1
|
Mimica B, Tombaz T, Battistin C, Fuglstad JG, Dunn BA, Whitlock JR. Behavioral decomposition reveals rich encoding structure employed across neocortex in rats. Nat Commun 2023; 14:3947. [PMID: 37402724 PMCID: PMC10319800 DOI: 10.1038/s41467-023-39520-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
The cortical population code is pervaded by activity patterns evoked by movement, but it remains largely unknown how such signals relate to natural behavior or how they might support processing in sensory cortices where they have been observed. To address this we compared high-density neural recordings across four cortical regions (visual, auditory, somatosensory, motor) in relation to sensory modulation, posture, movement, and ethograms of freely foraging male rats. Momentary actions, such as rearing or turning, were represented ubiquitously and could be decoded from all sampled structures. However, more elementary and continuous features, such as pose and movement, followed region-specific organization, with neurons in visual and auditory cortices preferentially encoding mutually distinct head-orienting features in world-referenced coordinates, and somatosensory and motor cortices principally encoding the trunk and head in egocentric coordinates. The tuning properties of synaptically coupled cells also exhibited connection patterns suggestive of area-specific uses of pose and movement signals, particularly in visual and auditory regions. Together, our results indicate that ongoing behavior is encoded at multiple levels throughout the dorsal cortex, and that low-level features are differentially utilized by different regions to serve locally relevant computations.
Collapse
Affiliation(s)
- Bartul Mimica
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, 100190, NJ, USA.
| | - Tuçe Tombaz
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Claudia Battistin
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jingyi Guo Fuglstad
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Benjamin A Dunn
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jonathan R Whitlock
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway.
| |
Collapse
|
2
|
Schwalm M, Tabuena DR, Easton C, Richner TJ, Mourad P, Watari H, Moody WJ, Stroh A. Functional States Shape the Spatiotemporal Representation of Local and Cortex-wide Neural Activity in Mouse Sensory Cortex. J Neurophysiol 2022; 128:763-777. [PMID: 35975935 DOI: 10.1152/jn.00424.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatiotemporal representation of neural activity during rest and upon sensory stimulation in cortical areas is highly dynamic, and may be predominantly governed by cortical state. On the mesoscale level, intrinsic neuronal activity ranges from a persistent state, generally associated with a sustained depolarization of neurons, to a bimodal, slow-wave like state with bursts of neuronal activation, alternating with silent periods. These different activity states are prevalent under certain types of sedatives, or are associated with specific behavioral or vigilance conditions. Neurophysiological experiments assessing circuit activity, usually assume a constant underlying state, yet reports of variability of neuronal responses under seemingly constant conditions are common in the field. Even when a certain type of neural activity or cortical state can stably be maintained over time, the associated response properties are highly relevant for explaining experimental outcomes. Here we describe the spatiotemporal characteristics of ongoing activity and sensory evoked responses under two predominant functional states in the sensory cortices of mice: persistent activity (PA) and slow wave activity (SWA). Using electrophysiological recordings, and local and wide-field calcium recordings, we examine whether spontaneous and sensory evoked neuronal activity propagate throughout the cortex in a state dependent manner. We find that PA and SWA differ in their spatiotemporal characteristics which determine the cortical network's response to a sensory stimulus. During PA state, sensory stimulation elicits gamma-based short-latency responses which precisely follow each stimulation pulse and are prone to adaptation upon higher stimulation frequencies. Sensory responses during SWA are more variable, dependent on refractory periods following spontaneous slow waves. While spontaneous slow waves propagated in anterior-posterior direction in a majority of observations, the direction of propagation of stimulus-elicited wave depends on the sensory modality. These findings suggest that cortical state explains variance and should be considered when investigating multi-scale correlates of functional neurocircuit activity.
