1
|
Hougland JR, Proessl F, Meglino N, Canino MC, Sterczala AJ, Connaboy C, Nindl BC, Flanagan SD. Agreement and Consistency of Absolute and Relative Corticospinal Stimulus-Response Curves for Upper, Lower, and Axial Musculature in Healthy Adults. J Clin Neurophysiol 2024:00004691-990000000-00164. [PMID: 39090794 DOI: 10.1097/wnp.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
PURPOSE To assess the agreement and consistency of absolute and relative stimulus-response curve (SRC) parameter estimates for upper extremity, lower extremity, and axial muscles. METHODS Thirty (15 W, age: 27.0 ± 6.3 y, height: 171.9 ± 8.9 cm, weight: 80.2 ± 19.3 kg) healthy adults completed absolute (5% to 100% stimulator output) and relative (65% to 160% motor threshold) SRCs of the first dorsal interosseous, vastus lateralis, and rectus abdominis during submaximal isometric contractions. Mean motor-evoked potential amplitudes were fit with nonlinear regression to derive MEPmax, V50, and slope. Absolute agreement and consistency were assessed with ICCs, Cronbachs alphas, and Bland-Altman plots. Independent t-tests were used to examine differences in motor threshold, physical activity, strength, and muscle activity among participants with valid and invalid SRC parameters. RESULTS Absolute and relative SRCs displayed good agreement and consistency for MEPmax and V50 but not slope. Motor thresholds were lower among participants with valid absolute SRCs for the rectus abdominis and vastus lateralis. Motor threshold, physical activity, strength, and muscle activity did not differ among those with valid and invalid parameters for all relative SRCs and absolute SRCs for the first dorsal interosseous. CONCLUSIONS Absolute and relative SRCs produce similar MEPmax and V50 estimates in the first dorsal interosseous, vastus lateralis, and rectus abdominis. The validity of absolute and relative SRC results may differ depending on individual characteristics and tested muscles.
Collapse
Affiliation(s)
- Juliana R Hougland
- Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.; and
- Center for Lower Extremity Ambulatory Research and Human Performance Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Felix Proessl
- Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.; and
| | - Nicholas Meglino
- Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.; and
| | - Maria C Canino
- Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.; and
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.; and
| | - Chris Connaboy
- Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.; and
- Center for Lower Extremity Ambulatory Research and Human Performance Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Bradley C Nindl
- Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.; and
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.; and
- Center for Lower Extremity Ambulatory Research and Human Performance Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| |
Collapse
|
2
|
Eibl T, Schrey M, Rossmann J, Liebert A, Ritter L, Lange R, Steiner HH, Schebesch KM. Resection of meningiomas located in motor eloquent areas - comparative analysis of navigated transcranial magnetic stimulation and conventional neuronavigation. Neurol Res 2024:1-7. [PMID: 38953309 DOI: 10.1080/01616412.2024.2370731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Navigated transcranial magnetic stimulation (nTMS) has been established as a preoperative diagnostic procedure in glioma surgery, increasing the extent of resection and preserving functional outcome. nTMS motor mapping for the resection of motor eloquent meningiomas has not been evaluated in a comparative analysis, yet. METHODS We conducted a retrospective matched-pair analysis for tumor location and size in meningioma patients with tumors located over or close to the primary motor cortex. Half of the study population received nTMS motor mapping preoperatively (nTMS-group). The primary endpoint were permanent surgery-related motor deficits. Additional factors associated with new motor deficits were evaluated apart from nTMS. RESULTS 62 patients (mean age 62 ± 15.8 years) were evaluated. 31 patients received preoperative nTMS motor mapping. In this group, motor thresholds (rMT) corresponded with tumor location and preoperative motor status, but could not predict motor outcome. No patient with preoperative intact motor function had a surgery-related permanent deficit in the nTMS group whereas four patients in the non-TMS group with preoperative intact motor status harbored from permanent deficits. 13 patients (21.3%) had a permanent motor deficit postoperatively with no difference between the nTMS and the non-TMS-group. Worsening in motor function was associated with higher patient age (p = 0.01) and contact to the superior sagittal sinus (p = 0.027). CONCLUSION nTMSmotor mapping did not lead to postoperative preservation in motorfunction. nTMS data corresponded well with the preoperative motorstatus and were associated with postoperative permanent deficits if tumors were located over the motor hotspot according to nTMS.
Collapse
Affiliation(s)
- Thomas Eibl
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| | - Michael Schrey
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| | - Jakob Rossmann
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| | - Adrian Liebert
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| | - Leonard Ritter
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| | - Rüdiger Lange
- Department of Neurology, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| | - Hans-Herbert Steiner
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| | | |
Collapse
|
3
|
Mimura Y, Tobari Y, Nakahara K, Nakajima S, Yoshida K, Mimura M, Noda Y. Transcranial magnetic stimulation neurophysiology in patients with non-Alzheimer's neurodegenerative diseases: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105451. [PMID: 37926239 DOI: 10.1016/j.neubiorev.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Non-Alzheimer's dementia (NAD) accounts for 30% of all neurodegenerative conditions and is characterized by cognitive decline beyond mere memory dysfunction. Diagnosing NAD remains challenging due to the lack of established biomarkers. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that enables the investigation of cortical excitability in the human brain. Paired-pulse TMS paradigms include short- and long-interval intracortical inhibition (SICI/LICI), intracortical facilitation (ICF), and short-latency afferent inhibition (SAI), which can assess neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits, respectively. We conducted the first systematic review and meta-analysis to compare these TMS indices among patients with NAD and healthy controls. Our meta-analyses indicated that TMS neurophysiological examinations revealed decreased glutamatergic function in patients with frontotemporal dementia (FTD) and decreased GABAergic function in patients with FTD, progressive supranuclear palsy, Huntington's disease, cortico-basal syndrome, and multiple system atrophy-parkinsonian type. In addition, decreased cholinergic function was found in dementia with Lewy body and vascular dementia. These results suggest the potential of TMS as an additional diagnostic tool to differentiate NAD.
