1
|
Todd J, Yeark M, Auriac P, Paton B, Winkler I. Order effects in task-free learning: Tuning to information-carrying sound features. Cortex 2024; 172:114-124. [PMID: 38295554 DOI: 10.1016/j.cortex.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 02/02/2024]
Abstract
Event-related potentials (ERPs) acquired during task-free passive listening can be used to study how sensitivity to common pattern repetitions and rare deviations changes over time. These changes are purported to represent the formation and accumulation of precision in internal models that anticipate future states based on probabilistic and/or statistical learning. This study features an unexpected finding; a strong order-dependence in the speed with which deviant responses are elicited that anchors to first learning. Participants heard four repetitions of a sequence in which an equal number of short (30 msec) and long (60 msec) pure tones were arranged into four blocks in which one was common (the standard, p = .875) and the other rare (the deviant, p = .125) with probabilities alternating across blocks. Some participants always heard the sequences commencing with the 30 msec deviant block, and others always with the 60 msec deviant block first. A deviance-detection component known as mismatch negativity (MMN) was extracted from responses and the point in time at which MMN reached maximum amplitude was used as the dependent variable. The results show that if participants heard sequences commencing with the 60 msec deviant block first, the MMN to the 60 msec and 30 msec deviant peaked at an equivalent latency. However, if participants heard sequences commencing with the 30 msec deviant first, the MMN peaked earlier to the 60 msec deviant. Furthermore, while the 30 msec MMN latency did not differ as a function of sequence composition, the 60 msec MMN latency did and was earlier when the sequences began with a 30 msec deviant first. By examining MMN latency effects as a function of age and hearing level it was apparent that the differentiation in 30 msec and 60 msec MMN latency expands with older age and raised hearing threshold due to prolongation of the time taken for the 30 msec MMN to peak. The observations are discussed with reference to how the initial sound composition may tune the auditory system to be more sensitive to different cues (i.e., offset responses vs perceived loudness). The order-effect demonstrates a remarkably powerful anchoring to first learning that might reflect initial tuning to the most valuable discriminating feature within a given listening environment, an effect that defies explanation based on statistical information alone.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia.
| | - Mattsen Yeark
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia.
| | - Paul Auriac
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia.
| | - Bryan Paton
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia.
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
2
|
Todd J, Salisbury D, Michie PT. Why mismatch negativity continues to hold potential in probing altered brain function in schizophrenia. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e144. [PMID: 38867817 PMCID: PMC11114358 DOI: 10.1002/pcn5.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
The brain potential known as mismatch negativity (MMN) is one of the most studied indices of altered brain function in schizophrenia. This review looks at what has been learned about MMN in schizophrenia over the last three decades and why the level of interest and activity in this field of research remains strong. A diligent consideration of available evidence suggests that MMN can serve as a biomarker in schizophrenia, but perhaps not the kind of biomarker that early research supposed. This review concludes that MMN measurement is likely to be most useful as a monitoring and response biomarker enabling tracking of an underlying pathology and efficacy of interventions, respectively. The role of, and challenges presented by, pre-clinical models is discussed as well as the merits of different methodologies that can be brought to bear in pursuing a deeper understanding of pathophysiology that might explain smaller MMN in schizophrenia.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Dean Salisbury
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Patricia T. Michie
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| |
Collapse
|
3
|
