1
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
2
|
Meligova AK, Siakouli D, Stasinopoulou S, Xenopoulou DS, Zoumpouli M, Ganou V, Gkotsi EF, Chatziioannou A, Papadodima O, Pilalis E, Alexis MN, Mitsiou DJ. ERβ1 Sensitizes and ERβ2 Desensitizes ERα-Positive Breast Cancer Cells to the Inhibitory Effects of Tamoxifen, Fulvestrant and Their Combination with All-Trans Retinoic Acid. Int J Mol Sci 2023; 24:ijms24043747. [PMID: 36835157 PMCID: PMC9959521 DOI: 10.3390/ijms24043747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Adjuvant endocrine therapy (AET) is the treatment of choice for early-stage estrogen receptor alpha (ERα)-positive breast cancer (BC). However, almost 40% of tamoxifen-treated cases display no response or a partial response to AET, thus increasing the need for new treatment options and strong predictors of the therapeutic response of patients at high risk of relapse. In addition to ERα, BC research has focused on ERβ1 and ERβ2 (isoforms of ERβ), the second ER isotype. At present, the impact of ERβ isoforms on ERα-positive BC prognosis and treatment remains elusive. In the present study, we established clones of MCF7 cells constitutively expressing human ERβ1 or ERβ2 and investigated their role in the response of MCF7 cells to antiestrogens [4-hydroxytamoxifen (OHΤ) and fulvestrant (ICI182,780)] and retinoids [all-trans retinoic acid (ATRA)]. We show that, compared to MCF7 cells, MCF7-ERβ1 and MCF7-ERβ2 cells were sensitized and desensitized, respectively, to the antiproliferative effect of the antiestrogens, ATRA and their combination and to the cytocidal effect of the combination of OHT and ATRA. Analysis of the global transcriptional changes upon OHT-ATRA combinatorial treatment revealed uniquely regulated genes associated with anticancer effects in MCF7-ERβ1 cells and cancer-promoting effects in MCF7-ERβ2 cells. Our data are favorable to ERβ1 being a marker of responsiveness and ERβ2 being a marker of resistance of MCF7 cells to antiestrogens alone and in combination with ATRA.
Collapse
Affiliation(s)
- Aggeliki K. Meligova
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Dimitra Siakouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Sotiria Stasinopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Despoina S. Xenopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Zoumpouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassiliki Ganou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Eleni-Fani Gkotsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Michael N. Alexis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (M.N.A.); (D.J.M.)
| | - Dimitra J. Mitsiou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (M.N.A.); (D.J.M.)
| |
Collapse
|
3
|
Song D, He H, Indukuri R, Huang Z, Stepanauskaite L, Sinha I, Haldosén LA, Zhao C, Williams C. ERα and ERβ Homodimers in the Same Cellular Context Regulate Distinct Transcriptomes and Functions. Front Endocrinol (Lausanne) 2022; 13:930227. [PMID: 35872983 PMCID: PMC9299245 DOI: 10.3389/fendo.2022.930227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The two estrogen receptors ERα and ERβ are nuclear receptors that bind estrogen (E2) and function as ligand-inducible transcription factors. They are homologues and can form dimers with each other and bind to the same estrogen-response element motifs in the DNA. ERα drives breast cancer growth whereas ERβ has been reported to be anti-proliferative. However, they are rarely expressed in the same cells, and it is not fully investigated to which extent their functions are different because of inherent differences or because of different cellular context. To dissect their similarities and differences, we here generated a novel estrogen-dependent cell model where ERα homodimers can be directly compared to ERβ homodimers within the identical cellular context. By using CRISPR-cas9 to delete ERα in breast cancer MCF7 cells with Tet-Off-inducible ERβ expression, we generated MCF7 cells that express ERβ but not ERα. MCF7 (ERβ only) cells exhibited regulation of estrogen-responsive targets in a ligand-dependent manner. We demonstrated that either ER was required for MCF7 proliferation, but while E2 increased proliferation via ERα, it reduced proliferation through a G2/M arrest via ERβ. The two ERs also impacted migration differently. In absence of ligand, ERβ increased migration, but upon E2 treatment, ERβ reduced migration. E2 via ERα, on the other hand, had no significant impact on migration. RNA sequencing revealed that E2 regulated a transcriptome of around 800 genes via each receptor, but over half were specific for either ERα or ERβ (417 and 503 genes, respectively). Functional gene ontology enrichment analysis reinforced that E2 regulated cell proliferation in opposite directions depending on the ER, and that ERβ specifically impacted extracellular matrix organization. We corroborated that ERβ bound to cis-regulatory chromatin of its unique proposed migration-related direct targets ANXA9 and TFAP2C. In conclusion, we demonstrate that within the same cellular context, the two ERs regulate cell proliferation in the opposite manner, impact migration differently, and each receptor also regulates a distinct set of target genes in response to E2. The developed cell model provides a novel and valuable resource to further complement the mechanistic understanding of the two different ER isoforms.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Huan He
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Public Health, Jilin University, Changchun, China
| | - Rajitha Indukuri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaite
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Indranil Sinha
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Arne Haldosén
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
- *Correspondence: Cecilia Williams,
| |
Collapse
|
4
|
Abstract
Breast cancer, a malignant tumor originating from mammary epithelial tissue, is the most common cancer among women worldwide. Challenges facing the diagnosis and treatment of breast cancer necessitate the search for new mechanisms and drugs to improve outcomes. Estrogen receptor (ER) is considered to be important for determining the diagnosis and treatment strategy. The discovery of the second estrogen receptor, ERβ, provides an opportunity to understand estrogen action. The emergence of ERβ can be traced back to 1996. Over the past 20 years, an increasing body of evidence has implicated the vital effect of ERβ in breast cancer. Although there is controversy among scholars, ERβ is generally thought to have antiproliferative effects in disease progression. This review summarizes available evidence regarding the involvement of ERβ in the clinical treatment and prognosis of breast cancer and describes signaling pathways associated with ERβ. We hope to highlight the potential of ERβ as a therapeutic target.
Collapse
|
5
|
Dunphy KA, Black AL, Roberts AL, Sharma A, Li Z, Suresh S, Browne EP, Arcaro KF, Ser-Dolansky J, Bigelow C, Troester MA, Schneider SS, Makari-Judson G, Crisi GM, Jerry DJ. Inter-Individual Variation in Response to Estrogen in Human Breast Explants. J Mammary Gland Biol Neoplasia 2020; 25:51-68. [PMID: 32152951 PMCID: PMC7147970 DOI: 10.1007/s10911-020-09446-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Exposure to estrogen is strongly associated with increased breast cancer risk. While all women are exposed to estrogen, only 12% are expected to develop breast cancer during their lifetime. These women may be more sensitive to estrogen, as rodent models have demonstrated variability in estrogen sensitivity. Our objective was to determine individual variation in expression of estrogen receptor (ER) and estrogen-induced responses in the normal human breast. Human breast tissue from female donors undergoing reduction mammoplasty surgery were collected for microarray analysis of ER expression. To examine estrogen-induced responses, breast tissue from 23 female donors were cultured ex- vivo in basal or 10 nM 17β-estradiol (E2) media for 4 days. Expression of ER genes (ESR1 and ESR2) increased significantly with age. E2 induced consistent increases in global gene transcription, but expression of target genes AREG, PGR, and TGFβ2 increased significantly only in explants from nulliparous women. E2-treatment did not induce consistent changes in proliferation or radiation induced apoptosis. Responses to estrogen are highly variable among women and not associated with levels of ER expression, suggesting differences in intracellular signaling among individuals. The differences in sensitivity to E2-stimulated responses may contribute to variation in risk of breast cancer.