Collapse
Affiliation(s)
- Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazuho Nakahara
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada; Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Eibl T, Schrey M, Liebert A, Ritter L, Lange R, Steiner HH, Schebesch KM. Influence of clinical and tumor-specific factors on the resting motor threshold in navigated transcranial magnetic stimulation. Neurophysiol Clin 2023; 53:102920. [PMID: 37944292 DOI: 10.1016/j.neucli.2023.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Preoperative non-invasive mapping of motor function with navigated transcranial magnetic stimulation (nTMS) has become a widely used diagnostic procedure. Determination of the patient-individual resting motor threshold (rMT) is of great importance to achieve reliable results when conducting nTMS motor mapping. Factors which contribute to differences in rMT of brain tumor patients have not been fully investigated. METHODS We included adult patients with all types of de novo and recurrent intracranial lesions, suspicious for intra-axial brain tumors. The outcome measure was the rMT of the upper extremity, defined as the stimulation intensity eliciting motor evoked potentials with amplitudes greater than 50µV in 50 % of applied stimulations. RESULTS Eighty nTMS examinations in 75 patients (37.5 % female) aged 57.9 ± 14.9 years were evaluated. In non-parametric testing, rMT values were higher in patients with upper extremity paresis (p = 0.024) and lower in patients with high grade gliomas (HGG) (p = 0.001). rMT inversely correlated with patient age (rs=-0.28, p = 0.013) and edema volume (rs=-0.28, p = 0.012) In regression analysis, infiltration of the precentral gyrus (p<0.001) increased rMT values. Values of rMT were reduced in high grade gliomas (p<0.001), in patients taking Levetiracetam (p = 0.019) and if perilesional edema infiltrated motor eloquent brain (p<0.001). Subgroup analyses of glioma patients revealed similar results. Values of rMT did not differ between hand and forearm muscles. CONCLUSION Most factors confounding rMT in our study were specific to the lesion. These factors contributed to the variability in cortical excitability and must be considered in clinical work with nTMS to achieve reliable results with nTMS motor mapping.
Collapse
Affiliation(s)
- Thomas Eibl
- Department of Neurosurgery, Paracelsus Medical University Nuremberg, Germany.
| | - Michael Schrey
- Department of Neurosurgery, Paracelsus Medical University Nuremberg, Germany
| | - Adrian Liebert
- Department of Neurosurgery, Paracelsus Medical University Nuremberg, Germany
| | - Leonard Ritter
- Department of Neurosurgery, Paracelsus Medical University Nuremberg, Germany
| | - Rüdiger Lange
- Department of Neurology, Paracelsus Medical University Nuremberg, Germany
| | | | | |
Collapse
|
5
|
Selective Stimulus Intensity during Hotspot Search Ensures Faster and More Accurate Preoperative Motor Mapping with nTMS. Brain Sci 2023; 13:brainsci13020285. [PMID: 36831828 PMCID: PMC9954713 DOI: 10.3390/brainsci13020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION Navigated transcranial magnetic stimulation (nTMS) has emerged as one of the most innovative techniques in neurosurgical practice. However, nTMS motor mapping involves rigorous steps, and the importance of an accurate execution method has not been emphasized enough. In particular, despite strict adherence to procedural protocols, we have observed high variability in map activation according to the choice of stimulation intensity (SI) right from the early stage of hotspot localization. We present a retrospective analysis of motor mappings performed between March 2020 and July 2022, where the SI was only chosen with rigorous care in the most recent ones, under the guide of an expert neurophysiologist. MATERIALS AND METHODS In order to test the ability to reduce inaccurate responses and time expenditure using selective SI, data were collected from 16 patients who underwent mapping with the random method (group A) and 15 patients who underwent mapping with the proposed method (group B). The parameters considered were resting motor threshold (%), number of stimuli, number of valid motor evoked potentials (MEPs), number of valid MEPs considered true positives (TPs), number of valid MEPs considered false positives (FPs), ratio of true-positive MEPs to total stimuli, ratio of true-positive MEPs to valid MEPs, minimum amplitude, maximum amplitude and mapping time for each patient. RESULTS The analysis showed statistically significant reductions in total stimulus demand, procedural time and number of false-positive MEPs. Significant increases were observed in the number of true-positive MEPs, the ratio of true-positive MEPs to total stimuli and the ratio of true-positive MEPs to valid MEPs. In the subgroups analyzed, there were similar trends, in particular, an increase in true positives and a decrease in false-positive responses. CONCLUSIONS The precise selection of SI during hotspot search in nTMS motor mapping could provide reliable cortical maps in short time and with low employment of resources. This method seems to ensure that a MEP really represents a functionally eloquent cortical point, making mapping more intuitive even in less experienced centers.
Collapse
|
6
|
Assessing the feasibility of mapping the tibialis anterior muscle with navigated transcranial magnetic stimulation in neuro-oncologic patients. Sci Rep 2022; 12:18719. [PMID: 36333400 PMCID: PMC9636142 DOI: 10.1038/s41598-022-23444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Mapping the lower extremity with navigated transcranial magnetic stimulation (nTMS) still remains challenging for the investigator. Clinical factors influencing leg mapping with nTMS have not been fully investigated yet. The aim of the study was to identify factors which influence the possibility of eliciting motor evoked potentials (MEPs) from the tibialis anterior muscle (TA). Patient records, imaging, nTMS examinations and tractography were retrospectively evaluated. 48 nTMS examinations were performed in 46 brain tumor patients. Reproducible MEPs were recorded in 20 patients (41.67%). Younger age (p = 0.044) and absence of perifocal edema (p = 0.035, Cramer's V = 0.34, OR = 0.22, 95% CI = 0.06-0.81) facilitated mapping the TA muscle. Leg motor deficit (p = 0.49, Cramer's V = 0.12, OR = 0.53, 95%CI = 0.12-2.36), tumor entity (p = 0.36, Cramer's V = 0.22), tumor location (p = 0.52, Cramer's V = 0.26) and stimulation intensity (p = 0.158) were no significant factors. The distance between the tumor and the pyramidal tract was higher (p = 0.005) in patients with successful mapping of the TA. The possibility to stimulate the leg motor area was associated with no postoperative aggravation of motor deficits in general (p = 0.005, Cramer's V = 0.45, OR = 0.63, 95%CI = 0.46-0.85) but could not serve as a specific predictor of postoperative lower extremity function. In conclusion, successful mapping of the TA muscle for neurosurgical planning is influenced by young patient age, absence of edema and greater distance to the CST, whereas tumor entity and stimulation intensity were non-significant.