Bornkessel-Schlesewsky I, Sharrad I, Howlett CA, Alday PM, Corcoran AW, Bellan V, Wilkinson E, Kliegl R, Lewis RL, Small SL, Schlesewsky M. Rapid adaptation of predictive models during language comprehension: Aperiodic EEG slope, individual alpha frequency and idea density modulate individual differences in real-time model updating. Front Psychol 2022; 13:817516. [PMID: 36092106 PMCID: PMC9461998 DOI: 10.3389/fpsyg.2022.817516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Predictive coding provides a compelling, unified theory of neural information processing, including for language. However, there is insufficient understanding of how predictive models adapt to changing contextual and environmental demands and the extent to which such adaptive processes differ between individuals. Here, we used electroencephalography (EEG) to track prediction error responses during a naturalistic language processing paradigm. In Experiment 1, 45 native speakers of English listened to a series of short passages. Via a speaker manipulation, we introduced changing intra-experimental adjective order probabilities for two-adjective noun phrases embedded within the passages and investigated whether prediction error responses adapt to reflect these intra-experimental predictive contingencies. To this end, we calculated a novel measure of speaker-based, intra-experimental surprisal (“speaker-based surprisal”) as defined on a trial-by-trial basis and by clustering together adjectives with a similar meaning. N400 amplitude at the position of the critical second adjective was used as an outcome measure of prediction error. Results showed that N400 responses attuned to speaker-based surprisal over the course of the experiment, thus indicating that listeners rapidly adapt their predictive models to reflect local environmental contingencies (here: the probability of one type of adjective following another when uttered by a particular speaker). Strikingly, this occurs in spite of the wealth of prior linguistic experience that participants bring to the laboratory. Model adaptation effects were strongest for participants with a steep aperiodic (1/f) slope in resting EEG and low individual alpha frequency (IAF), with idea density (ID) showing a more complex pattern. These results were replicated in a separate sample of 40 participants in Experiment 2, which employed a highly similar design to Experiment 1. Overall, our results suggest that individuals with a steep aperiodic slope adapt their predictive models most strongly to context-specific probabilistic information. Steep aperiodic slope is thought to reflect low neural noise, which in turn may be associated with higher neural gain control and better cognitive control. Individuals with a steep aperiodic slope may thus be able to more effectively and dynamically reconfigure their prediction-related neural networks to meet current task demands. We conclude that predictive mechanisms in language are highly malleable and dynamic, reflecting both the affordances of the present environment as well as intrinsic information processing capabilities of the individual.
Collapse
Affiliation(s)
- Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, SA, Australia
- *Correspondence: Ina Bornkessel-Schlesewsky
| | - Isabella Sharrad
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, SA, Australia
| | - Caitlin A. Howlett
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, SA, Australia
| | | | - Andrew W. Corcoran
- Cognition and Philosophy Laboratory, Monash University, Melbourne, VIC, Australia
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, VIC, Australia
| | - Valeria Bellan
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, SA, Australia
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, SA, Australia
| | - Erica Wilkinson
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, SA, Australia
| | - Reinhold Kliegl
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Richard L. Lewis
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
- Weinberg Institute for Cognitive Science, University of Michigan, Ann Arbor, MI, United States
| | - Steven L. Small
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
4
|
Relevance to the higher order structure may govern auditory statistical learning in neonates. Sci Rep 2022; 12:5905. [PMID: 35393525 PMCID: PMC8989996 DOI: 10.1038/s41598-022-09994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022] Open
Abstract
Hearing is one of the earliest senses to develop and is quite mature by birth. Contemporary theories assume that regularities in sound are exploited by the brain to create internal models of the environment. Through statistical learning, internal models extrapolate from patterns to predictions about subsequent experience. In adults, altered brain responses to sound enable us to infer the existence and properties of these models. In this study, brain potentials were used to determine whether newborns exhibit context-dependent modulations of a brain response that can be used to infer the existence and properties of internal models. Results are indicative of significant context-dependence in the responsivity to sound in newborns. When common and rare sounds continue in stable probabilities over a very long period, neonates respond to all sounds equivalently (no differentiation). However, when the same common and rare sounds at the same probabilities alternate over time, the neonate responses show clear differentiations. The context-dependence is consistent with the possibility that the neonate brain produces more precise internal models that discriminate between contexts when there is an emergent structure to be discovered but appears to adopt broader models when discrimination delivers little or no additional information about the environment.