Collapse
Affiliation(s)
- Karen A Dunphy
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Amye L Black
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Amy L Roberts
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Aman Sharma
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Zida Li
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sneha Suresh
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Eva P Browne
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kathleen F Arcaro
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, USA
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sallie S Schneider
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Pioneer Valley Life Sciences, Springfield, MA, USA
| | - Grace Makari-Judson
- Division of Hematology-Oncology, University of Massachusetts Medical School/Baystate, Springfield, MA, USA
| | - Giovanna M Crisi
- Department of Pathology, University of Massachusetts Medical School/Baystate, Springfield, MA, USA
| | - D Joseph Jerry
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Pioneer Valley Life Sciences, Springfield, MA, USA
| |
Collapse
|
6
|
Makar S, Saha T, Swetha R, Gutti G, Kumar A, Singh SK. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. Bioorg Chem 2019; 94:103380. [PMID: 31757413 DOI: 10.1016/j.bioorg.2019.103380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
Drug discovery and development have gained momentum due to the rational drug design by engaging computational tools and bioinformatics methodologies. Bioisosteric replacements and hybrid molecular approaches are the other inventive processes, used by medicinal chemists for the desired modifications of leads for clinical drug candidates. SERMs, ought to produce inhibitory activity in breast, uterus and agonist activity in other tissues, are beneficial for estrogen-like actions. ER subtypes α and β are hormone dependent modulators of intracellular signaling and gene expression, and development of ER selective ligands could be an effective approach for treatment of breast cancer. This report has critically investigated the possible designing considerations of SERMs, their in silico interactions, and potent pharmacophore generation approaches viz. indole, restricted benzothiophene [3, 2-b] indole, carborane, xanthendione, combretastatin A-4, organometallic heterocycles, OBHS-SAHA hybrids, benzopyranones, tetrahydroisoquinolines, Dig G derivatives and their specifications in drug design and development, to rationally improve the understanding in drug discovery. This also includes various strategies for the development of dual inhibitors for the management of antiestrogenic resistance.
Collapse
Affiliation(s)
- Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India.
| |
Collapse
|
7
|
Saha T, Makar S, Swetha R, Gutti G, Singh SK. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur J Med Chem 2019; 177:116-143. [PMID: 31129450 DOI: 10.1016/j.ejmech.2019.05.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a most common malignancy in women, was known to be associated with steroid hormone estrogen. The discovery of estrogen receptor (ER) gave us not only a powerful predictive and prognostic marker, but also an efficient target for the treatment of hormone-dependent breast cancer with various estrogen ligands. ER consists of two subtypes i.e. ERα and ERβ, that are mostly G-protein-coupled receptors and activated by estrogen, specially 17β-estradiol. The activation is followed by translocation into the nucleus and binding with DNA to modulate activities of different genes. ERs can manage synthesis of RNA through genomic actions without directly binding to DNA. Receptors are tethered by protein-protein interactions to a transcription factor complex to communicate with DNA. Estrogens also exhibit nongenomic actions, a characteristic feature of steroid hormones, which are so rapid to be considered by the activation of RNA and translation. These are habitually related to stimulation of different protein kinase cascades. Majority of post-menopausal breast cancer is estrogen dependent, mostly potent biological estrogen (E2) for continuous growth and proliferation. Estrogen helps in regulating the differentiation and proliferation of normal breast epithelial cells. In this review we have investigated the important role of ER in development and progression of breast cancer, which is complicated by receptor's interaction with co-regulatory proteins, cross-talk with other signal transduction pathways and development of treatment strategies viz. selective estrogen receptor modulators (SERMs), selective estrogen receptor down regulators (SERDs), aromatase and sulphatase inhibitors.
Collapse
Affiliation(s)
- Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India.
| |
Collapse
|
8
|
Anestis A, Sarantis P, Theocharis S, Zoi I, Tryfonopoulos D, Korogiannos A, Koumarianou A, Xingi E, Thomaidou D, Kontos M, Papavassiliou AG, Karamouzis MV. Estrogen receptor beta increases sensitivity to enzalutamide in androgen receptor-positive triple-negative breast cancer. J Cancer Res Clin Oncol 2019; 145:1221-1233. [PMID: 30805773 DOI: 10.1007/s00432-019-02872-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Androgen receptor (AR) is playing an important role in the progression of a subset of TNBC. We evaluated the impact of ERβ expression along with anti-AR drugs in AR-positive TNBC. METHODS ERβ expression was examined in AR-positive TNBC cell line using MTT assay, scratch and Annexin V-FITC assay in the presence or absence of anti-androgens. Protein levels of involved molecules were assessed using Western blot. Receptors' localization was detected by immunofluorescence and their physical association was examined using proximity ligation assay (PLA), which enables the visualization of interacting proteins in fixed cells and tissues. RESULTS Transient transfection of ERβ in MDA-MB 453 AR-positive TNBC cell line significantly inhibited cell proliferation, metastatic potential and induced apoptosis. ERβ expression reversed the aggravating role of AR in both indirect and direct ways. Indirectly, ERβ decreased AR activation through the inhibition of PI3K/AKT signaling pathway. Directly, ERβ formed heterodimers with AR in MDA-MB 453 cells and in human tissue samples impeding AR from forming homodimers. Enzalutamide is a more potent anti-androgen in AR + TNBC compared to bicalutamide. ERβ expression increased the sensitivity of MDA-MB 453 cells to anti-androgens and especially to enzalutamide. The administration of enzalutamide enhanced AR:ERβ heterodimers formation increasing the anti-tumor capacity of ERβ. CONCLUSIONS Collectively, our results provide evidence for a novel mechanism by which ERβ exerts oncosuppressive effect in AR-positive TBNC through direct and indirect interactions with AR. Moreover, ERβ expression may identify a new subset of TNBC that would respond more favorable to anti-androgens.
Collapse
Affiliation(s)
- Aristomenis Anestis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Stamatios Theocharis
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ilianna Zoi
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | | | | | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | | | - Michalis Kontos
- First Department of Surgery, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Jiang H, Fan J, Cheng L, Hu P, Liu R. The anticancer activity of genistein is increased in estrogen receptor beta 1-positive breast cancer cells. Onco Targets Ther 2018; 11:8153-8163. [PMID: 30532556 PMCID: PMC6241715 DOI: 10.2147/ott.s182239] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Most breast cancers are estrogen dependent and were sensitive to endocrine therapy, and genistein (GEN) shows strong affinity with human oestrogen receptor beta (ERβ). Purpose The present study aimed to investigate the anticancer activity of GEN in breast cancer cell lines that constitutively expressing ERβ1 in vitro and in vivo. Methods MCF-7/ERβ1 and MDA-MB-231/ERβ1 cell sub-lines were established through lentiviral infection. Then, cells were treated with increasing concentrations of GEN (10-6 mol/l, 10-5 mol/l and 10-4 mol/l) for 48 h, and cell proliferation, cell cycle analyses were performed to investigate different biological characteristics of ERβ1-overexpressing cell lines. Studies in vivo were also performed to investigate the effects of dietary GEN on MCF-7/ERβ1 and MDA-MB-231/ERβ1 cells implanted mice. Results Results showed that compared to parental cells, GEN inhibited the proliferation ability of MCF-7/ERβ1 cells to a greater extent, especially at high concentrations. MDA-MB-231 cells were also inhibited by high doses of GEN, but the overexpressed ERβ1 did not enhance the anti-proliferative effect on MDA-MB-231 cells. ERβ1 arrested cells in G2/M phase, and GEN arrested cells in G0/G1, which led to a combinatorial effect on cell cycle blockade. Furthermore, ERβ1 increased the anti-tumour activity of dietary GEN in MCF-7/ERβ1 subcutaneous tumour models. Our data indicated that ERβ1 increased the anticancer efficacy of GEN in MCF-7 cells by affecting cell cycle transition. Conclusion As a result, GEN could be a potential therapeutic agent for ERβ1-positive cancer.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Breast and Thyroid Surgery, Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China,
| | - Jingjing Fan
- Department of Breast and Neck Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830011, People's Republic of China
| | - Lin Cheng
- Department of Breast and Thyroid Surgery, Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China,
| | - Pan Hu
- Department of Breast and Thyroid Surgery, Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China,
| | - Renbin Liu
- Department of Breast and Thyroid Surgery, Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China,
| |
Collapse
|
10
|
LaPlante CD, Bansal R, Dunphy KA, Jerry DJ, Vandenberg LN. Oxybenzone Alters Mammary Gland Morphology in Mice Exposed During Pregnancy and Lactation. J Endocr Soc 2018; 2:903-921. [PMID: 30057971 PMCID: PMC6057512 DOI: 10.1210/js.2018-00024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
Hormones and endocrine-disrupting chemicals are generally thought to have permanent “organizational” effects when exposures occur during development but not adulthood. Yet, an increasing number of studies have shown that pregnant females are disrupted by endocrine-disrupting chemical exposures, with some effects that are permanent. Here, we examined the long-term effects of exposure to oxybenzone, an estrogenic chemical found in sunscreen and personal care products, on the morphology of the mammary gland in mice exposed during pregnancy and lactation. Female mice were exposed to vehicle or 30, 212, or 3000 µg oxybenzone/kg/d, from pregnancy day 0 until weaning. A nulliparous group, receiving vehicle treatment, was also evaluated. Mammary glands were collected 5 weeks after involution for whole-mount, histological, immunohistochemical, and molecular analyses. Exposure to 3000 µg oxybenzone/kg/d induced permanent changes to ductal density that was significantly different from both the nulliparous and vehicle groups. The two highest doses of oxybenzone similarly induced an intermediate phenotype for expression of progesterone receptor. A monotonic, dose-dependent increase in cell proliferation was also observed in the oxybenzone-treated females, becoming statistically significant at the highest dose. Finally, oxybenzone exposure induced an intermediate phenotype for Esr1 expression in all oxybenzone-treated groups. These data suggest that oxybenzone, at doses relevant to human exposures, produces long-lasting alterations to mammary gland morphology and function. Further studies are needed to determine if exposure to this chemical during pregnancy and lactation will interfere with the known protection that pregnancy provides against breast cancer.
