. In particular, gaze contact is the most primary form of social contact and it is thought to capture attention. A very early-differentiated brain response to direct versus averted gaze has been hypothesized. Here, we used high-density electroencephalography to test this hypothesis. Topographical analysis allowed us to uncover a very early topographic modulation (40-80 ms) of event-related responses to faces with direct as compared to averted gaze. This modulation was obtained only in the condition where intact broadband faces-as opposed to high-pass or low-pas filtered faces-were presented. Source estimation indicated that this early modulation involved the posterior parietal region, encompassing the left precuneus and inferior parietal lobule. This supports the idea that it reflected an early orienting response to direct versus averted gaze. Accordingly, in a follow-up behavioural experiment, we found faster response times to the direct gaze than to the averted gaze broadband faces. In addition, classical evoked potential analysis showed that the N170 peak amplitude was larger for averted gaze than for direct gaze. Taken together, these results suggest that direct gaze may be detected at a very early processing stage, involving a parallel route to the ventral occipito-temporal route of face perceptual analysis.
Collapse
Affiliation(s)
- Nicolas Burra
- Institut du Cerveau et de la Moelle Epinière, ICM, Social and Affective Neuroscience (SAN) Laboratory and Centre MEG-EEG, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1127 and Centre MEG-EEG, Paris, France
- CNRS, UMR 7225 and Centre MEG-EEG, Paris, France
- Inserm, U 1127 and Centre MEG-EEG, Paris, France
- Faculté de Psychologie et des Sciences de l’Education, Université de Genève, Geneva, Switzerland
- * E-mail: (NB)
| | - Dirk Kerzel
- Faculté de Psychologie et des Sciences de l’Education, Université de Genève, Geneva, Switzerland
| | - Nathalie George
- Institut du Cerveau et de la Moelle Epinière, ICM, Social and Affective Neuroscience (SAN) Laboratory and Centre MEG-EEG, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1127 and Centre MEG-EEG, Paris, France
- CNRS, UMR 7225 and Centre MEG-EEG, Paris, France
- Inserm, U 1127 and Centre MEG-EEG, Paris, France
- ENS, Centre MEG-EEG, Paris, France
| |
Collapse
|
36
|
Electrophysiological correlates of emotional face processing after mild traumatic brain injury in preschool children. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 17:124-142. [DOI: 10.3758/s13415-016-0467-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Modulatory effects of happy mood on performance monitoring: Insights from error-related brain potentials. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 17:106-123. [DOI: 10.3758/s13415-016-0466-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Berchio C, Rihs TA, Piguet C, Dayer AG, Aubry JM, Michel CM. Early averted gaze processing in the right Fusiform Gyrus: An EEG source imaging study. Biol Psychol 2016; 119:156-70. [DOI: 10.1016/j.biopsycho.2016.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022]
|
39
|
Michalopoulos K, Zervakis M, Deiber MP, Bourbakis N. Classification of EEG Single Trial Microstates Using Local Global Graphs and Discrete Hidden Markov Models. Int J Neural Syst 2016; 26:1650036. [DOI: 10.1142/s0129065716500362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a novel synergistic methodology for the spatio-temporal analysis of single Electroencephalogram (EEG) trials. This new methodology is based on the novel synergy of Local Global Graph (LG graph) to characterize define the structural features of the EEG topography as a global descriptor for robust comparison of dominant topographies (microstates) and Hidden Markov Models (HMM) to model the topographic sequence in a unique way. In particular, the LG graph descriptor defines similarity and distance measures that can be successfully used for the difficult comparison of the extracted LG graphs in the presence of noise. In addition, hidden states represent periods of stationary distribution of topographies that constitute the equivalent of the microstates in the model. The transitions between the different microstates and the formed syntactic patterns can reveal differences in the processing of the input stimulus between different pathologies. We train the HMM model to learn the transitions between the different microstates and express the syntactic patterns that appear in the single trials in a compact and efficient way. We applied this methodology in single trials consisting of normal subjects and patients with Progressive Mild Cognitive Impairment (PMCI) to discriminate these two groups. The classification results show that this approach is capable to efficiently discriminate between control and Progressive MCI single trials. Results indicate that HMMs provide physiologically meaningful results that can be used in the syntactic analysis of Event Related Potentials.