Collapse
Affiliation(s)
- Miriam Schwalm
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dennis R Tabuena
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Curtis Easton
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Thomas J Richner
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Pierre Mourad
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Hirofumi Watari
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biology, University of Washington, Seattle, WA, United States
| | - William J Moody
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
3
|
Downer JD, Verhein JR, Rapone BC, O'Connor KN, Sutter ML. An Emergent Population Code in Primary Auditory Cortex Supports Selective Attention to Spectral and Temporal Sound Features. J Neurosci 2021; 41:7561-7577. [PMID: 34210783 PMCID: PMC8425978 DOI: 10.1523/jneurosci.0693-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Textbook descriptions of primary sensory cortex (PSC) revolve around single neurons' representation of low-dimensional sensory features, such as visual object orientation in primary visual cortex (V1), location of somatic touch in primary somatosensory cortex (S1), and sound frequency in primary auditory cortex (A1). Typically, studies of PSC measure neurons' responses along few (one or two) stimulus and/or behavioral dimensions. However, real-world stimuli usually vary along many feature dimensions and behavioral demands change constantly. In order to illuminate how A1 supports flexible perception in rich acoustic environments, we recorded from A1 neurons while rhesus macaques (one male, one female) performed a feature-selective attention task. We presented sounds that varied along spectral and temporal feature dimensions (carrier bandwidth and temporal envelope, respectively). Within a block, subjects attended to one feature of the sound in a selective change detection task. We found that single neurons tend to be high-dimensional, in that they exhibit substantial mixed selectivity for both sound features, as well as task context. We found no overall enhancement of single-neuron coding of the attended feature, as attention could either diminish or enhance this coding. However, a population-level analysis reveals that ensembles of neurons exhibit enhanced encoding of attended sound features, and this population code tracks subjects' performance. Importantly, surrogate neural populations with intact single-neuron tuning but shuffled higher-order correlations among neurons fail to yield attention- related effects observed in the intact data. These results suggest that an emergent population code not measurable at the single-neuron level might constitute the functional unit of sensory representation in PSC.SIGNIFICANCE STATEMENT The ability to adapt to a dynamic sensory environment promotes a range of important natural behaviors. We recorded from single neurons in monkey primary auditory cortex (A1), while subjects attended to either the spectral or temporal features of complex sounds. Surprisingly, we found no average increase in responsiveness to, or encoding of, the attended feature across single neurons. However, when we pooled the activity of the sampled neurons via targeted dimensionality reduction (TDR), we found enhanced population-level representation of the attended feature and suppression of the distractor feature. This dissociation of the effects of attention at the level of single neurons versus the population highlights the synergistic nature of cortical sound encoding and enriches our understanding of sensory cortical function.
Collapse
Affiliation(s)
- Joshua D Downer
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, California 94143
| | - Jessica R Verhein
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- School of Medicine, Stanford University, Stanford, California 94305
| | - Brittany C Rapone
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- School of Social Sciences, Oxford Brookes University, Oxford, OX4 0BP, United Kingdom
| | - Kevin N O'Connor
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95618
| | - Mitchell L Sutter
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95618
| |
Collapse
|
4
|
Homma NY, Atencio CA, Schreiner CE. Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics. Neuroscience 2021; 467:150-170. [PMID: 33951506 DOI: 10.1016/j.neuroscience.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022]
Abstract
Sensory cortical neurons can nonlinearly integrate a wide range of inputs. The outcome of this nonlinear process can be approximated by more than one receptive field component or filter to characterize the ensuing stimulus preference. The functional properties of multidimensional filters are, however, not well understood. Here we estimated two spectrotemporal receptive fields (STRFs) per neuron using maximally informative dimension analysis. We compared their temporal and spectral modulation properties and determined the stimulus information captured by the two STRFs in core rat auditory cortical fields, primary auditory cortex (A1) and ventral auditory field (VAF). The first STRF is the dominant filter and acts as a sound feature detector in both fields. The second STRF is less feature specific, preferred lower modulations, and had less spike information compared to the first STRF. The information jointly captured by the two STRFs was larger than that captured by the sum of the individual STRFs, reflecting nonlinear interactions of two filters. This information gain was larger in A1. We next determined how the acoustic environment affects the structure and relationship of these two STRFs. Rats were exposed to moderate levels of spectrotemporally modulated noise during development. Noise exposure strongly altered the spectrotemporal preference of the first STRF in both cortical fields. The interaction between the two STRFs was reduced by noise exposure in A1 but not in VAF. The results reveal new functional distinctions between A1 and VAF indicating that (i) A1 has stronger interactions of the two STRFs than VAF, (ii) noise exposure diminishes modulation parameter representation contained in the noise more strongly for the first STRF in both fields, and (iii) plasticity induced by noise exposure can affect the strength of filter interactions in A1. Taken together, ascertaining two STRFs per neuron enhances the understanding of cortical information processing and plasticity effects in core auditory cortex.