Collapse
Affiliation(s)
- Charlotte D LaPlante
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Ruby Bansal
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Karen A Dunphy
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - D Joseph Jerry
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
11
|
Giurato G, Nassa G, Salvati A, Alexandrova E, Rizzo F, Nyman TA, Weisz A, Tarallo R. Quantitative mapping of RNA-mediated nuclear estrogen receptor β interactome in human breast cancer cells. Sci Data 2018; 5:180031. [PMID: 29509190 PMCID: PMC5839158 DOI: 10.1038/sdata.2018.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
The nuclear receptor estrogen receptor 2 (ESR2, ERβ) modulates cancer cell proliferation and tumor growth, exerting an oncosuppressive role in breast cancer (BC). Interaction proteomics by tandem affinity purification coupled to mass spectrometry was previously applied in BC cells to identify proteins acting in concert with ERβ to control key cellular functions, including gene transcription, RNA splicing and post-transcriptional mRNA regulation. These studies revealed an involvement of RNA in ERβ interactome assembly and functions. By applying native protein complex purification followed by nano LC-MS/MS before and after in vitro RNA removal, we generated a large dataset of newly identified nuclear ERβ interactors, including a subset associating with the receptor via RNA bridging. These datasets will be useful to investigate further the role of ERβ, nuclear RNAs and the other proteins identified here in BC and other cell types.
Collapse
Affiliation(s)
- Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy.,Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi (SA), Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0372 Oslo, Norway
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi (SA), Italy
| |
Collapse
|
12
|
Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect. Proc Natl Acad Sci U S A 2018; 115:E2653-E2662. [PMID: 29487210 DOI: 10.1073/pnas.1716224115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is currently an unmet need for versatile techniques to monitor the assembly and dynamics of ternary complexes in live cells. Here we describe bioluminescence resonance energy transfer with fluorescence enhancement by combined transfer (BRETFect), a high-throughput technique that enables robust spectrometric detection of ternary protein complexes based on increased energy transfer from a luciferase to a fluorescent acceptor in the presence of a fluorescent intermediate. Its unique donor-intermediate-acceptor relay system is designed so that the acceptor can receive energy either directly from the donor or indirectly via the intermediate in a combined transfer, taking advantage of the entire luciferase emission spectrum. BRETFect was used to study the ligand-dependent cofactor interaction properties of the estrogen receptors ERα and ERβ, which form homo- or heterodimers whose distinctive regulatory properties are difficult to dissect using traditional methods. BRETFect uncovered the relative capacities of hetero- vs. homodimers to recruit receptor-specific cofactors and regulatory proteins, and to interact with common cofactors in the presence of receptor-specific ligands. BRETFect was also used to follow the assembly of ternary complexes between the V2R vasopressin receptor and two different intracellular effectors, illustrating its use for dissection of ternary protein-protein interactions engaged by G protein-coupled receptors. Our results indicate that BRETFect represents a powerful and versatile technique to monitor the dynamics of ternary interactions within multimeric complexes in live cells.
Collapse
|
13
|
Reese JM, Bruinsma ES, Monroe DG, Negron V, Suman VJ, Ingle JN, Goetz MP, Hawse JR. ERβ inhibits cyclin dependent kinases 1 and 7 in triple negative breast cancer. Oncotarget 2017; 8:96506-96521. [PMID: 29228549 PMCID: PMC5722501 DOI: 10.18632/oncotarget.21787] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/16/2017] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC), which comprises approximately 15% of all primary breast cancer diagnoses, lacks estrogen receptor alpha, progesterone receptor and human epidermal growth factor receptor 2 expression. However, we, and others, have demonstrated that approximately 30% of TNBCs express estrogen receptor beta (ERβ), a nuclear hormone receptor and potential drug target. Treatment of ERβ expressing MDA-MB-231 cells with estrogen or the ERβ selective agonist, LY500307, was shown to result in suppression of cell proliferation. This inhibitory effect was due to blockade of cell cycle progression. In vivo, estrogen treatment significantly repressed the growth of ERβ expressing MDA-MB-231 cell line xenografts. Gene expression studies and ingenuity pathway analysis identified a network of ERβ down-regulated genes involved in cell cycle progression including CDK1, cyclin B and cyclin H. siRNA mediated knockdown or drug inhibition of CDK1 and CDK7 in TNBC cells resulted in substantial decreases in proliferation regardless of ERβ expression. These data suggest that the tumor suppressive effects of ERβ in TNBC result from inhibition of cell cycle progression, effects that are in part mediated by suppression of CDK1/7. Furthermore, these data indicate that blockade of CDK1/7 activity in TNBC may be of therapeutic benefit, an area of study that has yet to be explored.
Collapse
Affiliation(s)
- Jordan M Reese
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - David G Monroe
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Vivian Negron
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vera J Suman
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
15
|
Ren YQ, Wang HJ, Zhang YQ, Liu YB. WBP2 modulates G1/S transition in ER+ breast cancer cells and is a direct target of miR-206. Cancer Chemother Pharmacol 2017; 79:1003-1011. [PMID: 28391353 DOI: 10.1007/s00280-017-3302-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE The mechanisms underlying the oncogenic properties of WW domain binding protein 2 (WBP2) in breast cancer have not been fully understood. In this study, we explored the role of WBP2 in cell cycle regulation in ER+ breast cancer cells and how it is regulated in the cancer cells. METHODS The association between WBP2 expression and prognosis in ER+ breast cancer was assessed by data mining in Breast Cancer Gene-Expression Miner v4.0. Cell cycle was assessed by PI staining and flow cytometry. EdU staining was applied to visualize cells in S phase. The binding between miR-206 and WBP2 were verified by dual luciferase assay. CCK-8 assay and flow cytometric analysis were applied to assess the functional role of WBP2 and miR-206 in the cancer cells. RESULTS High WBP2 expression correlates with higher risk of any events (AE) and metastatic relapse (MR) and also indicates shorter AE-free survival and MR-free survival in ER+ breast cancer patients. In both MCF-7 and BT474 cells, WBP can influence the expression of G1/S-related cell cycle proteins, including p21, CDK4, and cyclin D1. In addition, WBP2 overexpression resulted in facilitated G1/S transition, while WBP2 knockdown impaired the transition. The 3'UTR of WBP2 has a conserved miR-206 binding site. Functionally, miR-206 knockdown decreased tamoxifen sensitivity in tamoxifen-sensitive (TamS) MCF-7 cells, while miR-206 overexpression and WBP2 knockdown enhanced the sensitivity in tamoxifen-resistant (TamR) MCF-7 cells. CONCLUSION Based on these findings, we infer that the miR-206/WBP2 axis can modulate tamoxifen sensitivity via regulating G1/S progression in ER+ breast cancer.