Collapse
Affiliation(s)
- Kostas Michalopoulos
- Center of Assistive Research Technologies, Wright State University, Dayton OH 45435, USA
| | | | - Marie-Pierre Deiber
- Faculty of Medicine, INSERM Unit 1039, La Tronche, France
- Biomarkers of Vulnerability Unit, Dep. of Psychiatry, University Hospitals, Geneva, Switzerland
| | - Nikolaos Bourbakis
- Center of Assistive Research Technologies, Wright State University, Dayton OH 45435, USA
| |
Collapse
|
40
|
Kayser J, Tenke CE, Abraham KS, Alschuler DM, Alvarenga JE, Skipper J, Warner V, Bruder GE, Weissman MM. Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal consecutive stages of motivated attention. Neuroimage 2016; 142:337-350. [PMID: 27263509 DOI: 10.1016/j.neuroimage.2016.05.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/21/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022] Open
Abstract
Event-related potential (ERP) studies have provided evidence for an allocation of attentional resources to enhance perceptual processing of motivationally salient stimuli. Emotional modulation affects several consecutive components associated with stages of affective-cognitive processing, beginning as early as 100-200ms after stimulus onset. In agreement with the notion that the right parietotemporal region is critically involved during the perception of arousing affective stimuli, some ERP studies have reported asymmetric emotional ERP effects. However, it is difficult to separate emotional from non-emotional effects because differences in stimulus content unrelated to affective salience or task demands may also be associated with lateralized function or promote cognitive processing. Other concerns pertain to the operational definition and statistical independence of ERP component measures, their dependence on an EEG reference, and spatial smearing due to volume conduction, all of which impede the identification of distinct scalp activation patterns associated with affective processing. Building on prior research using a visual half-field paradigm with highly controlled emotional stimuli (pictures of cosmetic surgery patients showing disordered [negative] or healed [neutral] facial areas before or after treatment), 72-channel ERPs recorded from 152 individuals (ages 13-68years; 81 female) were transformed into reference-free current source density (CSD) waveforms and submitted to temporal principal components analysis (PCA) to identify their underlying neuronal generator patterns. Using both nonparametric randomization tests and repeated measures ANOVA, robust effects of emotional content were found over parietooccipital regions for CSD factors corresponding to N2 sink (212ms peak latency), P3 source (385ms) and a late centroparietal source (630ms), all indicative of greater positivity for negative than neutral stimuli. For the N2 sink, emotional effects were right-lateralized and modulated by hemifield, with larger amplitude and asymmetry for left hemifield (right hemisphere) presentations. For all three factors, more positive amplitudes at parietooccipital sites were associated with increased ratings of negative valence and greater arousal. Distributed inverse solutions of the CSD-PCA-based emotional effects implicated a sequence of maximal activations in right occipitotemporal cortex, bilateral posterior cingulate cortex, and bilateral inferior temporal cortex. These findings are consistent with hierarchical activations of the ventral visual pathway reflecting subsequent processing stages in response to motivationally salient stimuli.
Collapse
Affiliation(s)
- Jürgen Kayser
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, United States; Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States.
| | - Craig E Tenke
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, United States; Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Karen S Abraham
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Daniel M Alschuler
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Jorge E Alvarenga
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Jamie Skipper
- Division of Epidemiology, New York State Psychiatric Institute, New York, NY, United States
| | - Virginia Warner
- Division of Epidemiology, New York State Psychiatric Institute, New York, NY, United States; Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Gerard E Bruder
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, United States; Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States; Division of Epidemiology, New York State Psychiatric Institute, New York, NY, United States; Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
41
|
Schettino A, Keil A, Porcu E, Müller MM. Shedding light on emotional perception: Interaction of brightness and semantic content in extrastriate visual cortex. Neuroimage 2016; 133:341-353. [DOI: 10.1016/j.neuroimage.2016.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 02/15/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022] Open
|
42
|
Paul S, Kathmann N, Riesel A. The costs of distraction: The effect of distraction during repeated picture processing on the LPP. Biol Psychol 2016; 117:225-234. [DOI: 10.1016/j.biopsycho.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
|
43
|
Walentowska W, Moors A, Paul K, Pourtois G. Goal relevance influences performance monitoring at the level of the FRN and P3 components. Psychophysiology 2016; 53:1020-33. [PMID: 27091565 DOI: 10.1111/psyp.12651] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
The feedback-related negativity (FRN) provides a reliable ERP marker of performance monitoring (PM). It is usually larger for negative compared to positive feedback, and for unexpected relative to expected feedback. In two experiments, we assessed whether these effects could be modulated by goal relevance, defined as feedback informativeness (reliability) and/or impact on a person's goals. EEG (64-channel) was recorded while 30 participants (in each experiment) performed a speeded go/no-go task across blocks in which the feedback on task performance was deemed either relevant or not. At the ERP level, the FRN component was larger for (frequent) negative compared to (deviant) positive feedback exclusively when the feedback was relevant (Experiment 1). When the probability of positive and negative feedback was balanced (Experiment 2), this valence-driven FRN effect was absent. However, across these two experiments, the FRN was always larger for irrelevant than relevant feedback. Moreover, the subsequent P300 component was larger for feedback in the relevant than the irrelevant blocks. This effect was valence unspecific in Experiment 1, while in Experiment 2 larger P3 amplitudes were recorded for negative than positive (relevant) feedback. Across the two experiments, a larger correct-related negativity in the irrelevant than relevant context was also observed, suggesting that PM is flexible. These ERP findings indicate that goal relevance influences feedback (and response) processing during PM, with two nonoverlapping neurophysiological effects: It gates reward prediction error brain mechanisms (FRN effect), before enhancing subsequent motivational processes (P300 effect).