Collapse
Affiliation(s)
- Natsumi Y Homma
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA; Center for Integrative Neuroscience, University of California San Francisco, San Francisco, USA.
| | - Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA; Center for Integrative Neuroscience, University of California San Francisco, San Francisco, USA
| |
Collapse
|
5
|
Mohn JL, Downer JD, O'Connor KN, Johnson JS, Sutter ML. Choice-related activity and neural encoding in primary auditory cortex and lateral belt during feature-selective attention. J Neurophysiol 2021; 125:1920-1937. [PMID: 33788616 DOI: 10.1152/jn.00406.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selective attention is necessary to sift through, form a coherent percept of, and make behavioral decisions on the vast amount of information present in most sensory environments. How and where selective attention is employed in cortex and how this perceptual information then informs the relevant behavioral decisions is still not well understood. Studies probing selective attention and decision-making in visual cortex have been enlightening as to how sensory attention might work in that modality; whether or not similar mechanisms are employed in auditory attention is not yet clear. Therefore, we trained rhesus macaques on a feature-selective attention task, where they switched between reporting changes in temporal (amplitude modulation, AM) and spectral (carrier bandwidth) features of a broadband noise stimulus. We investigated how the encoding of these features by single neurons in primary (A1) and secondary (middle lateral belt, ML) auditory cortex was affected by the different attention conditions. We found that neurons in A1 and ML showed mixed selectivity to the sound and task features. We found no difference in AM encoding between the attention conditions. We found that choice-related activity in both A1 and ML neurons shifts between attentional conditions. This finding suggests that choice-related activity in auditory cortex does not simply reflect motor preparation or action and supports the relationship between reported choice-related activity and the decision and perceptual process.NEW & NOTEWORTHY We recorded from primary and secondary auditory cortex while monkeys performed a nonspatial feature attention task. Both areas exhibited rate-based choice-related activity. The manifestation of choice-related activity was attention dependent, suggesting that choice-related activity in auditory cortex does not simply reflect arousal or motor influences but relates to the specific perceptual choice.
Collapse
Affiliation(s)
- Jennifer L Mohn
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Joshua D Downer
- Center for Neuroscience, University of California, Davis, California.,Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - Kevin N O'Connor
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Jeffrey S Johnson
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Mitchell L Sutter
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| |
Collapse
|
6
|
Zempeltzi MM, Kisse M, Brunk MGK, Glemser C, Aksit S, Deane KE, Maurya S, Schneider L, Ohl FW, Deliano M, Happel MFK. Task rule and choice are reflected by layer-specific processing in rodent auditory cortical microcircuits. Commun Biol 2020; 3:345. [PMID: 32620808 PMCID: PMC7335110 DOI: 10.1038/s42003-020-1073-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
The primary auditory cortex (A1) is an essential, integrative node that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided decision-making. However, the realization of this integration with respect to the cortical microcircuitry is not well understood. Here, we characterize layer-specific, spatiotemporal synaptic population activity with chronic, laminar current source density analysis in Mongolian gerbils (Meriones unguiculatus) trained in an auditory decision-making Go/NoGo shuttle-box task. We demonstrate that not only sensory but also task- and choice-related information is represented in the mesoscopic neuronal population code of A1. Based on generalized linear-mixed effect models we found a layer-specific and multiplexed representation of the task rule, action selection, and the animal's behavioral options as accumulating evidence in preparation of correct choices. The findings expand our understanding of how individual layers contribute to the integrative circuit in the sensory cortex in order to code task-relevant information and guide sensory-based decision-making.