Collapse
|
7
|
Mittal N, Thakkar B, Hodges CB, Lewis C, Cho Y, Hadimani RL, Peterson CL. Effect of neuroanatomy on corticomotor excitability during and after transcranial magnetic stimulation and intermittent theta burst stimulation. Hum Brain Mapp 2022; 43:4492-4507. [PMID: 35678552 PMCID: PMC9435000 DOI: 10.1002/hbm.25968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 01/04/2023] Open
Abstract
Individual neuroanatomy can influence motor responses to transcranial magnetic stimulation (TMS) and corticomotor excitability after intermittent theta burst stimulation (iTBS). The purpose of this study was to examine the relationship between individual neuroanatomy and both TMS response measured using resting motor threshold (RMT) and iTBS measured using motor evoked potentials (MEPs) targeting the biceps brachii and first dorsal interosseus (FDI). Ten nonimpaired individuals completed sham‐controlled iTBS sessions and underwent MRI, from which anatomically accurate head models were generated. Neuroanatomical parameters established through fiber tractography were fiber tract surface area (FTSA), tract fiber count (TFC), and brain scalp distance (BSD) at the point of stimulation. Cortical magnetic field induced electric field strength (EFS) was obtained using finite element simulations. A linear mixed effects model was used to assess effects of these parameters on RMT and iTBS (post‐iTBS MEPs). FDI RMT was dependent on interactions between EFS and both FTSA and TFC. Biceps RMT was dependent on interactions between EFS and and both FTSA and BSD. There was no groupwide effect of iTBS on the FDI but individual changes in corticomotor excitability scaled with RMT, EFS, BSD, and FTSA. iTBS targeting the biceps was facilitatory, and dependent on FTSA and TFC. MRI‐based measures of neuroanatomy highlight how individual anatomy affects motor system responses to different TMS paradigms and may be useful for selecting appropriate motor targets when designing TMS based therapies.
Collapse
Affiliation(s)
- Neil Mittal
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Cooper B Hodges
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Connor Lewis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yeajin Cho
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ravi L Hadimani
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carrie L Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
8
|
Kallioniemi E, Awiszus F, Pitkänen M, Julkunen P. Fast acquisition of resting motor threshold with a stimulus-response curve - Possibility or hazard for transcranial magnetic stimulation applications? Clin Neurophysiol Pract 2022; 7:7-15. [PMID: 35024510 PMCID: PMC8733273 DOI: 10.1016/j.cnp.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Previous research has suggested that transcranial magnetic stimulation (TMS) related cortical excitability measures could be estimated quickly using stimulus-response curves with short interstimulus intervals (ISIs). Here we evaluated the resting motor threshold (rMT) estimated with these curves. Methods Stimulus-response curves were measured with three ISIs: 1.2-2 s, 2-3 s, and 3-4 s. Each curve was formed with 108 stimuli using stimulation intensities ranging from 0.75 to 1.25 times the rMTguess, which was estimated based on motor evoked potential (MEP) amplitudes of three scout responses. Results The ISI did not affect the rMT estimated from the curves (F = 0.235, p = 0.683) or single-trial MEP amplitudes at the group level (F = 0.90, p = 0.405), but a significant subject by ISI interaction (F = 3.64; p < 0.001) was detected in MEP amplitudes. No trend was observed which ISI was most excitable, as it varied between subjects. Conclusions At the group level, the stimulus-response curves are unaffected by the short ISI. At the individual level, these curves are highly affected by the ISI. Significance Estimating rMT using stimulus-response curves with short ISIs impacts the rMT estimate and should be avoided in clinical and research TMS applications.
Collapse
Key Words
- APB, abductor pollicis brevis
- EMG, electromyography
- ISI, interstimulus interval
- Interstimulus interval
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- MSO, maximum stimulator output
- Motor evoked potential
- Motor threshold
- SI, stimulation intensity
- Stimulus-response curve
- TMS, transcranial magnetic stimulation
- rMT, resting motor threshold
- rMTRR, resting motor threshold estimated with the Rossini-Rothwell method
- rMTestimate, resting motor threshold estimated with stimulus–response curves
- rMTguess, resting motor threshold estimated with prior information and three scout pulses
- rMTthreshold, resting motor threshold estimated with the threshold-hunting method
- rMTtrue, true resting motor threshold in simulations
Collapse
Affiliation(s)
- Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Friedemann Awiszus
- Neuromuscular Research Group at the Department of Orthopaedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Minna Pitkänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petro Julkunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
A Network-Based Approach to Glioma Surgery: Insights from Functional Neurosurgery. Cancers (Basel) 2021; 13:cancers13236127. [PMID: 34885236 PMCID: PMC8656669 DOI: 10.3390/cancers13236127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This manuscript details the literature and discussion around revolutionizing the neurosurgeon’s approach to surgery for brain tumors by conceptualizing these tumors as entities within functional networks. We hope that the work detailed herein will aid in establishing neurosurgical paradigms to optimize planning for brain tumor surgery to improve functional outcomes for all patients. Abstract The evaluation and manipulation of structural and functional networks, which has been integral to advancing functional neurosurgery, is beginning to transcend classical subspecialty boundaries. Notably, its application in neuro-oncologic surgery has stimulated an exciting paradigm shift from the traditional localizationist approach, which is lacking in nuance and optimization. This manuscript reviews the existing literature and explores how structural and functional connectivity analyses have been leveraged to revolutionize and individualize pre-operative tumor evaluation and surgical planning. We describe how this novel approach may improve cognitive and neurologic preservation after surgery and attenuate tumor spread. Furthermore, we demonstrate how connectivity analysis combined with neuromodulation techniques can be employed to induce post-operative neuroplasticity and personalize neurorehabilitation. While the landscape of functional neuro-oncology is still evolving and requires further study to encourage more widespread adoption, this functional approach can transform the practice of neuro-oncologic surgery and improve the care and outcomes of patients with intra-axial tumors.