Collapse
Affiliation(s)
- Wioleta Walentowska
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Kraków, Poland.,Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Agnes Moors
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.,Research Group of Quantitative Psychology and Individual Differences, Center for Social and Cultural Psychology, KU Leuven, Leuven, Belgium
| | - Katharina Paul
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Gilles Pourtois
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Anken J, Knebel JF, Crottaz-Herbette S, Matusz PJ, Lefebvre J, Murray MM. Cue-dependent circuits for illusory contours in humans. Neuroimage 2016; 129:335-344. [DOI: 10.1016/j.neuroimage.2016.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/22/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022] Open
|
45
|
Pirmoradi M, Jemel B, Gallagher A, Tremblay J, D’Hondt F, Nguyen DK, Béland R, Lassonde M. Verbal memory and verbal fluency tasks used for language localization and lateralization during magnetoencephalography. Epilepsy Res 2016; 119:1-9. [DOI: 10.1016/j.eplepsyres.2015.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 11/27/2022]
|
46
|
Matusz PJ, Thelen A, Amrein S, Geiser E, Anken J, Murray MM. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories. Eur J Neurosci 2015; 41:699-708. [PMID: 25728186 DOI: 10.1111/ejn.12804] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 11/28/2022]
Abstract
Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time.
Collapse
Affiliation(s)
- Pawel J Matusz
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Clinical Neurosciences and Department of Radiology, Vaudois University Hospital Center and University of Lausanne, Lausanne, Switzerland; Attention, Behaviour, and Cognitive Development Group, Department of Experimental Psychology, University of Oxford, Oxford, UK; University of Social Sciences and Humanities, Faculty in Wroclaw, Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
47
|
Sarmiento BR, Matusz PJ, Sanabria D, Murray MM. Contextual factors multiplex to control multisensory processes. Hum Brain Mapp 2015; 37:273-88. [PMID: 26466522 DOI: 10.1002/hbm.23030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
This study analyzed high-density event-related potentials (ERPs) within an electrical neuroimaging framework to provide insights regarding the interaction between multisensory processes and stimulus probabilities. Specifically, we identified the spatiotemporal brain mechanisms by which the proportion of temporally congruent and task-irrelevant auditory information influences stimulus processing during a visual duration discrimination task. The spatial position (top/bottom) of the visual stimulus was indicative of how frequently the visual and auditory stimuli would be congruent in their duration (i.e., context of congruence). Stronger influences of irrelevant sound were observed when contexts associated with a high proportion of auditory-visual congruence repeated and also when contexts associated with a low proportion of congruence switched. Context of congruence and context transition resulted in weaker brain responses at 228 to 257 ms poststimulus to conditions giving rise to larger behavioral cross-modal interactions. Importantly, a control oddball task revealed that both congruent and incongruent audiovisual stimuli triggered equivalent non-linear multisensory interactions when congruence was not a relevant dimension. Collectively, these results are well explained by statistical learning, which links a particular context (here: a spatial location) with a certain level of top-down attentional control that further modulates cross-modal interactions based on whether a particular context repeated or changed. The current findings shed new light on the importance of context-based control over multisensory processing, whose influences multiplex across finer and broader time scales.