Collapse
|
5
|
Yeark M, Paton B, Brown A, Raal A, Todd J. Primacy biases endure the addition of frequency variability. Neuropsychologia 2022; 171:108233. [DOI: 10.1016/j.neuropsychologia.2022.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
|
6
|
Todd J, Yeark MD, Paton B, Jermyn A, Winkler I. Shorter Contextual Timescale Rather Than Memory Deficit in Aging. Cereb Cortex 2021; 32:2412-2423. [PMID: 34564713 DOI: 10.1093/cercor/bhab344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Many aspects of cognitive ability and brain function that change as we age look like deficits on account of measurable differences in comparison to younger adult groups. One such difference occurs in auditory sensory responses that index perceptual learning. Meta-analytic findings show reliable age-related differences in auditory responses to repetitive patterns of sound and to rare violations of those patterns, variously attributed to deficits in auditory sensory memory and inhibition. Here, we determine whether proposed deficits would render older adults less prone to primacy effects, robustly observed in young adults, which present as a tendency for first learning to have a disproportionate influence over later perceptual inference. The results confirm this reduced sensitivity to primacy effects but do not support impairment in auditory sensory memory as the origin of this difference. Instead, the aging brain produces data consistent with shorter timescales of contextual reference. In conclusion, age-related differences observed previously for perceptual inference appear highly context-specific necessitating reconsideration of whether and to what function the notion of deficit should be attributed, and even whether the notion of deficit is appropriate at all.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW 2308, USA
| | - Mattsen D Yeark
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW 2308, USA
| | - Bryan Paton
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW 2308, USA
| | - Alexandra Jermyn
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW 2308, USA
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| |
Collapse
|
7
|
Yu YH, Shafer VL. Neural Representation of the English Vowel Feature [High]: Evidence From /ε/ vs. /ɪ/. Front Hum Neurosci 2021; 15:629517. [PMID: 33897394 PMCID: PMC8063109 DOI: 10.3389/fnhum.2021.629517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/08/2021] [Indexed: 12/03/2022] Open
Abstract
Many studies have observed modulation of the amplitude of the neural index mismatch negativity (MMN) related to which member of a phoneme contrast [phoneme A, phoneme B] serves as the frequent (standard) and which serves as the infrequent (deviant) stimulus (i.e., AAAB vs. BBBA) in an oddball paradigm. Explanations for this amplitude modulation range from acoustic to linguistic factors. We tested whether exchanging the role of the mid vowel /ε/ vs. high vowel /ɪ/ of English modulated MMN amplitude and whether the pattern of modulation was compatible with an underspecification account, in which the underspecified height values are [−high] and [−low]. MMN was larger for /ε/ as the deviant, but only when compared across conditions to itself as the standard. For the within-condition comparison, MMN was larger to /ɪ/ deviant minus /ε/ standard than to the reverse. A condition order effect was also observed. MMN amplitude was smaller to the deviant stimulus if it had previously served as the standard. In addition, the amplitudes of late discriminative negativity (LDN) showed similar asymmetry. LDN was larger for deviant /ε/ than deviant /ɪ/ when compared to themselves as the standard. These findings were compatible with an underspecification account, but also with other accounts, such as the Natural Referent Vowel model and a prototype model; we also suggest that non-linguistic factors need to be carefully considered as additional sources of speech processing asymmetries.
Collapse
Affiliation(s)
- Yan H Yu
- Department of Communication Sciences and Disorders, St. John's University, Queens, NY, United States
| | - Valerie L Shafer
- The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
8
|
Murphy N, Lijffijt M, Ramakrishnan N, Vo-Le B, Vo-Le B, Iqbal S, Iqbal T, O'Brien B, Smith MA, Swann AC, Mathew SJ. Does mismatch negativity have utility for NMDA receptor drug development in depression? ACTA ACUST UNITED AC 2021; 44:61-73. [PMID: 33825765 PMCID: PMC8827377 DOI: 10.1590/1516-4446-2020-1685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
CLINICAL TRIAL REGISTRATION Rapid antidepressant effects associated with ketamine have shifted the landscape for the development of therapeutics to treat major depressive disorder (MDD) from a monoaminergic to glutamatergic model. Treatment with ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, may be effective, but has many non-glutamatergic targets, and clinical and logistical problems are potential challenges. These factors underscore the importance of manipulations of binding mechanics to produce antidepressant effects without concomitant clinical side effects. This will require identification of efficient biomarkers to monitor target engagement. The mismatch negativity (MMN) is a widely used electrophysiological signature linked to the activity of NMDA receptors (NMDAR) in humans and animals and validated in pre-clinical and clinical studies of ketamine. In this review, we explore the flexibility of the MMN and its capabilities for reliable use in drug development for NMDAR antagonists in MDD. We supplement this with findings from our own research with three distinct NMDAR antagonists. The research described illustrates that there are important distinctions between the mechanisms of NMDAR antagonism, which are further crystallized when considering the paradigm used to study the MMN. We conclude that the lack of standardized methodology currently prevents MMN from being ready for common use in drug discovery. This manuscript describes data collected from the following National Institutes of Health (NIH) and Veterans Affairs (VA) studies: AV-101, NCT03583554; lanicemine, NCT03166501; ketamine, NCT02556606.