Collapse
Affiliation(s)
| | - Martin Kisse
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | | | - Claudia Glemser
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Sümeyra Aksit
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Katrina E Deane
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Shivam Maurya
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Lina Schneider
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Frank W Ohl
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University, D-39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | | | - Max F K Happel
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany.
| |
Collapse
|
7
|
Sound identity is represented robustly in auditory cortex during perceptual constancy. Nat Commun 2018; 9:4786. [PMID: 30429465 PMCID: PMC6235866 DOI: 10.1038/s41467-018-07237-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/23/2018] [Indexed: 12/02/2022] Open
Abstract
Perceptual constancy requires neural representations that are selective for object identity, but also tolerant across identity-preserving transformations. How such representations arise in the brain and support perception remains unclear. Here, we study tolerant representation of sound identity in the auditory system by recording neural activity in auditory cortex of ferrets during perceptual constancy. Ferrets generalize vowel identity across variations in fundamental frequency, sound level and location, while neurons represent sound identity robustly across acoustic variations. Stimulus features are encoded with distinct time-courses in all conditions, however encoding of sound identity is delayed when animals fail to generalize and during passive listening. Neurons also encode information about task-irrelevant sound features, as well as animals’ choices and accuracy, while population decoding out-performs animals’ behavior. Our results show that during perceptual constancy, sound identity is represented robustly in auditory cortex across widely varying conditions, and behavioral generalization requires conserved timing of identity information. Perceptual constancy requires neural representations selective for object identity, yet tolerant of identity-preserving transformations. Here, the authors show that sound identity is represented robustly in auditory cortex and that behavioral generalization requires precise timing of identity information.
Collapse
|
8
|
Mehta K, Kliewer J, Ihlefeld A. Quantifying Neuronal Information Flow in Response to Frequency and Intensity Changes in the Auditory Cortex. CONFERENCE RECORD. ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS 2018; 2018:1367-1371. [PMID: 31595139 PMCID: PMC6782062 DOI: 10.1109/acssc.2018.8645091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Studies increasingly show that behavioral relevance alters the population representation of sensory stimuli in the sensory cortices. However, the mechanisms underlying this behavior are incompletely understood. Here, we record neuronal responses in the auditory cortex while a highly trained, awake, normal-hearing gerbil listens passively to target tones of high versus low behavioral relevance. Using an information theoretic framework, we model the overall transmission chain from acoustic input stimulus to recorded cortical response as a communication channel. To quantify how much information core auditory cortex carries about high versus low relevance sound, we then compute the mutual information of the multi-unit neuronal responses. Results show that the output over the stimulus-to-response channel can be modeled as a Poisson mixture. We derive a closed-form fast approximation for the entropy of a mixture of univariate Poisson random variables. A purely rate-code based model reveals reduced information transfer for high relevance compared to low relevance tones, hinting that changes in temporal discharge pattern may encode behavioral relevance.