Collapse
Affiliation(s)
- Beatriz R Sarmiento
- Brain, Mind and Behavior Research Center, Universidad De Granada, Spain.,Departamento De Psicología Experimental, Universidad De Granada, Spain
| | - Pawel J Matusz
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology and Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.,Faculty in Wroclaw, University of Social Sciences and Humanities, Wroclaw, Poland.,Department of Experimental Psychology, Attention, Brain and Cognitive Development Group, University of Oxford, United Kingdom
| | - Daniel Sanabria
- Brain, Mind and Behavior Research Center, Universidad De Granada, Spain.,Departamento De Psicología Experimental, Universidad De Granada, Spain
| | - Micah M Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology and Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.,Electroencephalography Brain Mapping Core, Centre for Biomedical Imaging (CIBM), Lausanne and Geneva, Switzerland.,Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
48
|
Vanlessen N, De Raedt R, Mueller SC, Rossi V, Pourtois G. Happy and less inhibited? Effects of positive mood on inhibitory control during an antisaccade task revealed using topographic evoked potential mapping. Biol Psychol 2015. [DOI: 10.1016/j.biopsycho.2015.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Sebastiani L, Castellani E, Gemignani A, Artoni F, Menicucci D. Inefficient stimulus processing at encoding affects formation of high-order general representation: A study on cross-modal word-stem completion task. Brain Res 2015; 1622:386-96. [PMID: 26168892 DOI: 10.1016/j.brainres.2015.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Priming is an implicit memory effect in which previous exposure to one stimulus influences the response to another stimulus. The main characteristic of priming is that it occurs without awareness. Priming takes place also when the physical attributes of previously studied and test stimuli do not match; in fact, it greatly refers to a general stimulus representation activated at encoding independently of the sensory modality engaged. Our aim was to evaluate whether, in a cross-modal word-stem completion task, negative priming scores could depend on inefficient word processing at study and therefore on an altered stimulus representation. Words were presented in the auditory modality, and word-stems to be completed in the visual modality. At study, we recorded auditory ERPs, and compared the P300 (attention/memory) and N400 (meaning processing) of individuals with positive and negative priming. Besides classical averaging-based ERPs analysis, we used an ICA-based method (ErpICASSO) to separate the potentials related to different processes contributing to ERPs. Classical analysis yielded significant difference between the two waves across the whole scalp. ErpICASSO allowed separating the novelty-related P3a and the top-down control-related P3b sub-components of P300. Specifically, in the component C3, the positive deflection identifiable as P3b, was significantly greater in the positive than in the negative priming group, while the late negative deflection corresponding to the parietal N400, was reduced in the positive priming group. In conclusion, inadequacy of specific processes at encoding, such as attention and/or meaning retrieval, could generate weak semantic representations, making words less accessible in subsequent implicit retrieval.
Collapse
Affiliation(s)
- Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Eleonora Castellani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, Pisa, Italy; Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy; Extreme Centre, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fiorenzo Artoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Danilo Menicucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
50
|
Jia H, Peng W, Hu L. A novel approach to identify time-frequency oscillatory features in electrocortical signals. J Neurosci Methods 2015; 253:18-27. [PMID: 26057113 DOI: 10.1016/j.jneumeth.2015.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sensory, motor, and cognitive events could not only evoke phase-locked event-related potentials in ongoing electrocortical signals, but also induce non-phase-locked changes of oscillatory activities. These oscillatory activities, whose functional significances differ greatly according to their temporal, spectral, and spatial characteristics, are commonly detected when single-trial signals are transformed into time-frequency distributions (TFDs). Parameters characterizing oscillatory activities are normally measured from multi-channel TFDs within a time-frequency region-of-interest (TF-ROI), pre-defined using a hypothesis-driven or data-driven approach. However, both approaches could ignore the possibility that the pre-defined TF-ROI contains several spatially/functionally distinct oscillatory activities. NEW METHOD We proposed a novel approach based on topographic segmentation analysis to optimally and automatically identify detailed time-frequency features. This approach, which could effectively exploit the spatial information of oscillatory activities, has been validated in both simulation and real electrocortical studies. RESULTS Simulation study showed that the proposed approach could successfully identify noise-contaminated time-frequency features if their signal-to-noise ratio was relatively high. Real electrocortical study demonstrated that several time-frequency features with distinct scalp distributions and evident neurophysiological functions were identified when the same analysis was applied on stimulus-elicited TFDs. COMPARISON WITH EXISTING METHODS Unlike traditional approaches, the proposed approach could provide an optimal identification of detailed time-frequency features by making use of their distinct spatial distributions. CONCLUSIONS Our findings illustrated the validity and usefulness of the presented approach in isolating detailed time-frequency features, thus having wide applications in cognitive neuroscience to provide a precise assessment of the functional significance of oscillatory activities.
Collapse
Affiliation(s)
- Huibin Jia
- Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Weiwei Peng
- Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of Psychology, Southwest University, Chongqing 400715, China.
| | - Li Hu
- Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|