Collapse
Affiliation(s)
- Nicholas Murphy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA.,The Menninger Clinic, Houston, TX, USA
| | - Marijn Lijffijt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Nithya Ramakrishnan
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Bylinda Vo-Le
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Brittany Vo-Le
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Sidra Iqbal
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Tabish Iqbal
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Brittany O'Brien
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Mark A Smith
- VistaGen Therapeutics, Inc., South San Francisco, CA, USA.,Medical College of Georgia, Augusta, GA, USA
| | - Alan C Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA.,The Menninger Clinic, Houston, TX, USA
| |
Collapse
|
9
|
Jalewa J, Todd J, Michie PT, Hodgson DM, Harms L. Do rat auditory event related potentials exhibit human mismatch negativity attributes related to predictive coding? Hear Res 2020; 399:107992. [PMID: 32571607 DOI: 10.1016/j.heares.2020.107992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
Rodent models play a significant role in understanding disease mechanisms and the screening of new treatments. With regard to psychiatric disorders such as schizophrenia, however, it is difficult to replicate the human symptoms in rodents because these symptoms are often either 'uniquely human' or are only conveyed via self-report. There is a growing interest in rodent mismatch responses (MMRs) as a translatable 'biomarker' for disorders such as schizophrenia. In this review, we will summarize the attributes of human MMN, and discuss the scope of exploring the attributes of human MMN in rodents. Here, we examine how reliably MMRs that are measured in rats mimic human attributes, and present original data examining whether manipulations of stimulus conditions known to modulate human MMN, do the same for rat MMRs. Using surgically-implanted epidural electroencephalographic electrodes and wireless telemetry in freely-moving rats, we observed human-like modulations of MMRs, namely that larger MMRs were elicited to unexpected (deviant) stimuli that a) had a larger change in pitch compared to the expected (standard) stimulus, b) were less frequently presented (lower probability), and c) had no jitter (stable stimulus onset asynchrony) compared to high jitter. Overall, these findings contribute to the mounting evidence for rat MMRs as a good analogue of human MMN, bolstering the development of a novel approach in future to validate the preclinical models based on a translatable biomarker, MMN.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Patricia T Michie
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Deborah M Hodgson
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lauren Harms
- Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
10
|
Todd J, Frost JD, Yeark M, Paton B. Context is everything: How context shapes modulations of responses to unattended sound. Hear Res 2020; 399:107975. [PMID: 32370880 DOI: 10.1016/j.heares.2020.107975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
The concept of perceptual inferences taking place over multiple timescales simultaneously raises questions about how the brain can balance the demands of remaining sensitive to local rarity while utilising more global longer-term predictability to modulate cortical responses. In the present study auditory evoked potentials to four presentations of the same sound sequence containing predictable structure on a local (milliseconds to seconds) and more global (many minutes) timescales were recorded. The results from 33 participants are used to demonstrate that predictions about both local (internal predictive models) and global (meta-models that define expected precisions associated with familiar internal model states) regularities are formed. The study exposes more local context-based modulations of the P1 but more global order-based modulations of the auditory evoked N2 components. The results are discussed in terms of theoretical links advocating that uncertainty at multiple timescales could lead to differential component modulations, and the importance of considering the broader learning context in auditory evoked potential studies.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW, Australia, 2308.
| | - Jade D Frost
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW, Australia, 2308
| | - Mattsen Yeark
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW, Australia, 2308
| | - Bryan Paton
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW, Australia, 2308
| |
Collapse
|
11
|
Todd J, Frost J, Fitzgerald K, Winkler I. Setting precedent: Initial feature variability affects the subsequent precision of regularly varying sound contexts. Psychophysiology 2020; 57:e13528. [DOI: 10.1111/psyp.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Juanita Todd
- School of Psychology University of Newcastle Callaghan NSW Australia
| | - Jade Frost
- School of Psychology University of Newcastle Callaghan NSW Australia
| | | | - István Winkler
- Institute of Cognitive Neuroscience and Psychology Research Centre for Natural Sciences Budapest Hungary
| |
Collapse
|
12
|
Bornkessel-Schlesewsky I, Roehm D, Mailhammer R, Schlesewsky M. Language Processing as a Precursor to Language Change: Evidence From Icelandic. Front Psychol 2020; 10:3013. [PMID: 32010032 PMCID: PMC6978737 DOI: 10.3389/fpsyg.2019.03013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/19/2019] [Indexed: 11/30/2022] Open
Abstract
One of the main characteristics of human languages is that they are subject to fundamental changes over time. However, because of the long transitional periods involved, the internal dynamics of such changes are typically inaccessible. Here, we present a new approach to examining language change via its connection to language comprehension. By means of an EEG experiment on Icelandic, a prominent current example of a language in transition, we show that the neurophysiological responses of native speakers already reflect projected changes that are not yet apparent in their overt behavior. Neurocognitive measures thus offer a means of predicting, rather than only retracing, language change.