Collapse
Affiliation(s)
- Yong-Qiang Ren
- Clinical Laboratory, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Hui-Jun Wang
- Department of Breast and Thyroid Surgery, People's Hospital of Rizhao, Rizhao, 276800, Shandong, China
| | - Yong-Qing Zhang
- Department of Breast Surgery, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Yan-Bing Liu
- Breast Center, Shandong Cancer Hospital and Institute, Jinan, 250017, Shandong, China.
| |
Collapse
|
16
|
Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate. Proc Natl Acad Sci U S A 2017; 114:E3816-E3822. [PMID: 28439009 DOI: 10.1073/pnas.1702211114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As estrogen receptor β-/- (ERβ-/-) mice age, the ventral prostate (VP) develops increased numbers of hyperplastic, fibroplastic lesions and inflammatory cells. To identify genes involved in these changes, we used RNA sequencing and immunohistochemistry to compare gene expression profiles in the VP of young (2-mo-old) and aging (18-mo-old) ERβ-/- mice and their WT littermates. We also treated young and old WT mice with an ERβ-selective agonist and evaluated protein expression. The most significant findings were that ERβ down-regulates androgen receptor (AR) signaling and up-regulates the tumor suppressor phosphatase and tensin homolog (PTEN). ERβ agonist increased expression of the AR corepressor dachshund family (DACH1/2), T-cadherin, stromal caveolin-1, and nuclear PTEN and decreased expression of RAR-related orphan receptor c, Bcl2, inducible nitric oxide synthase, and IL-6. In the ERβ-/- mouse VP, RNA sequencing revealed that the following genes were up-regulated more than fivefold: Bcl2, clusterin, the cytokines CXCL16 and -17, and a marker of basal/intermediate cells (prostate stem cell antigen) and cytokeratins 4, 5, and 17. The most down-regulated genes were the following: the antioxidant gene glutathione peroxidase 3; protease inhibitors WAP four-disulfide core domain 3 (WFDC3); the tumor-suppressive genes T-cadherin and caveolin-1; the regulator of transforming growth factor β signaling SMAD7; and the PTEN ubiquitin ligase NEDD4. The role of ERβ in opposing AR signaling, proliferation, and inflammation suggests that ERβ-selective agonists may be used to prevent progression of prostate cancer, prevent fibrosis and development of benign prostatic hyperplasia, and treat prostatitis.
Collapse
|
17
|
Omrani I, Babanejad N, Shendi HK, Nabid MR. Preparation and evaluation of a novel sunflower oil-based waterborne polyurethane nanoparticles for sustained delivery of hydrophobic drug. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ismail Omrani
- Faculty of Chemistry, Department of Polymer; Shahid Beheshti University; Tehran Iran
| | - Niloofar Babanejad
- Faculty of Chemistry, Department of Polymer; Shahid Beheshti University; Tehran Iran
| | - Hasan Kashef Shendi
- Faculty of Chemistry, Department of Polymer; Shahid Beheshti University; Tehran Iran
| | - Mohammad Reza Nabid
- Faculty of Chemistry, Department of Polymer; Shahid Beheshti University; Tehran Iran
| |
Collapse
|
18
|
Zheng B, Chen L, Gonzalez FJ. ISN Forefronts Symposium 2015: Nuclear Receptors and Diabetic Nephropathy. Kidney Int Rep 2016; 1:177-188. [PMID: 28932823 PMCID: PMC5601313 DOI: 10.1016/j.ekir.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 01/19/2023] Open
Abstract
Diabetic nephropathy (DN) is the major reason for end stage renal disease in the western world. Patients with DN developed more severe cardiovascular complications with worse prognosis. In spite of tight blood pressure and glucose control through applying angiotensin II receptor antagonism, angiotensin receptor inhibitors and even direct renin inhibitors, the progression and development of DN has continued to accelerate. Nuclear receptors are, with few exceptions, ligand-depended transcription factors some of which modulate genes involved in the transportation and metabolism of carbohydrate or lipid, and inflammation. Considering the diverse biological functions of nuclear receptors, efforts have been made to explore their contributions to the pathogenesis of DN and potential therapeutic strategies. This review is mainly focused on the association between various nuclear receptors and the pathogenesis of DN, the potential beneficial effects of targeting these receptors for preventing the progress of DN, and the important role that nuclear receptors may play in future therapeutic strategies for DN.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Yuan B, Cheng L, Gupta K, Chiang HC, Gupta HB, Sareddy GR, Wang D, Lathrop K, Elledge R, Wang P, McHardy S, Vadlamudi R, Curiel TJ, Hu Y, Ye Q, Li R. Tyrosine phosphorylation regulates ERβ ubiquitination, protein turnover, and inhibition of breast cancer. Oncotarget 2016; 7:42585-42597. [PMID: 27323858 PMCID: PMC5173158 DOI: 10.18632/oncotarget.10018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/23/2016] [Indexed: 12/31/2022] Open
Abstract
Unlike estrogen receptor α (ERα) that predominantly promotes hormone-dependent breast tumor growth, ERβ exhibits antitumor effects in a variety of cancer types. We recently identified a phosphotyrosine residue in ERβ, but not ERα, that dictates ERβ transcriptional activity and antitumor function. We show here that this ER isotype-specific phosphotyrosine switch is important for regulating ERβ activity in cell proliferation, migration, and invasion. At the mechanistic level, phosphorylated ERβ, which recruits transcriptional coactivator p300, is in turn targeted by p300 for ubiquitination and proteasome-dependent protein turnover. Furthermore, ERβ-specific agonists such as S-equol enhance ERβ phosphorylation, suggesting a crosstalk between ligand- and posttranslational modification-dependent ERβ activation. Inhibition of xenograft tumor growth by S-equol is associated with reduced tumor Ki-67 expression and elevated ERβ tyrosine phosphorylation. Taken together, our data support the notion that phosphotyrosine-dependent ERβ signaling is an attractive target for anticancer treatment.
Collapse
Affiliation(s)
- Bin Yuan
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, China
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Kshama Gupta
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Harshita B. Gupta
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Degeng Wang
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kate Lathrop
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Elledge
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pei Wang
- Department of Cellular and Structural Biology Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stanton McHardy
- Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ratna Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tyler J. Curiel
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, China
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
20
|
Brennan JC, Bassal A, He G, Denison MS. Development of a recombinant human ovarian (BG1) cell line containing estrogen receptor α and β for improved detection of estrogenic/antiestrogenic chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:91-100. [PMID: 26139245 PMCID: PMC4772679 DOI: 10.1002/etc.3146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/26/2015] [Accepted: 06/26/2015] [Indexed: 05/08/2023]
Abstract
Estrogenic endocrine-disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, a critical need exists for rapidly detecting these chemicals. The authors developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the US Environmental Protection Agency (USEPA) and Organisation for Economic Co-operation and Development (OECD) as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only 1 of the 2 known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells, and quantitative reverse-transcription polymerase chain reaction confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual-ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα- and ERβ-selective chemicals.