Collapse
|
10
|
Zadey S, Buss SS, McDonald K, Press DZ, Pascual-Leone A, Fried PJ. Higher motor cortical excitability linked to greater cognitive dysfunction in Alzheimer's disease: results from two independent cohorts. Neurobiol Aging 2021; 108:24-33. [PMID: 34479168 PMCID: PMC8616846 DOI: 10.1016/j.neurobiolaging.2021.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
Prior studies have reported increased cortical excitability in people with Alzheimer's disease (AD), but findings have been inconsistent, and how excitability relates to dementia severity remains incompletely understood. The objective of this study was to investigate the association between a transcranial magnetic stimulation (TMS) measure of motor cortical excitability and measures of cognition in AD. A retrospective cross-sectional analysis tested the relationship between resting motor threshold (RMT) and the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog) across two independent samples of AD participants (a discovery cohort, n=22 and a larger validation cohort, n=129) and a control cohort of cognitively normal adults (n=26). RMT was correlated with ADAS-Cog in the discovery-AD cohort (n=22, β=-.70, p<0.001) but not in the control cohort (n=26, β=-0.13, p=0.513). This relationship was confirmed in the validation-AD cohort (n=129, β=-.35, p<0.001). RMT can be a useful neurophysiological marker of progressive global cognitive dysfunction in AD. Future translational research should focus on the potential of RMT to predict and track individual pathophysiological trajectories of aging.
Collapse
Affiliation(s)
- Siddhesh Zadey
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Indian Institute of Science Education and Research, Pune, India; Duke Global Health Institute, Duke University, Durham, NC, USA; Association for Socially Applicable Research (ASAR), Pune, India
| | - Stephanie S Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine McDonald
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Daniel Z Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain; Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts, USA.
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Rosenstock T, Häni L, Grittner U, Schlinkmann N, Ivren M, Schneider H, Raabe A, Vajkoczy P, Seidel K, Picht T. Bicentric validation of the navigated transcranial magnetic stimulation motor risk stratification model. J Neurosurg 2021; 136:1194-1206. [PMID: 34534966 DOI: 10.3171/2021.3.jns2138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to validate the navigated transcranial magnetic stimulation (nTMS)-based risk stratification model. The postoperative motor outcome in glioma surgery may be preoperatively predicted based on data derived by nTMS. The tumor-to-tract distance (TTD) and the interhemispheric resting motor threshold (RMT) ratio (as a surrogate parameter for cortical excitability) emerged as major factors related to a new postoperative deficit. METHODS In this bicentric study, a consecutive prospectively collected cohort underwent nTMS mapping with diffusion tensor imaging (DTI) fiber tracking of the corticospinal tract prior to surgery of motor eloquent gliomas. The authors analyzed whether the following items were associated with the patient's outcome: patient characteristics, TTD, RMT value, and diffusivity parameters (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]). The authors assessed the validity of the published risk stratification model and derived a new model. RESULTS A new postoperative motor deficit occurred in 36 of 165 patients (22%), of whom 20 patients still had a deficit after 3 months (13%; n3 months = 152). nTMS-verified infiltration of the motor cortex as well as a TTD ≤ 8 mm were confirmed as risk factors. No new postoperative motor deficit occurred in patients with TTD > 8 mm. In contrast to the previous risk stratification, the RMT ratio was not substantially correlated with the motor outcome, but high RMT values of both the tumorous and healthy hemisphere were associated with worse motor outcome. The FA value was negatively associated with worsening of motor outcome. Accuracy analysis of the final model showed a high negative predictive value (NPV), so the preoperative application may accurately predict the preservation of motor function in particular (day of discharge: sensitivity 47.2%, specificity 90.7%, positive predictive value [PPV] 58.6%, NPV 86.0%; 3 months: sensitivity 85.0%, specificity 78.8%, PPV 37.8%, NPV 97.2%). CONCLUSIONS This bicentric validation analysis further improved the model by adding the FA value of the corticospinal tract, demonstrating the relevance of nTMS/nTMS-based DTI fiber tracking for clinical decision making.
Collapse
Affiliation(s)
- Tizian Rosenstock
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin.,2Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany
| | - Levin Häni
- 3Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ulrike Grittner
- 4Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; and
| | - Nicolas Schlinkmann
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Meltem Ivren
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Heike Schneider
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Andreas Raabe
- 3Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Peter Vajkoczy
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Kathleen Seidel
- 3Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Thomas Picht
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin.,5Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin, Germany
| |
Collapse
|
12
|
Sollmann N, Krieg SM, Säisänen L, Julkunen P. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci 2021; 11:brainsci11070897. [PMID: 34356131 PMCID: PMC8305823 DOI: 10.3390/brainsci11070897] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) has developed into a reliable non-invasive clinical and scientific tool over the past decade. Specifically, it has undergone several validating clinical trials that demonstrated high agreement with intraoperative direct electrical stimulation (DES), which paved the way for increasing application for the purpose of motor mapping in patients harboring motor-eloquent intracranial neoplasms. Based on this clinical use case of the technique, in this article we review the evidence for the feasibility of motor mapping and derived models (risk stratification and prediction, nTMS-based fiber tracking, improvement of clinical outcome, and assessment of functional plasticity), and provide collected sets of evidence for the applicability of quantitative mapping with nTMS. In addition, we provide evidence-based demonstrations on factors that ensure methodological feasibility and accuracy of the motor mapping procedure. We demonstrate that selection of the stimulation intensity (SI) for nTMS and spatial density of stimuli are crucial factors for applying motor mapping accurately, while also demonstrating the effect on the motor maps. We conclude that while the application of nTMS motor mapping has been impressively spread over the past decade, there are still variations in the applied protocols and parameters, which could be optimized for the purpose of reliable quantitative mapping.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA 94143, USA
- Correspondence:
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
13
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
14
|
Short-Interval Intracortical Facilitation Improves Efficacy in nTMS Motor Mapping of Lower Extremity Muscle Representations in Patients with Supra-Tentorial Brain Tumors. Cancers (Basel) 2020; 12:cancers12113233. [PMID: 33147827 PMCID: PMC7692031 DOI: 10.3390/cancers12113233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) is increasingly used for mapping of motor function prior to surgery in patients harboring motor-eloquent brain lesions. To date, single-pulse nTMS (sp-nTMS) has been predominantly used for this purpose, but novel paired-pulse nTMS (pp-nTMS) with biphasic pulse application has been made available recently. The purpose of this study was to systematically evaluate pp-nTMS with biphasic pulses in comparison to conventionally used sp-nTMS for preoperative motor mapping of lower extremity (lE) muscle representations. Thirty-nine patients (mean age: 56.3 ± 13.5 years, 69.2% males) harboring motor-eloquent brain lesions of different entity underwent motor mapping of lE muscle representations in lesion-affected hemispheres and nTMS-based tractography of the corticospinal tract (CST) using data from sp-nTMS and pp-nTMS with biphasic pulses, respectively. Compared to sp-nTMS, pp-nTMS enabled motor mapping with lower stimulation intensities (61.8 ± 13.8% versus 50.7 ± 11.6% of maximum stimulator output, p < 0.0001), and it provided reliable motor maps even in the most demanding cases where sp-nTMS failed (pp-nTMS was able to provide a motor map in five patients in whom sp-nTMS did not provide any motor-positive points, and pp-nTMS was the only modality to provide a motor map in one patient who also did not show motor-positive points during intraoperative stimulation). Fiber volumes of the tracked CST were slightly higher when motor maps of pp-nTMS were used, and CST tracking using pp-nTMS data was also possible in the five patients in whom sp-nTMS failed. In conclusion, application of pp-nTMS with biphasic pulses enables preoperative motor mapping of lE muscle representations even in the most challenging patients in whom the motor system is at high risk due to lesion location or resection.