Collapse
Affiliation(s)
- Ina Bornkessel-Schlesewsky
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia.,School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Dietmar Roehm
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.,Department of Linguistics, University of Salzburg, Salzburg, Austria
| | - Robert Mailhammer
- School of Humanities and Communication Arts, Western Sydney University, Penrith, NSW, Australia.,The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, NSW, Australia
| | - Matthias Schlesewsky
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia.,School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
13
|
Abstract
Evoked potentials provide valuable insight into brain processes that are integral to our ability to interact effectively and efficiently in the world. The mismatch negativity (MMN) component of the evoked potential has proven highly informative on the ways in which sensitivity to regularity contributes to perception and cognition. This review offers a compendium of research on MMN with a view to scaffolding an appreciation for its use as a tool to explore the way regularities contribute to predictions about the sensory environment over many timescales. In compiling this work, interest in MMN as an index of sensory encoding and memory are addressed, as well as attention. Perspectives on the possible underlying computational processes are reviewed as well as recent observations that invite consideration of how MMN relates to how we learn, what we learn, and why.
Collapse
Affiliation(s)
- Kaitlin Fitzgerald
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
| | - Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
14
|
Kompus K, Volehaugen V, Todd J, Westerhausen R. Hierarchical modulation of auditory prediction error signaling is independent of attention. Cogn Neurosci 2019; 11:132-142. [PMID: 31369352 DOI: 10.1080/17588928.2019.1648404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The auditory system is tuned to detect rhythmic regularities in the environment which can occur on different timescales. Event-related potentials such as mismatch negativity (MMN) and P3b are thought to index local and global deviance, respectively. However, it is not clear how these hierarchical levels interact and to what extent attention modulates this interaction. In this EEG study with 17 healthy young adults, we used a hierarchical oddball paradigm with local (sequence-level) and global (block-level) violations in attended and unattended conditions. Amplitude of N2 and P3b were analyzed in a 2*2*2 factorial model (local status, global status, attention condition). We found a significant interaction between the local and global status on the N2 amplitude, while there was no significant three-way interaction with attention, together demonstrating that lower-level prediction error is modulated by detection of higher-order regularity but expressed independently of attention. By contrast, higher-level prediction error, indexed by P3b, was sensitive to global regularity violations if the auditory stream was attended. The results demonstrate the capacity of our auditory perception to preattentively resolve conflicts between different levels of predictive hierarchy even across longer time intervals as indexed by MMN modulation, while P3b represents a different, attention-dependent system.
Collapse
Affiliation(s)
- Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen , Bergen, Norway.,Institute of Psychology, University of Tartu , Tartu, Estonia
| | - Vegard Volehaugen
- Department of Biological and Medical Psychology, University of Bergen , Bergen, Norway
| | - Juanita Todd
- School of Psychology, University of Newcastle , Newcastle, Australia
| | - René Westerhausen
- Department of Biological and Medical Psychology, University of Bergen , Bergen, Norway.,Department of Psychology, University of Oslo , Oslo, Norway
| |
Collapse
|
15
|
Bornkessel-Schlesewsky I, Schlesewsky M. Toward a Neurobiologically Plausible Model of Language-Related, Negative Event-Related Potentials. Front Psychol 2019; 10:298. [PMID: 30846950 PMCID: PMC6393377 DOI: 10.3389/fpsyg.2019.00298] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Language-related event-related potential (ERP) components such as the N400 have traditionally been associated with linguistic or cognitive functional interpretations. By contrast, it has been considerably more difficult to relate these components to neurobiologically grounded accounts of language. Here, we propose a theoretical framework based on a predictive coding architecture, within which negative language-related ERP components such as the N400 can be accounted for in a neurobiologically plausible manner. Specifically, we posit that the amplitude of negative language-related ERP components reflects precision-weighted prediction error signals, i.e., prediction errors weighted by the relevance of the information source leading to the error. From this perspective, precision has a direct link to cue validity in a particular language and, thereby, to relevance of individual linguistic features for internal model updating. We view components such as the N400 and LAN as members of a family with similar functional characteristics and suggest that latency and topography differences between these components reflect the locus of prediction errors and model updating within a hierarchically organized cortical predictive coding architecture. This account has the potential to unify findings from the full range of the N400 literature, including word-level, sentence-, and discourse-level results as well as cross-linguistic differences.