Collapse
Affiliation(s)
- Jennifer C. Brennan
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Arzoo Bassal
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
21
|
Fan J, Jiang H, Cheng L, Liu R. The oncolytic herpes simplex virus vector, G47Δ, effectively targets tamoxifen-resistant breast cancer cells. Oncol Rep 2015; 35:1741-9. [PMID: 26718317 DOI: 10.3892/or.2015.4539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to establish a tamoxifen-resistant cell line (MCF-7/TAM-R) and to investigate the therapeutic effect of G47Δ on this cell line both in vitro and in vivo. In the present study, the MCF-7/TAM-R monoclonal subline was established after exposing MCF-7 cells to tamoxifen for 21 days. Then, it was compared with a wild-type MCF-7 subline (MCF-7W), which was not treated with tamoxifen. Cell proliferation, viability, cell cycle and apoptosis analyses were carried out to examine the characteristics of the MCF-7/TAM-R cells. Both in vitro and in vivo toxicity studies were conducted to investigate the therapeutic effect of G47Δ on the MCF-7/TAM-R cells. Compared to the MCF-7W cells, we found that the MCF-7/TAM-R cells exhibited a higher proliferation ability (P<0.05) and a stronger resistance to the cytotoxic effects induced by 4-hydroxytamoxifen (4-OHT) (P<0.05). G47Δ demonstrated a high cytotoxic effect on both the MCF-7/TAM-R and MCF-7W cell lines. After being infected with G47Δ at an MOI of 0.01, >90% of the MCF-7/TAM-R and MCF-7W cells died on day 5. G47Δ induced cell cycle arrest in the G2/M phase. Furthermore, G47Δ inhibited tumor growth in subcutaneous tumor models of both MCF-7/TAM-R and MCF-7W. Thus, we conclude that G47Δ, a third generation oncolytic herpes simplex virus, is highly sensitive and safe in targeting tamoxifen-resistant breast cancer cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Jingjing Fan
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, P.R. China
| | - Hua Jiang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, P.R. China
| | - Lin Cheng
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, P.R. China
| | - Renbin Liu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, P.R. China
| |
Collapse
|
22
|
Wang L, Wang Y, Du H, Jiang Y, Tang Z, Liu H, Xiang H, Xiao H. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells. Cancer Chemother Pharmacol 2015; 76:1247-57. [DOI: 10.1007/s00280-015-2838-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
|
23
|
Rajapaksa G, Nikolos F, Bado I, Clarke R, Gustafsson JÅ, Thomas C. ERβ decreases breast cancer cell survival by regulating the IRE1/XBP-1 pathway. Oncogene 2014; 34:4130-41. [PMID: 25347741 DOI: 10.1038/onc.2014.343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/07/2014] [Accepted: 09/04/2014] [Indexed: 01/06/2023]
Abstract
Unfolded protein response (UPR) is an adaptive reaction that allows cancer cells to survive endoplasmic reticulum (EnR) stress that is often induced in the tumor microenvironment because of inadequate vascularization. Previous studies report an association between activation of the UPR and reduced sensitivity to antiestrogens and chemotherapeutics in estrogen receptor α (ERα)-positive and triple-negative breast cancers, respectively. ERα has been shown to regulate the expression of a key mediator of the EnR stress response, the X-box-binding protein-1 (XBP-1). Although network prediction models have associated ERβ with the EnR stress response, its role as regulator of the UPR has not been experimentally tested. Here, upregulation of wild-type ERβ (ERβ1) or treatment with ERβ agonists enhanced apoptosis in breast cancer cells in the presence of pharmacological inducers of EnR stress. Targeting the BCL-2 to the EnR of the ERβ1-expressing cells prevented the apoptosis induced by EnR stress but not by non-EnR stress apoptotic stimuli indicating that ERβ1 promotes EnR stress-regulated apoptosis. Downregulation of inositol-requiring kinase 1α (IRE1α) and decreased splicing of XBP-1 were associated with the decreased survival of the EnR-stressed ERβ1-expressing cells. ERβ1 was found to repress the IRE1 pathway of the UPR by inducing degradation of IRE1α. These results suggest that the ability of ERβ1 to target the UPR may offer alternative treatment strategies for breast cancer.
Collapse
Affiliation(s)
- G Rajapaksa
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - F Nikolos
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - I Bado
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - R Clarke
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, USA
| | - J-Å Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - C Thomas
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
24
|
Reese JM, Suman VJ, Subramaniam M, Wu X, Negron V, Gingery A, Pitel KS, Shah SS, Cunliffe HE, McCullough AE, Pockaj BA, Couch FJ, Olson JE, Reynolds C, Lingle WL, Spelsberg TC, Goetz MP, Ingle JN, Hawse JR. ERβ1: characterization, prognosis, and evaluation of treatment strategies in ERα-positive and -negative breast cancer. BMC Cancer 2014; 14:749. [PMID: 25288324 PMCID: PMC4196114 DOI: 10.1186/1471-2407-14-749] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/25/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The role and clinical value of ERβ1 expression is controversial and recent data demonstrates that many ERβ antibodies are insensitive and/or non-specific. Therefore, we sought to comprehensively characterize ERβ1 expression across all sub-types of breast cancer using a validated antibody and determine the roles of this receptor in mediating response to multiple forms of endocrine therapy both in the presence and absence of ERα expression. METHODS Nuclear and cytoplasmic expression patterns of ERβ1 were analyzed in three patient cohorts, including a retrospective analysis of a prospective adjuvant tamoxifen study and a triple negative breast cancer cohort. To investigate the utility of therapeutically targeting ERβ1, we generated multiple ERβ1 expressing cell model systems and determined their proliferative responses following anti-estrogenic or ERβ-specific agonist exposure. RESULTS Nuclear ERβ1 was shown to be expressed across all major sub-types of breast cancer, including 25% of triple negative breast cancers and 33% of ER-positive tumors, and was associated with significantly improved outcomes in ERα-positive tamoxifen-treated patients. In agreement with these observations, ERβ1 expression sensitized ERα-positive breast cancer cells to the anti-cancer effects of selective estrogen receptor modulators (SERMs). However, in the absence of ERα expression, ERβ-specific agonists potently inhibited cell proliferation rates while anti-estrogenic therapies were ineffective. CONCLUSIONS Using a validated antibody, we have confirmed that nuclear ERβ1 expression is commonly present in breast cancer and is prognostic in tamoxifen-treated patients. Using multiple breast cancer cell lines, ERβ appears to be a novel therapeutic target. However, the efficacy of SERMs and ERβ-specific agonists differ as a function of ERα expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 16-01B Guggenheim Building, 200 First St, SW, Rochester, MN 55905, USA.
| |
Collapse
|
25
|
Al-Bader MD, Kilarkaje N, El-Farra A, Al-Abdallah AA. Expression and subcellular localization of metastasis-associated protein 1, its short form, and estrogen receptors in rat placenta. Reprod Sci 2014; 22:484-94. [PMID: 25217305 DOI: 10.1177/1933719114549851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metastasis-associated protein 1 (MTA1) and its short form (MTA1s) regulate the function of estrogen receptors (ERs). Estrogens, via ERs, affect placental growth and fetal development, a process that may involve MTA1 signaling. Expression of MTA1, MTA1s, ERα, and ERβ genes and proteins in rat placentas was studied on 16, 19, and 21 days of gestation (dg). The ERβ messenger RNA decreased significantly toward the end of gestation, whereas its protein level increased in the nuclear fraction on 21 dg. Both MTA1 and MTA1s increased with gestation. Decidual, trophoblast giant, glycogen, and villous trophoblast cells expressed MTA1, ERα, and ERβ proteins on all dg with colocalization of MTA1 with ERα and ERβ in the nucleus and cytoplasm. Expression of MTA1 suggests a possible role in regulating placental functions; considering the repressive function of MTA1 on ERs, the expression of MTA1 suggests that placental cells may be less sensitive to estrogens during late pregnancy.
Collapse
Affiliation(s)
| | | | - Aseel El-Farra
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
26
|
Estrogen receptor β isoform 5 confers sensitivity of breast cancer cell lines to chemotherapeutic agent-induced apoptosis through interaction with Bcl2L12. Neoplasia 2014; 15:1262-71. [PMID: 24339738 DOI: 10.1593/neo.131184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing of estrogen receptor β (ERβ) yields five isoforms, but their functions remain elusive. ERβ isoform 5 (ERβ5) has been positively correlated with better prognosis and longer survival of patients with breast cancer (BCa) in various clinical studies. In this study, we investigated the inhibitory role of ERβ5 in BCa cells. Although ERβ5 does not reduce proliferation of BCa cell lines MCF-7 and MDA-MB-231, its ectopic expression significantly decreases their survival by sensitizing them to doxorubicin- or cisplatin-induced apoptosis through the intrinsic apoptotic pathway. Moreover, we discovered Bcl2L12, which belongs to the Bcl-2 family regulating apoptosis, to be a specific interacting partner of ERβ5, but not ERβ1 or ERα, in an estradiol-independent manner. Knockdown of Bcl2L12 enhanced doxorubicin- or cisplatin-induced apoptosis, and this process was further promoted by ectopic expression of ERβ5. Whereas Bcl2L12 was previously shown to inhibit apoptosis through binding to caspase 7, such interaction is reduced in the presence of ERβ5, suggesting a mechanism by which ERβ5 sensitizes cells to apoptosis. In conclusion, ERβ5 interacts with Bcl2L12 and functions in a novel estrogen-independent molecular pathway that promotes chemotherapeutic Agent-Induced in vitro apoptosis of BCa cell lines.