Collapse
|
15
|
Sollmann N, Zhang H, Kelm A, Schröder A, Meyer B, Pitkänen M, Julkunen P, Krieg SM. Paired-pulse navigated TMS is more effective than single-pulse navigated TMS for mapping upper extremity muscles in brain tumor patients. Clin Neurophysiol 2020; 131:2887-2898. [PMID: 33166740 DOI: 10.1016/j.clinph.2020.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Single-pulse navigated transcranial magnetic stimulation (sp-nTMS) is used for presurgical motor mapping in patients with motor-eloquent lesions. However, recently introduced paired-pulse nTMS (pp-nTMS) with biphasic pulses could improve motor mapping. METHODS Thirty-four patients (mean age: 56.0 ± 12.7 years, 53.0% high-grade glioma) with motor-eloquent lesions underwent motor mapping of upper extremity representations and nTMS-based tractography of the corticospinal tract (CST) by both sp-nTMS and pp-nTMS with biphasic pulses for the tumor-affected hemisphere before resection. RESULTS In three patients (8.8%), conventional sp-nTMS did not provide motor-positive points, in contrast to pp-nTMS that was capable of generating motor maps in all patients. Good concordance between pp-nTMS and sp-nTMS in the spatial location of motor hotspots and center of gravity (CoG) as well as for CST tracking was observed, with pp-nTMS leading to similar motor map volumes (585.0 ± 667.8 vs. 586.8 ± 204.2 mm3, p = 0.9889) with considerably lower resting motor thresholds (35.0 ± 8.8 vs. 32.8 ± 7.6% of stimulator output, p = 0.0004). CONCLUSIONS Pp-nTMS with biphasic pulses may provide motor maps even in highly demanding cases with tumor-affected motor structures or edema, using lower stimulation intensity compared to sp-nTMS. SIGNIFICANCE Pp-nTMS with biphasic pulses could replace standardly used sp-nTMS for motor mapping and may be safer due to lower stimulation intensity.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Haosu Zhang
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Anna Kelm
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Axel Schröder
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Minna Pitkänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland; A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
16
|
Motomura K, Takeuchi H, Nojima I, Aoki K, Chalise L, Iijima K, Wakabayashi T, Natsume A. Navigated repetitive transcranial magnetic stimulation as preoperative assessment in patients with brain tumors. Sci Rep 2020; 10:9044. [PMID: 32493943 PMCID: PMC7270124 DOI: 10.1038/s41598-020-65944-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
We aimed to investigate clinical parameters that affected the results of navigated repetitive transcranial magnetic stimulation (nrTMS) language mapping by comparing the results of preoperative nrTMS language mapping with those of direct cortical stimulation (DCS) mapping. In the prospective, non-randomized study, patients had to meet all of the following inclusion criteria: the presence of left- or right-side brain tumors in the vicinity of or inside the areas anatomically associated with language functions; awake brain surgery scheduled; and age >18 years. Sixty one patients were enrolled, and this study included 42 low-grade gliomas and 19 high-grade gliomas (39 men, 22 women; mean age, 41.1 years, range 18-72 years). The tumor was located in the left and right hemisphere in 50 (82.0%) and 11 (18.0%) patients, respectively. In the 50 patients with left-side gliomas, nrTMS language mapping showed 81.6% sensitivity, 59.6% specificity, 78.5% positive predictive value, and 64.1% negative predictive value when compared with the respective DCS values for detecting language sites in all regions. We then investigated how some parameters, including age, tumor type, tumor volume, and the involvement of anatomical language-related regions, affected different subpopulations. Based on the receiver operating curve statistics, subgroup analysis showed that the non-involvement of language-related regions afforded significantly better the area under the curve (AUC) values (AUC = 0.81, 95% confidence interval (CI): 0.74-0.88) than the involvement of language-related regions (AUC = 0.58, 95% CI: 0.50-0.67; p < 0.0001). Our findings suggest that nrTMS language mapping could be a reliable method, particularly in obtaining responses for cases without tumor-involvement of classical perisylvian language areas.
Collapse
Affiliation(s)
- Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan.
| | - Hiroki Takeuchi
- Department of Neurosurgery, Higashinagoya National Hospital, Nagoya, Japan
| | - Ippei Nojima
- Department of Physical Therapy, School of Health Sciences, Shinshu University, Nagano, Japan
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Lushun Chalise
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Kentaro Iijima
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | | | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Yang X, Zhang K. Navigated transcranial magnetic stimulation brain mapping: Achievements, opportunities, and prospects. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_13_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Navigated transcranial magnetic stimulation of the supplementary motor cortex disrupts fine motor skills in healthy adults. Sci Rep 2019; 9:17744. [PMID: 31780823 PMCID: PMC6883055 DOI: 10.1038/s41598-019-54302-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/06/2019] [Indexed: 11/08/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) over the supplementary motor area (SMA) may impact fine motor skills. This study evaluates different nTMS parameters in their capacity to affect fine motor performance on the way to develop an SMA mapping protocol. Twenty healthy volunteers performed a variety of fine motor tests during baseline and nTMS to the SMA using 5 Hz, 10 Hz, and theta-burst stimulation (TBS). Effects on performance were measured by test completion times (TCTs), standard deviation of inter-tap interval (SDIT), and visible coordination problems (VCPs). The predominant stimulation effect was slowing of TCTs, i.e. a slowdown of test performances during stimulation. Furthermore, participants exhibited VCPs like accidental use of contralateral limbs or inability to coordinate movements. More instances of significant differences between baseline and stimulation occurred during stimulation of the right hemisphere compared to left-hemispheric stimulation. In conclusion, nTMS to the SMA could enable new approaches in neuroscience and enable structured mapping approaches. Specifically, this study supports interhemispheric differences in motor control as right-hemispheric stimulation resulted in clearer impairments. The application of our nTMS-based setup to assess the function of the SMA should be applied in patients with changed anatomo-functional representations as the next step, e.g. among patients with eloquent brain tumors.