Collapse
Affiliation(s)
- Ina Bornkessel-Schlesewsky
- Centre for Cognitive and Systems Neuroscience, University of South Australia, Adelaide, SA, Australia
- School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Matthias Schlesewsky
- Centre for Cognitive and Systems Neuroscience, University of South Australia, Adelaide, SA, Australia
- School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
16
|
Fitzgerald K, Todd J. Hierarchical timescales of statistical learning revealed by mismatch negativity to auditory pattern deviations. Neuropsychologia 2018; 120:25-34. [DOI: 10.1016/j.neuropsychologia.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
|
17
|
The cognitive resource and foreknowledge dependence of auditory perceptual inference. Neuropsychologia 2018; 117:379-388. [DOI: 10.1016/j.neuropsychologia.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022]
|
18
|
Time as context: The influence of hierarchical patterning on sensory inference. Schizophr Res 2018; 191:123-131. [PMID: 28343741 DOI: 10.1016/j.schres.2017.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
Time, or more specifically temporal structure, is a critical variable in understanding how the auditory system uses acoustic patterns to predict input, and to filter events based on their relevance. A key index of this filtering process is the auditory evoked potential component known as mismatch negativity or MMN. In this paper we review findings of smaller MMN in schizophrenia through the lens of time as an influential contextual variable. More specifically, we review studies that show how MMN to a locally rare pattern-deviation is modulated by the longer-term context in which it occurs. Empirical data is presented from a non-clinical sample confirming that the absence of a stable higher-order structure to sound sequences alters the way MMN amplitude changes over time. This result is discussed in relation to how hierarchical pattern learning might enrich our understanding of how and why MMN amplitude modulation is disrupted in schizophrenia.
Collapse
|
19
|
Fitzgerald K, Provost A, Todd J. First-impression bias effects on mismatch negativity to auditory spatial deviants. Psychophysiology 2017; 55. [DOI: 10.1111/psyp.13013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Kaitlin Fitzgerald
- School of Psychology; University of Newcastle; Callaghan New South Wales Australia
- Priority Research Centre for Translational Neuroscience and Mental Health Research, University of Newcastle; Callaghan New South Wales Australia
| | - Alexander Provost
- School of Psychology; University of Newcastle; Callaghan New South Wales Australia
- Priority Research Centre for Translational Neuroscience and Mental Health Research, University of Newcastle; Callaghan New South Wales Australia
| | - Juanita Todd
- School of Psychology; University of Newcastle; Callaghan New South Wales Australia
- Priority Research Centre for Translational Neuroscience and Mental Health Research, University of Newcastle; Callaghan New South Wales Australia
| |
Collapse
|
20
|
Van de Cruys S, Van der Hallen R, Wagemans J. Disentangling signal and noise in autism spectrum disorder. Brain Cogn 2016; 112:78-83. [PMID: 27651171 DOI: 10.1016/j.bandc.2016.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Predictive coding has recently been welcomed as a fruitful framework to understand autism spectrum disorder. Starting from an account centered on deficient differential weighting of prediction errors (based in so-called precision estimation), we illustrate that individuals with autism have particular difficulties with separating signal from noise, across different tasks. Specifically, we discuss how deficient precision-setting is detrimental for learning in unstable environments, for context-dependent assignment of salience to inputs, and for robustness in perception, as illustrated in coherent motion paradigms.
Collapse
Affiliation(s)
- Sander Van de Cruys
- Laboratory of Experimental Psychology, Brain & Cognition, KU Leuven, 3000 Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium.
| | - Ruth Van der Hallen
- Laboratory of Experimental Psychology, Brain & Cognition, KU Leuven, 3000 Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium; Child and Adolescent Psychiatry, UPC KU Leuven, 3000 Leuven, Belgium
| | - Johan Wagemans
- Laboratory of Experimental Psychology, Brain & Cognition, KU Leuven, 3000 Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proc Natl Acad Sci U S A 2016; 113:6755-60. [PMID: 27247381 DOI: 10.1073/pnas.1525030113] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Predictive coding theories posit that neural networks learn statistical regularities in the environment for comparison with actual outcomes, signaling a prediction error (PE) when sensory deviation occurs. PE studies in audition have capitalized on low-frequency event-related potentials (LF-ERPs), such as the mismatch negativity. However, local cortical activity is well-indexed by higher-frequency bands [high-γ band (Hγ): 80-150 Hz]. We compared patterns of human Hγ and LF-ERPs in deviance detection using electrocorticographic recordings from subdural electrodes over frontal and temporal cortices. Patients listened to trains of task-irrelevant tones in two conditions differing in the predictability of a deviation from repetitive background stimuli (fully predictable vs. unpredictable deviants). We found deviance-related responses in both frequency bands over lateral temporal and inferior frontal cortex, with an earlier latency for Hγ than for LF-ERPs. Critically, frontal Hγ activity but not LF-ERPs discriminated between fully predictable and unpredictable changes, with frontal cortex sensitive to unpredictable events. The results highlight the role of frontal cortex and Hγ activity in deviance detection and PE generation.