Collapse
|
27
|
Dey P, Ström A, Gustafsson JÅ. Estrogen receptor β upregulates FOXO3a and causes induction of apoptosis through PUMA in prostate cancer. Oncogene 2014; 33:4213-25. [PMID: 24077289 DOI: 10.1038/onc.2013.384] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 02/07/2023]
Abstract
Estrogen receptor β (ERβ) is emerging as a critical factor in understanding prostate cancer biology. Although reduced in prostate cancer above Gleason grade 3, ERβ is a potential drug target at the initial stage of the disease. In human prostate cancer cells, we found that ERβ causes apoptosis by increasing the expression of pro-apoptotic factor p53-upregulated modulator of apoptosis (PUMA), independent of p53, but dependent on the forkhead transcription factor class-O family member, FOXO3a. FOXO3a has previously been shown to induce PUMA after growth factor withdrawal and inhibition of the Akt pathway. Surprisingly, the phosphorylation of FOXO3a remained unchanged, while the mRNA and total protein levels of FOXO3a were increased in response to ERβ expression or treatment of PC3, 22Rv1 and LNCaP cells with the ERβ-specific ligands 3β-Adiol (5α-androstane-3β,17β-diol), DPN (diarylpropionitrile) or 8β-VE2 (8-vinylestra-1,3,5 (10)-triene-3,17β-diol). Knockdown of FOXO3a or ERβ expression abolished the increase of PUMA in response to 3β-Adiol in LNCaP and PC3 cells, suggesting that FOXO3a mediates the apoptotic effect of 3β-Adiol-activated ERβ. Moreover, the ventral prostate of ERβ-/- mice had decreased expression of FOXO3a and PUMA compared with the ERβ+/+ mice, indicating a relationship between ERβ and FOXO3a expression. The regulation of FOXO3a by ERβ in normal basal epithelial cells indicates a function of ERβ in cell differentiation and maintenance of cells in a quiescent state. In addition, the expression of ERβ, FOXO3a and PUMA is comparable and higher in benign prostatic hyperplasia than in prostate cancer Gleason grade 4 or higher, where there is substantial loss of ERβ, FOXO3a and PUMA. We conclude that ERβ induces apoptosis of prostate cancer cells by increasing transcription of FOXO3a, leading to an increase of PUMA and subsequent triggering of apoptosis via the intrinsic pathway involving caspase-9. Furthermore, we conclude that ligands specifically activating ERβ could be useful pharmaceuticals in the treatment of prostate cancer.
Collapse
Affiliation(s)
- P Dey
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - A Ström
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - J-Å Gustafsson
- 1] Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA [2] Department of BioSciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
28
|
Yuan B, Cheng L, Chiang HC, Xu X, Han Y, Su H, Wang L, Zhang B, Lin J, Li X, Xie X, Wang T, Tekmal RR, Curiel TJ, Yuan ZM, Elledge R, Hu Y, Ye Q, Li R. A phosphotyrosine switch determines the antitumor activity of ERβ. J Clin Invest 2014; 124:3378-90. [PMID: 24960160 DOI: 10.1172/jci74085] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/01/2014] [Indexed: 02/03/2023] Open
Abstract
Estrogen receptors ERα and ERβ share considerable sequence homology yet exert opposite effects on breast cancer cell proliferation. While the proliferative role of ERα in breast tumors is well characterized, it is not clear whether the antitumor activity of ERβ can be mobilized in breast cancer cells. Here, we have shown that phosphorylation of a tyrosine residue (Y36) present in ERβ, but not in ERα, dictates ERβ-specific activation of transcription and is required for ERβ-dependent inhibition of cancer cell growth in culture and in murine xenografts. Additionally, the c-ABL tyrosine kinase and EYA2 phosphatase directly and diametrically controlled the phosphorylation status of Y36 and subsequent ERβ function. A nonphosphorylatable, transcriptionally active ERβ mutant retained antitumor activity but circumvented control by upstream regulators. Phosphorylation of Y36 was required for ERβ-mediated coactivator recruitment to ERβ target promoters. In human breast cancer samples, elevated phosphorylation of Y36 in ERβ correlated with high levels of c-ABL but low EYA2 levels. Furthermore, compared with total ERβ, the presence of phosphorylated Y36-specific ERβ was strongly associated with both disease-free and overall survival in patients with stage II and III disease. Together, these data identify a signaling circuitry that regulates ERβ-specific antitumor activity and has potential as both a prognostic tool and a molecular target for cancer therapy.
Collapse
|
29
|
Fontana MC, Beckenkamp A, Buffon A, Beck RCR. Controlled release of raloxifene by nanoencapsulation: effect on in vitro antiproliferative activity of human breast cancer cells. Int J Nanomedicine 2014; 9:2979-91. [PMID: 24971009 PMCID: PMC4069136 DOI: 10.2147/ijn.s62857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Raloxifene hydrochloride (RH) is considered to be an antiproliferative agent of mammary tissue. The aim of this study was to investigate the effect of the encapsulation of RH in polymeric nanocapsules with anionic or cationic surface on its release profile and antiproliferative activity. They were prepared by interfacial deposition of preformed polymer, followed by wide physicochemical characterization. The in vitro RH release was assessed by the dialysis membrane method and the data analyzed by mathematical modeling. The antiproliferative effect on MCF-7 cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay as well as by counting viable cells. They had high encapsulation efficiency, low polydispersity, and nanometric mean size. Nanocapsules prepared with Eudragit® RS100 and Eudragit® S100 presented positive and negative zeta potentials, respectively. Drug release studies demonstrated controlled release of RH from anionic nanocapsules, which could be explained due to a stronger interaction of the drug to these nanocapsules and the larger amount of entrapped drug. On the other hand, this control was not observed from cationic nanocapsules due to the larger amount of drug adsorbed onto their surface. MCF-7 cell viability studies and cell counting showed that RH-loaded Eudragit® RS100 nanocapsules promote the best antiproliferative activity after 24 hours of treatment, whereas the best activity was observed for RH-loaded Eudragit® S100 nanocapsules after 72 hours. Furthermore, the combined treatment of these formulations improved the antiproliferative effect during the entire treatment.
Collapse
Affiliation(s)
- Márcia Camponogara Fontana
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Aline Beckenkamp
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andréia Buffon
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ruy Carlos Ruver Beck
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Jonsson P, Katchy A, Williams C. Support of a bi-faceted role of estrogen receptor β (ERβ) in ERα-positive breast cancer cells. Endocr Relat Cancer 2014; 21:143-60. [PMID: 24192230 PMCID: PMC3946733 DOI: 10.1530/erc-13-0444] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The expression of estrogen receptor α (ERα) in breast cancer identifies patients most likely to respond to endocrine treatment. The second ER, ERβ, is also expressed in breast tumors, but its function and therapeutic potential need further study. Although in vitro studies have established that ERβ opposes transcriptional and proliferative functions of ERα, several clinical studies report its correlation with proliferative markers and poorer prognosis. The data demonstrate that ERβ opposes ERα are primarily based on transient expression of ERβ. Here, we explored the functions of constitutively expressed ERβ in ERα-positive breast cancer lines MCF7 and T47D. We found that ERβ, under these conditions heterodimerized with ERα in the presence and absence of 17β-estradiol, and induced genome-wide transcriptional changes. Widespread anti-ERα signaling was, however, not observed and ERβ was not antiproliferative. Tamoxifen antagonized proliferation and ER-mediated gene regulation both in the presence and absence of ERβ. In conclusion, ERβ's role in cells adapted to its expression appears to differ from its role in cells with transient expression. Our study is important because it provides a deeper understanding of ERβ's role in breast tumors that coexpress both receptors and supports an emerging bi-faceted role of ERβ.