Collapse
Affiliation(s)
- Ketan Mehta
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030
| | - Jörg Kliewer
- Helen and John C. Hartmann Dept. of Electrical and Computer Engineering New Jersey Institute of Technology, Newark, NJ 07102
| | - Antje Ihlefeld
- Dept. of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102
| |
Collapse
|
9
|
Kessler M, Mamach M, Beutelmann R, Bankstahl JP, Bengel FM, Klump GM, Berding G. Activation in the auditory pathway of the gerbil studied with 18F-FDG PET: effects of anesthesia. Brain Struct Funct 2018; 223:4293-4305. [PMID: 30203305 DOI: 10.1007/s00429-018-1743-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/29/2018] [Indexed: 01/20/2023]
Abstract
Here, we present results from an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) study in the Mongolian gerbil, a preferred animal model in auditory research. One major issue in preclinical nuclear imaging, as well as in most of the neurophysiological methods investigating auditory processing, is the need of anesthesia. We compared the usability of two types of anesthesia which are frequently employed in electrophysiology, ketamine/xylazine (KX), and fentanyl/midazolam/medetomidine (FMM), for valid measurements of auditory activation with 18F-FDG PET. Gerbils were placed in a sound-shielding box and injected with 18F-FDG. Two acoustic free-field conditions were used: (1) baseline (no stimulation, 25 dB background noise) and (2) 90 dB frequency-modulated tones (FM). After 40 min of 18F-FDG uptake, a 30 min acquisition was performed using a small animal PET/CT system. Blood glucose levels were measured after the uptake phase before scanning. Standardized uptake value ratios for relevant regions were determined after implementing image and volume of interest templates. Scans demonstrated a significantly higher uptake in the inferior colliculus with FM stimulation compared to baseline in awake subjects (+ 12%; p = 0.02) and with FMM anesthesia (+ 13%; p = 0.0012), but not with KX anesthesia. In non-auditory brain regions, no significant difference was detected. Blood glucose levels were significantly higher under KX compared to FMM anesthesia (17.29 ± 0.42 mmol/l vs. 14.30 ± 1.91 mmol/l; p = 0.024). These results suggest that valid 18F-FDG PET measurements of auditory activation comparable to electrophysiology can be obtained from gerbils during opioid-based anesthesia due to its limited effects on interfering blood glucose levels.
Collapse
Affiliation(s)
- M Kessler
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - M Mamach
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,Department of Medical Physics and Radiation Protection, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - R Beutelmann
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,Division for animal Physiology and Behaviour Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - J P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - F M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - G M Klump
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,Division for animal Physiology and Behaviour Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Georg Berding
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
10
|
Auditory midbrain coding of statistical learning that results from discontinuous sensory stimulation. PLoS Biol 2018; 16:e2005114. [PMID: 30048446 PMCID: PMC6065201 DOI: 10.1371/journal.pbio.2005114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
Detecting regular patterns in the environment, a process known as statistical
learning, is essential for survival. Neuronal adaptation is a key mechanism in
the detection of patterns that are continuously repeated across short (seconds
to minutes) temporal windows. Here, we found in mice that a subcortical
structure in the auditory midbrain was sensitive to patterns that were repeated
discontinuously, in a temporally sparse manner, across windows of minutes to
hours. Using a combination of behavioral, electrophysiological, and molecular
approaches, we found changes in neuronal response gain that varied in mechanism
with the degree of sound predictability and resulted in changes in frequency
coding. Analysis of population activity (structural tuning) revealed an increase
in frequency classification accuracy in the context of increased overlap in
responses across frequencies. The increase in accuracy and overlap was
paralleled at the behavioral level in an increase in generalization in the
absence of diminished discrimination. Gain modulation was accompanied by changes
in gene and protein expression, indicative of long-term plasticity.
Physiological changes were largely independent of corticofugal feedback, and no
changes were seen in upstream cochlear nucleus responses, suggesting a key role
of the auditory midbrain in sensory gating. Subsequent behavior demonstrated
learning of predictable and random patterns and their importance in auditory
conditioning. Using longer timescales than previously explored, the combined
data show that the auditory midbrain codes statistical learning of temporally
sparse patterns, a process that is critical for the detection of relevant
stimuli in the constant soundscape that the animal navigates through. Some things are learned simply because they are there and not because they are
relevant at that moment in time. This is particularly true of surrounding
sounds, which we process automatically and continuously, detecting their
repetitive patterns or singularities. Learning about rewards and punishment is
typically attributed to cortical structures in the brain and known to occur over
long time windows. Learning of surrounding regularities, on the other hand, is
attributed to subcortical structures and has been shown to occur in seconds. The
brain can, however, also detect the regularity in sounds that are
discontinuously repeated across intervals of minutes and hours. For example, we
learn to identify people by the sound of their steps through an unconscious
process involving repeated but isolated exposures to the coappearance of sound
and person. Here, we show that a subcortical structure, the auditory midbrain,
can code such temporally spread regularities. Neurons in the auditory midbrain
changed their response pattern in mice that heard a fixed tone whenever they
went into one room in the environment they lived in. Learning of temporally
spread sound patterns can, therefore, occur in subcortical structures.