Collapse
|
22
|
Mullens D, Winkler I, Damaso K, Heathcote A, Whitson L, Provost A, Todd J. Biased relevance filtering in the auditory system: A test of confidence-weighted first-impressions. Biol Psychol 2016; 115:101-11. [DOI: 10.1016/j.biopsycho.2016.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 01/12/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
|
23
|
Lecaignard F, Bertrand O, Gimenez G, Mattout J, Caclin A. Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy. Front Hum Neurosci 2015; 9:505. [PMID: 26441602 PMCID: PMC4584941 DOI: 10.3389/fnhum.2015.00505] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Deviant stimuli, violating regularities in a sensory environment, elicit the mismatch negativity (MMN), largely described in the Event-Related Potential literature. While it is widely accepted that the MMN reflects more than basic change detection, a comprehensive description of mental processes modulating this response is still lacking. Within the framework of predictive coding, deviance processing is part of an inference process where prediction errors (the mismatch between incoming sensations and predictions established through experience) are minimized. In this view, the MMN is a measure of prediction error, which yields specific expectations regarding its modulations by various experimental factors. In particular, it predicts that the MMN should decrease as the occurrence of a deviance becomes more predictable. We conducted a passive oddball EEG study and manipulated the predictability of sound sequences by means of different temporal structures. Importantly, our design allows comparing mismatch responses elicited by predictable and unpredictable violations of a simple repetition rule and therefore departs from previous studies that investigate violations of different time-scale regularities. We observed a decrease of the MMN with predictability and interestingly, a similar effect at earlier latencies, within 70 ms after deviance onset. Following these pre-attentive responses, a reduced P3a was measured in the case of predictable deviants. We conclude that early and late deviance responses reflect prediction errors, triggering belief updating within the auditory hierarchy. Beside, in this passive study, such perceptual inference appears to be modulated by higher-level implicit learning of sequence statistical structures. Our findings argue for a hierarchical model of auditory processing where predictive coding enables implicit extraction of environmental regularities.
Collapse
Affiliation(s)
- Françoise Lecaignard
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028 - CNRS, UMR5292, Brain Dynamics and Cognition Team Lyon, France ; University Lyon 1 Lyon, France ; MEG Department, CERMEP Imaging Center Lyon, France
| | - Olivier Bertrand
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028 - CNRS, UMR5292, Brain Dynamics and Cognition Team Lyon, France ; University Lyon 1 Lyon, France
| | | | - Jérémie Mattout
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028 - CNRS, UMR5292, Brain Dynamics and Cognition Team Lyon, France ; University Lyon 1 Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028 - CNRS, UMR5292, Brain Dynamics and Cognition Team Lyon, France ; University Lyon 1 Lyon, France
| |
Collapse
|
24
|
Winkler I, Schröger E. Auditory perceptual objects as generative models: Setting the stage for communication by sound. BRAIN AND LANGUAGE 2015; 148:1-22. [PMID: 26184883 DOI: 10.1016/j.bandl.2015.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/03/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
Communication by sounds requires that the communication channels (i.e. speech/speakers and other sound sources) had been established. This allows to separate concurrently active sound sources, to track their identity, to assess the type of message arriving from them, and to decide whether and when to react (e.g., reply to the message). We propose that these functions rely on a common generative model of the auditory environment. This model predicts upcoming sounds on the basis of representations describing temporal/sequential regularities. Predictions help to identify the continuation of the previously discovered sound sources to detect the emergence of new sources as well as changes in the behavior of the known ones. It produces auditory event representations which provide a full sensory description of the sounds, including their relation to the auditory context and the current goals of the organism. Event representations can be consciously perceived and serve as objects in various cognitive operations.