Collapse
Affiliation(s)
| | | | - Cecilia Williams
- To whom correspondence should be addressed:, Postal address: Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Blvd., SERC Bldg. 545, Houston, TX 77204-5056,
| |
Collapse
|
31
|
Patel HK, Siklos MI, Abdelkarim H, Mendonca EL, Vaidya A, Petukhov PA, Thatcher GRJ. A chimeric SERM-histone deacetylase inhibitor approach to breast cancer therapy. ChemMedChem 2014; 9:602-13. [PMID: 23956109 PMCID: PMC3962780 DOI: 10.1002/cmdc.201300270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Indexed: 11/07/2022]
Abstract
Breast cancer remains a significant cause of death in women, and few therapeutic options exist for estrogen receptor negative (ER (-)) cancers. Epigenetic reactivation of target genes using histone deacetylase (HDAC) inhibitors has been proposed in ER (-) cancers to resensitize to therapy using selective estrogen receptor modulators (SERMs) that are effective in ER (+) cancer treatment. Based upon preliminary studies in ER (+) and ER (-) breast cancer cells treated with combinations of HDAC inhibitors and SERMs, hybrid drugs, termed SERMostats, were designed with computational guidance. Assay for inhibition of four type I HDAC isoforms and antagonism of estrogenic activity in two cell lines yielded a SERMostat with 1-3 μM potency across all targets. The superior hybrid caused significant cell death in ER (-) human breast cancer cells and elicited cell death at the same concentration as the parent SERM in combination treatment and at an earlier time point.
Collapse
Affiliation(s)
- Hitisha K. Patel
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, UIC, 833 S. Wood St., Chicago, IL 60612-7231 (USA), Fax: (+1) 312 996 7107
| | - Marton I. Siklos
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, UIC, 833 S. Wood St., Chicago, IL 60612-7231 (USA), Fax: (+1) 312 996 7107
| | - Hazem Abdelkarim
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, UIC, 833 S. Wood St., Chicago, IL 60612-7231 (USA), Fax: (+1) 312 996 7107
| | - Emma L. Mendonca
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, UIC, 833 S. Wood St., Chicago, IL 60612-7231 (USA), Fax: (+1) 312 996 7107
| | - Aditya Vaidya
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, UIC, 833 S. Wood St., Chicago, IL 60612-7231 (USA), Fax: (+1) 312 996 7107
| | - Pavel A. Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, UIC, 833 S. Wood St., Chicago, IL 60612-7231 (USA), Fax: (+1) 312 996 7107
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, UIC, 833 S. Wood St., Chicago, IL 60612-7231 (USA), Fax: (+1) 312 996 7107
| |
Collapse
|
32
|
Evaluating the potential bioactivity of a novel compound ER1626. PLoS One 2014; 9:e86509. [PMID: 24475135 PMCID: PMC3903524 DOI: 10.1371/journal.pone.0086509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/10/2013] [Indexed: 12/21/2022] Open
Abstract
Background ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. Method MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. Results ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. Conclusion In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.
Collapse
|
33
|
Haldosén LA, Zhao C, Dahlman-Wright K. Estrogen receptor beta in breast cancer. Mol Cell Endocrinol 2014; 382:665-672. [PMID: 23954741 DOI: 10.1016/j.mce.2013.08.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023]
Abstract
Estrogen is essential for growth and development of the mammary glands and has been associated with the promotion and growth of breast cancer and in line with this, most human breast cancers are initially estrogen-dependent and undergo regression when deprived of their supporting hormone. Estrogen exerts many of its effects via two nuclear estrogen receptors (ERs), ERα and ERβ. The discovery of a second ER, ERβ, demanded a full re-evaluation of estrogen action in all target tissues and different estrogen associated diseases, including human breast cancer. However, despite over 15 years of research, the exact role, if any, of ERβ in human breast cancer remains elusive. The main challenges now are to develop highly selective anti-ERβ antibodies that are applied to large well characterized human breast cancer samples to validate their diagnostic potential and to explore ERβ-selective agonists in animal models of breast cancer to validate their therapeutic potential.
Collapse
Affiliation(s)
- Lars-Arne Haldosén
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden.
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden.
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden.
| |
Collapse
|
34
|
Saxena R, Fatima I, Chandra V, Blesson CS, Kharkwal G, Hussain MK, Hajela K, Roy BG, Dwivedi A. Benzopyran derivative CDRI-85/287 induces G2-M arrest in estrogen receptor-positive breast cancer cells via modulation of estrogen receptors α- and β-mediated signaling, in parallel to EGFR signaling and suppresses the growth of tumor xenograft. Steroids 2013; 78:1071-86. [PMID: 23891847 DOI: 10.1016/j.steroids.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 05/07/2013] [Accepted: 07/15/2013] [Indexed: 12/27/2022]
Abstract
In an endeavor to develop novel and improved selective estrogen receptor modulators as anti-breast cancer agents, the benzopyran compounds have been synthesized and identified which act as potent anti-estrogen at uterine level. The present study evaluates the anti-tumor activity of 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) and explores the mechanism of action with a view to describe its potential to inhibit proliferation in ER-positive breast cancer cells MCF-7 and T47D. The compound decreased the expression of ERα while increased the expression of ERβ thereby altering ERα/ERβ ratio in both cell lines. Although the compound showed low binding affinity to ERs, it acted as ERα antagonist and ERβ agonist in decreasing ERE- or AP-1-mediated transcriptional activation in these cells. Transactivation studies in ERα/β-transfected MDA-MB231 cells suggested that at cyclin D1 promoter, compound antagonized the action of ERα-mediated E2 response while acted as estrogen agonist via ERβ. Further, the compound led to decreased expression of ERα-dependent proliferation markers and ERβ-dependent cell cycle progression markers. The expression of cell cycle inhibitory protein p21 was increased leading to G2/M phase arrest. In parallel, compound also interfered with EGFR activation, caused inhibition of PI-3-K/Akt pathway and subsequent induction of apoptosis via intrinsic pathway. A significant reduction in tumor mass and volume was observed in 85/287-treated mice bearing MCF-7 xenograft. We conclude that compound 85/287 exhibits significant anti-tumor activity via modulation of genomic as well as non-genomic mechanisms involved in cellular growth and arrested the cells in G2 phase in both MCF-7 and T47D breast cancer cells. Study suggests that CDRI-85/287 may have therapeutic potential in ER-positive breast cancer.
Collapse
Affiliation(s)
- Ruchi Saxena
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Madeira M, Mattar A, Logullo AF, Soares FA, Gebrim LH. Estrogen receptor alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy responsiveness-a randomized neoadjuvant trial comparison between anastrozole and tamoxifen for the treatment of postmenopausal breast cancer. BMC Cancer 2013; 13:425. [PMID: 24047421 PMCID: PMC3851532 DOI: 10.1186/1471-2407-13-425] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/16/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The role of estrogen receptor beta (ER-β) in breast cancer (BC) remains unclear. Some studies have suggested that ER-β may oppose the actions of estrogen receptor alpha (ER-α), and clinical evidence has indicated that the loss of ER-β expression is associated with a poor prognosis and resistance to endocrine therapy. The objective of the present study was to determine the role of ER-β and the ER-α/ER-β ratio in predicting the response to endocrine therapy and whether different regimens have any effect on ER-β expression levels. METHODS Ninety postmenopausal patients with primary BC were recruited for a short-term double-blinded randomized prospective controlled study. To determine tumor cell proliferation, we measured the expression of Ki67 in tumor biopsy samples taken before and after 26 days of treatment with anastrozole 1 mg/day (N = 25), tamoxifen 20 mg/day (N = 24) or placebo (N = 29) of 78 participants. The pre- and post-samples were placed in tissue microarray blocks and submitted for immunohistochemical assay. Biomarker statuses (ER-β, ER-α and Ki67) were obtained by comparing each immunohistochemical evaluation of the pre- and post-surgery samples using the semi-quantitative Allred's method. Statistical analyses were performed using an ANOVA and Spearman's correlation coefficient tests, with significance at p ≤ 0.05. RESULTS The frequency of ER-β expression did not change after treatment (p = 0.33). There were no significant changes in Ki67 levels in ER-β-negative cases (p = 0.45), but in the ER-β-positive cases, the anastrozole (p = 0.01) and tamoxifen groups (p = 0.04) presented a significant reduction in post-treatment Ki67 scores. There was a weak but positive correlation between the ER-α and ER-β expression levels. Only patients with an ER-α/ER-β expression ratio between 1 and 1.5 demonstrated significant differences in Ki67 levels after treatment with anastrozole (p = 0.005) and tamoxifen (p = 0.026). CONCLUSIONS Our results provide additional data that indicate that the measurement of ER-β in BC patients may help predict tamoxifen and anastrozole responsiveness in the neoadjuvant setting. These effects of hormonal treatment appear to be dependent on the ratio of ER-α/ER-β expression. TRIAL REGISTRATION Current Controlled Trials ISRCTN89801719.