Collapse
|
19
|
Measurement of Active Motor Threshold Using a Dynamometer During Navigated Transcranial Magnetic Stimulation in a Patient with Postoperative Brain Tumor: Technical Note. World Neurosurg 2019; 133:42-48. [PMID: 31550542 DOI: 10.1016/j.wneu.2019.09.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Navigated transcranial magnetic stimulation (nTMS) is being used for different purposes in patients with brain tumors. However, the procedure requires a positive electrophysiological response. For patients with negative response in rest conditions, active motor threshold (AMT) may be used. However, sometimes it is difficult to obtain AMT measures owing to inability of the patient to sustain steady muscle contraction. Herein, we describe a simple method by using a hand dynamometer to obtain AMT measures during nTMS session. CASE DESCRIPTION A woman aged 68 years underwent total removal of a right frontal lobe oligodendroglioma World Health Organization grade II 15 years ago. Cranial magnetic resonance imaging during follow-up revealed local recurrence. In the postoperative period, she developed left upper limb paresis. A postoperative nTMS session was performed for motor electrophysiological evaluation. However, using the standard technique for AMT measurement, the patient was unable to perform sustained muscle contraction as required. A hand dynamometer was used. It allowed sustained muscle contraction for AMT measurement. A counter force for the index finger flexion, the hand support to stabilize hand joints, and a numerical screen serving for both the examiner and the patient as a feedback parameter may explain the success obtained with this simple device. CONCLUSIONS Although more studies are necessary to validate the method, the hand dynamometer should be considered for patients unable to sustain muscle contraction during AMT measurement.
Collapse
|
20
|
Goetz SM, Kozyrkov IC, Luber B, Lisanby SH, Murphy DLK, Grill WM, Peterchev AV. Accuracy of robotic coil positioning during transcranial magnetic stimulation. J Neural Eng 2019; 16:054003. [PMID: 31189147 DOI: 10.1088/1741-2552/ab2953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Robotic positioning systems for transcranial magnetic stimulation (TMS) promise improved accuracy and stability of coil placement, but there is limited data on their performance. Investigate the usability, accuracy, and limitations of robotic coil placement with a commercial system, ANT Neuro, in a TMS study. APPROACH 21 subjects underwent a total of 79 TMS sessions corresponding to 160 hours under robotic coil control. Coil position and orientation were monitored concurrently through an additional neuronavigation system. MAIN RESULTS Robot setup took on average 14.5 min. The robot achieved low position and orientation error with median 3.54 mm (overall, 1.34 mm without coil-head spacing) and 3.48°. The error increased over time at a rate of 0.4%/minute for both position and orientation. SIGNIFICANCE Robotic TMS systems can provide accurate and stable coil position and orientation in long TMS sessions. Lack of pressure feedback and of manual adjustment of all coil degrees of freedom were limitations of this robotic system.
Collapse
Affiliation(s)
- Stefan M Goetz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America. Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America. Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
| | | | | | | | | | | | | |
Collapse
|
21
|
Engelhardt M, Schneider H, Gast T, Picht T. Estimation of the resting motor threshold (RMT) in transcranial magnetic stimulation using relative-frequency and threshold-hunting methods in brain tumor patients. Acta Neurochir (Wien) 2019; 161:1845-1851. [PMID: 31286238 DOI: 10.1007/s00701-019-03997-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Application of transcranial magnetic stimulation is often based on the resting motor threshold. The aim of this study was to validate recent findings on the advantage of resting motor threshold estimation using adaptive threshold-hunting algorithms over the Rossini-Rothwell method in a clinical sample and healthy subjects. METHODS Resting motor thresholds in 115 patients with a brain tumor and 10 healthy subjects were assessed using the Rossini-Rothwell method and compared to an adaptive threshold-hunting algorithm. In healthy subjects, this measurement was repeated twice to capture test-retest reliability of both methods. Efficiency of both methods was assessed by comparing the number of pulses needed for resting motor threshold estimation. RESULTS There was no significant difference between the Rossini-Rothwell method and the adaptive threshold-hunting algorithm in patients and healthy controls with limits of agreement between ± 12 V/m. There was a strong intraclass correlation and both methods showed a good test-retest reliability. However, the adaptive threshold-hunting algorithm was significantly faster. CONCLUSIONS The adaptive threshold-hunting algorithm was more efficient in assessing the resting motor threshold, while reaching comparable results as the Rossini-Rothwell method. Thus, our results support the advantage of adaptive threshold-hunting algorithms to determine the resting motor threshold also in a clinical sample.
Collapse
|
22
|
Lam S, Lucente G, Schneider H, Picht T. TMS motor mapping in brain tumor patients: more robust maps with an increased resting motor threshold. Acta Neurochir (Wien) 2019; 161:995-1002. [PMID: 30927156 DOI: 10.1007/s00701-019-03883-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/20/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) has found widespread usage across many clinical centers as part of their surgical planning routines. NTMS offers a non-invasive approach to delineation of the motor cortex, in which the region is outlined through electromagnetic stimulation and electromyographic recordings of target muscles. Several neurophysiological parameters such as the motor evoked potential (MEP) and its derivatives, the resting motor threshold (RMT) and motor latency, are collected. The present study investigates the clinical feasibility and reproducibility of increasing the MEP threshold in brain tumor patients, with the goal to improve the robustness of the procedure. MATERIALS AND METHODS Twenty-three subjects with peri-motor cortex tumors underwent motor mapping with nTMS. RMT was calculated with both conventional 50-μV and experimental 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of both RMTs stimulator intensity using the FDI as the target muscle. RESULTS Motor mapping was possible in 20 patients with both the conventional and experimental thresholds. No significant differences in area size were found between motor area maps generated with a conventional 50-μV threshold in comparison to those generated with the higher 500-μV threshold (50 μV 272.56 mm2 [170.47-434.31] vs. 500 μV 240.54 mm2 [169.77-362.84], P = 0.34). Latency time was significantly reduced in 500-μV recordings relative to 50-μV recordings (50 μV 23.38 ms [22.55-24.51] vs. 500 μV 22.57 ms [21.41-23.70], P < 0.001). Both electric field intensity (50 μV 63.81 V/m [54.26-76.11] vs. 500 μV 77.83 V/m [65.21-93.94], P < 0.001) and RMT (50 μV 33 MSO% [28-36] vs. 500 μV 39.5 MSO% [32-44], P < 0.001) were significantly greater with the higher 500-μV threshold. CONCLUSIONS Our study demonstrates the feasibility of increasing the MEP detection threshold to 500 μV in brain tumor patients for RMT determination and motor area mapping with nTMS.