Collapse
|
11
|
Rinne T, Muers RS, Salo E, Slater H, Petkov CI. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences? Cereb Cortex 2018; 27:3471-3484. [PMID: 28419201 PMCID: PMC5654311 DOI: 10.1093/cercor/bhx092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/22/2022] Open
Abstract
The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals.
Collapse
Affiliation(s)
- Teemu Rinne
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland
| | - Ross S Muers
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Salo
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Heather Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher I Petkov
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex. J Neurosci 2017; 37:5378-5392. [PMID: 28432139 DOI: 10.1523/jneurosci.3169-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/21/2022] Open
Abstract
Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations (rnoise) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on rnoise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in rnoise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments.SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations (rnoise) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on rnoise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances relevant information and suppresses irrelevant information.
Collapse
|
13
|
van de Rijt LPH, van Opstal AJ, Mylanus EAM, Straatman LV, Hu HY, Snik AFM, van Wanrooij MM. Temporal Cortex Activation to Audiovisual Speech in Normal-Hearing and Cochlear Implant Users Measured with Functional Near-Infrared Spectroscopy. Front Hum Neurosci 2016; 10:48. [PMID: 26903848 PMCID: PMC4750083 DOI: 10.3389/fnhum.2016.00048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/29/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Speech understanding may rely not only on auditory, but also on visual information. Non-invasive functional neuroimaging techniques can expose the neural processes underlying the integration of multisensory processes required for speech understanding in humans. Nevertheless, noise (from functional MRI, fMRI) limits the usefulness in auditory experiments, and electromagnetic artifacts caused by electronic implants worn by subjects can severely distort the scans (EEG, fMRI). Therefore, we assessed audio-visual activation of temporal cortex with a silent, optical neuroimaging technique: functional near-infrared spectroscopy (fNIRS). METHODS We studied temporal cortical activation as represented by concentration changes of oxy- and deoxy-hemoglobin in four, easy-to-apply fNIRS optical channels of 33 normal-hearing adult subjects and five post-lingually deaf cochlear implant (CI) users in response to supra-threshold unisensory auditory and visual, as well as to congruent auditory-visual speech stimuli. RESULTS Activation effects were not visible from single fNIRS channels. However, by discounting physiological noise through reference channel subtraction (RCS), auditory, visual and audiovisual (AV) speech stimuli evoked concentration changes for all sensory modalities in both cohorts (p < 0.001). Auditory stimulation evoked larger concentration changes than visual stimuli (p < 0.001). A saturation effect was observed for the AV condition. CONCLUSIONS Physiological, systemic noise can be removed from fNIRS signals by RCS. The observed multisensory enhancement of an auditory cortical channel can be plausibly described by a simple addition of the auditory and visual signals with saturation.
Collapse
Affiliation(s)
- Luuk P H van de Rijt
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical CentreNijmegen, Netherlands; Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University NijmegenNijmegen, Netherlands
| | - A John van Opstal
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Emmanuel A M Mylanus
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | - Hai Yin Hu
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Ad F M Snik
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | - Marc M van Wanrooij
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical CentreNijmegen, Netherlands; Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
14
|
Bigelow J, Ng CW, Poremba A. Local field potential correlates of auditory working memory in primate dorsal temporal pole. Brain Res 2015; 1640:299-313. [PMID: 26718730 DOI: 10.1016/j.brainres.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/06/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- James Bigelow
- Department of Psychological and Brain Sciences, University of Iowa, 11 Seashore Hall East, Iowa City, IA 52242, United States.
| | - Chi-Wing Ng
- Center for Neuroscience University of California, Davis, CA 95616, United States.
| | - Amy Poremba
- Department of Psychological and Brain Sciences, University of Iowa, 11 Seashore Hall East, Iowa City, IA 52242, United States.
| |
Collapse
|