Collapse
Affiliation(s)
- István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary; Institute of Psychology, University of Szeged, Hungary.
| | - Erich Schröger
- Institute for Psychology, University of Leipzig, Germany.
| |
Collapse
|
25
|
Todd J, Heathcote A, Whitson LR, Mullens D, Provost A, Winkler I. Mismatch negativity (MMN) to pitch change is susceptible to order-dependent bias. Front Neurosci 2014; 8:180. [PMID: 25009462 PMCID: PMC4069482 DOI: 10.3389/fnins.2014.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Pattern learning facilitates prediction about upcoming events. Within the auditory system such predictions can be studied by examining effects on a component of the auditory-evoked potential known as mismatch negativity (MMN). MMN is elicited when sound does not conform to the characteristics inferred from statistical probabilities derived from the recent past. Stable patterning in sequences elevates confidence in automatically generated perceptual inferences about what sound should come next and when. MMN amplitude should be larger when sequence is highly stable compared to when it is more volatile. This expectation has been tested using a multi-timescale paradigm. In this study, two sounds of different duration alternate roles as a predictable repetitive “standard” and rare MMN-eliciting “deviation.” The paradigm consists of sound sequences that differ in the rate at which the roles of two tones alternate, varying from slowly changing (high stability) to rapidly alternating (low stability). Previous studies using this paradigm discovered a “primacy bias” affecting how stability in patterning impacts MMN amplitude. The primacy bias refers to the observation that the effect of longer-term stability within sequences only appears to impact MMN to the sound first encountered as deviant (the sound that is rare when the sequence commences). This study determines whether this order-driven bias generalizes to sequences that contain two tones differing in pitch. By manipulating (within-subjects) the order in which sounds are encountered as deviants the data demonstrate the two defining characteristics of primacy bias: (1) sequence stability only ever impacts MMN amplitude to the first-deviant sound; and (2) within higher stability sequences, MMN is significantly larger when a sound is the first compared to when it is the second deviant. The results are consistent with a general order-driven bias exerting modulating effects on MMN amplitude over a longer timescale.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle Callaghan, NSW, Australia ; Priority Research Centre for Translational Neuroscience and Mental Health Research, University of Newcastle Callaghan, NSW, Australia ; Schizophrenia Research Institute Darlinghurst, NSW, Australia
| | - Andrew Heathcote
- School of Psychology, University of Newcastle Callaghan, NSW, Australia ; Priority Research Centre for Translational Neuroscience and Mental Health Research, University of Newcastle Callaghan, NSW, Australia
| | - Lisa R Whitson
- School of Psychology, University of Newcastle Callaghan, NSW, Australia ; Priority Research Centre for Translational Neuroscience and Mental Health Research, University of Newcastle Callaghan, NSW, Australia
| | - Daniel Mullens
- School of Psychology, University of Newcastle Callaghan, NSW, Australia ; Priority Research Centre for Translational Neuroscience and Mental Health Research, University of Newcastle Callaghan, NSW, Australia
| | - Alexander Provost
- School of Psychology, University of Newcastle Callaghan, NSW, Australia ; Priority Research Centre for Translational Neuroscience and Mental Health Research, University of Newcastle Callaghan, NSW, Australia
| | - István Winkler
- Research Centre for Natural Sciences, MTA, Institute of Cognitive Neuroscience and Psychology Budapest, Hungary ; Institute of Psychology, University of Szeged Szeged, Hungary
| |
Collapse
|
26
|
New perspectives on the mismatch negativity (MMN) component: an evolving tool in cognitive neuroscience. Brain Topogr 2014; 27:425-7. [PMID: 24929559 DOI: 10.1007/s10548-014-0381-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 12/30/2022]
|
27
|
Todd J, Harms L, Schall U, Michie PT. Mismatch negativity: translating the potential. Front Psychiatry 2013; 4:171. [PMID: 24391602 PMCID: PMC3866657 DOI: 10.3389/fpsyt.2013.00171] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
The mismatch negativity (MMN) component of the auditory event-related potential has become a valuable tool in cognitive neuroscience. Its reduced size in persons with schizophrenia is of unknown origin but theories proposed include links to problems in experience-dependent plasticity reliant on N-methyl-d-aspartate glutamate receptors. In this review we address the utility of this tool in revealing the nature and time course of problems in perceptual inference in this illness together with its potential for use in translational research testing animal models of schizophrenia-related phenotypes. Specifically, we review the reasons for interest in MMN in schizophrenia, issues pertaining to the measurement of MMN, its use as a vulnerability index for the development of schizophrenia, the pharmacological sensitivity of MMN and the progress in developing animal models of MMN. Within this process we highlight the challenges posed by knowledge gaps pertaining to the tool and the pharmacology of the underlying system.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lauren Harms
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ulrich Schall
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Patricia T. Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|