Collapse
Affiliation(s)
- Steven Lam
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Lucente
- Neuroscience Department, Hospital Universitari Germans Trias I Pujol, Carretera del Canyet s/n, 08916, Badalona, Spain.
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Heike Schneider
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Schwendner MJ, Sollmann N, Diehl CD, Oechsner M, Meyer B, Krieg SM, Combs SE. The Role of Navigated Transcranial Magnetic Stimulation Motor Mapping in Adjuvant Radiotherapy Planning in Patients With Supratentorial Brain Metastases. Front Oncol 2018; 8:424. [PMID: 30333959 PMCID: PMC6176094 DOI: 10.3389/fonc.2018.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/05/2022] Open
Abstract
Purpose: In radiotherapy (RT) of brain tumors, the primary motor cortex is not regularly considered in target volume delineation, although decline in motor function is possible due to radiation. Non-invasive identification of motor-eloquent brain areas is currently mostly restricted to functional magnetic resonance imaging (fMRI), which has shown to lack precision for this purpose. Navigated transcranial magnetic stimulation (nTMS) is a novel tool to identify motor-eloquent brain areas. This study aims to integrate nTMS motor maps in RT planning and evaluates the influence on dosage modulations in patients harboring brain metastases. Materials and Methods: Preoperative nTMS motor maps of 30 patients diagnosed with motor-eloquent brain metastases were fused with conventional planning imaging and transferred to the RT planning software. RT plans of eleven patients were optimized by contouring nTMS motor maps as organs at risk (OARs). Dose modulation analyses were performed using dose-volume histogram (DVH) parameters. Results: By constraining the dose applied to the nTMS motor maps outside the planning target volume (PTV) to 15 Gy, the mean dose (Dmean) to the nTMS motor maps was significantly reduced by 18.1% from 23.0 Gy (16.9–30.4 Gy) to 18.9 Gy (13.5–28.8 Gy, p < 0.05). The Dmean of the PTV increased by 0.6 ± 0.3 Gy (1.7%). Conclusion: Implementing nTMS motor maps in standard RT planning is feasible in patients suffering from intracranial metastases. A significant reduction of the dose applied to the nTMS motor maps can be achieved without impairing treatment doses to the PTV. Thus, nTMS might provide a valuable tool for safer application of RT in patients harboring motor-eloquent brain metastases.
Collapse
Affiliation(s)
- Maximilian J Schwendner
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian D Diehl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Oechsner
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Radiation Sciences, Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
24
|
Sollmann N, Fuss-Ruppenthal S, Zimmer C, Meyer B, Krieg SM. Investigating Stimulation Protocols for Language Mapping by Repetitive Navigated Transcranial Magnetic Stimulation. Front Behav Neurosci 2018; 12:197. [PMID: 30250427 PMCID: PMC6139335 DOI: 10.3389/fnbeh.2018.00197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/13/2018] [Indexed: 11/15/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) is increasingly applied to map human language functions. However, studies on protocol comparisons are mostly lacking. In this study, 20 healthy volunteers (25.7 ± 3.8 years, 12 females) underwent left-hemispheric language mapping by nTMS, combined with an object-naming task, over a cortical spot with reproducible naming errors within the triangular or opercular part of the inferior frontal gyrus (trIFG, opIFG: anterior stimulation) and the angular gyrus or posterior part of the superior temporal gyrus (anG, pSTG: posterior stimulation), respectively. Various stimulation intensities [80, 100, and 120% of the resting motor threshold (rMT)], frequencies (2, 5, 10, and 20 Hz), and coil orientations (in steps of 45°) were evaluated, and the adjustments leading to the highest error rates (ERs), combined with low occurrences of errors due to muscle stimulation, were considered optimal. Regarding anterior stimulation, 100% rMT, 5 Hz, and a coil orientation of 90° or 270° in relation to the respective stimulated gyrus resulted in optimal results. For posterior stimulation, 100% rMT, 10 Hz, and coil orientations of 90° or 270° were considered optimal. Errors due to facial muscle stimulation only played a considerable role during analyses of high-intensity (120% rMT) or high-frequency stimulation (20 Hz). In conclusion, this is one of the first studies to systematically investigate different stimulation protocols for nTMS language mapping, including detailed analyses of the distribution of ERs in relation to various coil orientations considered during neuronavigated stimulation. Mapping with 100% rMT, combined with 5 Hz (anterior stimulation) or 10 Hz (posterior stimulation) and a coil orientation perpendicular to the respective stimulated gyrus can be recommended as optimal adjustments.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Fuss-Ruppenthal
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
25
|
Lucente G, Lam S, Schneider H, Picht T. Preservation of motor maps with increased motor evoked potential amplitude threshold in RMT determination. Acta Neurochir (Wien) 2018; 160:325-330. [PMID: 29214399 DOI: 10.1007/s00701-017-3417-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Non-invasive pre-surgical mapping of eloquent brain areas with navigated transcranial magnetic stimulation (nTMS) is a useful technique linked to the improvement of surgical planning and patient outcomes. The stimulator output intensity and subsequent resting motor threshold determination (rMT) are based on the motor-evoked potential (MEP) elicited in the target muscle with an amplitude above a predetermined threshold of 50 μV. However, a subset of patients is unable to achieve complete relaxation in the target muscles, resulting in false positives that jeopardize mapping validity with conventional MEP determination protocols. Our aim is to explore the feasibility and reproducibility of a novel mapping approach that investigates how an increase of the MEP amplitude threshold to 300 and 500 μV affects subsequent motor maps. MATERIALS AND METHODS Seven healthy subjects underwent motor mapping with nTMS. RMT was calculated with the conventional methodology in conjunction with experimental 300- and 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of rMT stimulator intensity using the FDI as the target muscle. RESULTS Motor mapping was possible in all patients with both the conventional and experimental setups. Motor area maps with a conventional 50-μV threshold showed poor correlation with 300-μV (α = 0.446, p < 0.001) maps, but showed excellent consistency with 500-μV motor area maps (α = 0.974, p < 0.001). MEP latencies were significantly less variable (23 ms for 50 μV vs. 23.7 ms for 300 μV vs. 23.7 ms for 500 μV, p < 0.001). A slight but significant increase of the electric field (EF) value was found (EF: 60.8 V/m vs. 64.8 V/m vs. 66 V/m p < 0.001). CONCLUSION Our study demonstrates the feasibility of increasing the MEP detection threshold to 500 μV in rMT determination and motor area mapping with nTMS without losing precision.
Collapse
Affiliation(s)
- Giuseppe Lucente
- Neuroscience Department, Hospital Universitari Germans Trias I Pujol, Barcelona, Spain.
| | - Steven Lam
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Schneider
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Reorganization of Motor Representations in Patients with Brain Lesions: A Navigated Transcranial Magnetic Stimulation Study. Brain Topogr 2017; 31:288-299. [DOI: 10.1007/s10548-017-0589-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
27
|
Rosenstock T, Giampiccolo D, Schneider H, Runge SJ, Bährend I, Vajkoczy P, Picht T. Specific DTI seeding and diffusivity-analysis improve the quality and prognostic value of TMS-based deterministic DTI of the pyramidal tract. NEUROIMAGE-CLINICAL 2017; 16:276-285. [PMID: 28840099 PMCID: PMC5560117 DOI: 10.1016/j.nicl.2017.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/22/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
Object Navigated transcranial magnetic stimulation (nTMS) combined with diffusion tensor imaging (DTI) is used preoperatively in patients with eloquent-located brain lesions and allows analyzing non-invasively the spatial relationship between the tumor and functional areas (e.g. the motor cortex and the corticospinal tract [CST]). In this study, we examined the diffusion parameters FA (fractional anisotropy) and ADC (apparent diffusion coefficient) within the CST in different locations and analyzed their interrater reliability and usefulness for predicting the patients' motor outcome with a precise approach of specific region of interest (ROI) seeding based on the color-coded FA-map. Methods Prospectively collected data of 30 patients undergoing bihemispheric nTMS mapping followed by nTMS-based DTI fiber tracking prior to surgery of motor eloquent high-grade gliomas were analyzed by 2 experienced and 1 unexperienced examiner. The following data were scrutinized for both hemispheres after tractography based on nTMS-motor positive cortical seeds and a 2nd region of interest in one layer of the caudal pons defined by the color-coded FA-map: the pre- and postoperative motor status (day of discharge und 3 months), the closest distance between the tracts and the tumor (TTD), the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC). The latter as an average within the CST as well as specific values in different locations (peritumoral, mesencephal, pontine). Results Lower average FA-values within the affected CST as well as higher average ADC-values are significantly associated with deteriorated postoperative motor function (p = 0.006 and p = 0.026 respectively). Segmental analysis within the CST revealed that the diffusion parameters are especially disturbed on a peritumoral level and that the degree of their impairment correlates with motor deficits (FA p = 0.065, ADC p = 0.007). No significant segmental variation was seen in the healthy hemisphere. The interrater reliability showed perfect agreement for almost all analyzed parameters. Conclusions Adding diffusion weighted imaging derived information on the structural integrity of the nTMS-based tractography results improves the predictive power for postoperative motor outcome. Utilizing a second subcortical ROI which is specifically seeded based on the color-coded FA map increases the tracking quality of the CST independently of the examiner's experience. Further prospective studies are needed to validate the nTMS-based prediction of the patient's outcome. ROI seeding based on nTMS-data and FA-maps improves DTI tractography of the CST. Perfect interrater reliability for DTI tractography of the CST was observed. The pattern of diffusivity disturbance predicts the postoperative motor outcome.
Collapse
Affiliation(s)
- Tizian Rosenstock
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Davide Giampiccolo
- Institute of Neurosurgery, University Hospital, Piazzale Stefani 1, 37100 Verona, Italy
| | - Heike Schneider
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Sophia Jutta Runge
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Ina Bährend
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
28
|
Sollmann N, Bulubas L, Tanigawa N, Zimmer C, Meyer B, Krieg SM. The variability of motor evoked potential latencies in neurosurgical motor mapping by preoperative navigated transcranial magnetic stimulation. BMC Neurosci 2017; 18:5. [PMID: 28049425 PMCID: PMC5209850 DOI: 10.1186/s12868-016-0321-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Abstract
Background Recording of motor evoked potentials (MEPs) is used during navigated transcranial magnetic stimulation (nTMS) motor mapping to locate motor function in the human brain. However, factors potentially underlying MEP latency variability in neurosurgical motor mapping are vastly unknown. In the context of this study, one hundred brain tumor patients underwent preoperative nTMS-based motor mapping of the tumor hemisphere between 2010 and 2013. Fourteen predefined predictor variables were recorded, and MEP latencies of abductor pollicis brevis muscle (APB), abductor digiti minimi muscle (ADM), and flexor carpi radialis muscle (FCR) were analyzed using linear mixed-effect multiple regression analysis with the forward step-wise model comparison approach. Results Common factors (relevant to APB, ADM, and FCR) for MEP latency variability were gender, most likely due to body height, and antiepileptic drug (AED) intake. Muscle-specific factors (relevant to APB, ADM, or FCR) for MEP latency variability were resting motor threshold (rMT), tumor side, and tumor location. Conclusions Based on a large cohort of neurosurgical patients, this study provides data on a wide range of clinical factors that may underlie MEP latency variability. The factors that significantly contributed to MEP latency variability should be standardly recorded and taken into consideration during neurosurgical motor mapping.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lucia Bulubas
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Noriko Tanigawa
- Faculty of Linguistics, Philology, and Phonetics, University of Oxford, Walton Street, Oxford, OX1 2HG, UK
| | - Claus Zimmer
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|