Collapse
Affiliation(s)
- Marcelo Madeira
- Senology Discipline, Department of Gynecology, Federal University of Sao Paulo-UNIFESP, R, Botucatu, 740, 04023-900 Sao Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
36
|
Lamas B, Nachat‐Kappes R, Goncalves‐Mendes N, Mishellany F, Rossary A, Vasson M, Farges M. Dietary fat without body weight gain increases in vivo MCF‐7 human breast cancer cell growth and decreases natural killer cell cytotoxicity. Mol Carcinog 2013; 54:58-71. [DOI: 10.1002/mc.22074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/22/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Bruno Lamas
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Rachida Nachat‐Kappes
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Nicolas Goncalves‐Mendes
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Florence Mishellany
- EA 4677 ERTICa, Service d'Anatomopathologie, Centre de Lutte Contre le Cancer Jean PerrinClermont‐FerrandFrance
| | - Adrien Rossary
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Marie‐Paule Vasson
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
- Centre de Lutte Contre le Cancer Jean PerrinUnité de NutritionClermont‐FerrandFrance
- CHU Clermont‐Ferrand, Unité de NutritionClermont‐FerrandFrance
| | - Marie‐Chantal Farges
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| |
Collapse
|
37
|
Shanle EK, Zhao Z, Hawse J, Wisinski K, Keles S, Yuan M, Xu W. Research resource: global identification of estrogen receptor β target genes in triple negative breast cancer cells. Mol Endocrinol 2013; 27:1762-75. [PMID: 23979844 DOI: 10.1210/me.2013-1164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Breast cancers that are negative for estrogen receptor α (ERα), progesterone receptor, and human epidermal growth factor receptor 2 are known as triple-negative breast cancers (TNBC). TNBCs are associated with an overall poor prognosis because they lack expression of therapeutic targets like ERα and are biologically more aggressive. A second estrogen receptor, ERβ, has been found to be expressed in 50% to 90% of ERα-negative breast cancers, and ERβ expression in TNBCs has been shown to correlate with improved disease-free survival and good prognosis. To elucidate the role of ERβ in regulating gene expression and cell proliferation in TNBC cells, the TNBC cell line MDA-MB-468 was engineered with inducible expression of full-length ERβ. In culture, ERβ expression inhibited cell growth by inducing a G1 cell cycle arrest, which was further enhanced by 17β-estradiol treatment. In xenografts, ERβ expression also inhibited tumor formation and growth, and 17β-estradiol treatment resulted in rapid tumor regression. Furthermore, genomic RNA sequencing identified both ligand-dependent and -independent ERβ target genes, some of which were also regulated by ERβ in other TNBC cell lines and correlated with ERβ expression in a cohort of TNBCs from the Cancer Genome Atlas Network. ERβ target genes were enriched in genes that regulate cell death and survival, cell movement, cell development, and growth and proliferation, as well as genes involved in the Wnt/β-catenin and the G1/S cell cycle phase checkpoint pathways. In addition to confirming the anti-proliferative effects of ERβ in TNBC cells, these data provide a comprehensive resource of ERβ target genes and suggest that ERβ may be targeted with ligands that can stimulate its growth inhibitory effects.
Collapse
Affiliation(s)
- Erin K Shanle
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin, Madison, Wisconsin 53705.
| | | | | | | | | | | | | |
Collapse
|
38
|
Effects of a combined treatment with tamoxifen and estrogen receptor β agonists on human breast cancer cell lines. Arch Gynecol Obstet 2013; 289:163-71. [DOI: 10.1007/s00404-013-2977-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
|
39
|
Garg M, Dalela D, Dalela D, Goel A, Kumar M, Gupta G, Sankhwar SN. Selective estrogen receptor modulators for BPH: new factors on the ground. Prostate Cancer Prostatic Dis 2013; 16:226-32. [PMID: 23774084 DOI: 10.1038/pcan.2013.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 02/07/2023]
Abstract
As the current management of BPH/lower urinary tract symptoms by traditionally involved pharmacological agents such as 5alpha-reductase inhibitors and α1-adrenoceptor antagonists is suboptimal, there is definite need of new therapeutic strategies. There is ample evidence in literature that suggests the role of estrogens in BPH development and management through the different tissue and cell-specific receptors. This article reviews the beneficial actions of selective estrogen receptor modulator (SERM) and ERβ-selective ligands, which have been demonstrated through in vitro studies using human prostate cell lines and in vivo animal studies. SERMs have anti-proliferative, anti-inflammatory and pro-apoptotic mechanisms in BPH, and also act by inhibiting various growth factors, and thus represent a unique and novel approach in BPH management directed at estrogen receptors or estrogen metabolism.
Collapse
Affiliation(s)
- M Garg
- Department of Urology, King George Medical University, Lucknow, India.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Despite over 15 years of research, the exact role, if any, played by estrogen receptor β (ERβ) in human breast cancer remains elusive. A large body of data both in vitro and in vivo supports its role as an antiproliferative, pro-apoptotic factor especially when co-expressed with ERα. However, there is a smaller body of data associating ERβ with growth and survival in breast cancer. In clinical studies and most often in cell culture studies, the pro-growth and pro-survival activity of ERβ occurs in ERα-negative breast cancer tissue and cells. This bi-faceted role of ERβ is discussed in this review.
Collapse
Affiliation(s)
- Etienne Leygue
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9.
| | | |
Collapse
|
41
|
Telomerase downregulation induces proapoptotic genes expression and initializes breast cancer cells apoptosis followed by DNA fragmentation in a cell type dependent manner. Mol Biol Rep 2013; 40:4995-5004. [PMID: 23677713 PMCID: PMC3723976 DOI: 10.1007/s11033-013-2600-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 04/29/2013] [Indexed: 10/27/2022]
Abstract
The aim of the study was to analyze the consequence of silencing genes coding for the key subunits of the telomerase complex, i.e. TERT, TERC and TP1 in human breast cancer MCF7 and MDA-MB-231cells. The transfection was performed using Lipofectamine2000 and pooled siRNAs. The cytotoxic and/or antiproliferative effect of siRNA was measured by the SRB assay, the cell cycle was analysed by flow cytometry and DNA fragmentation by TUNEL analysis. Telomerase activity was assessed by TRAP, followed by PAGE and ELISA assays. Telomerase downregulation was also assessed using qPCR in order to estimate the changes in the expression profile of genes engaged in apoptosis. It was revealed that treatment of breast cancer cells with different siRNAs (100 nM) resulted in a cell type and time-dependent effects. The downregulation of telomerase subunits was followed by reduction of telomerase activity down to almost 60% compared to control cells. However, a significant effect was only observed when the TERT subunit was downregulated. Its silencing resulted in a significant (p<0.05) increase of apoptosis (over 10% in MCF7 and about 5% in MDA-MB-231 cells, corresponding to the Annexin V assay) and DNA fragmentation (almost 30% in MCF7 and over 25% in MDA-MB-231 cells). Interestingly, also several proapoptotic genes were induced after the downregulation of the key telomerase subunit, including Bax, Bik or caspase-1 and caspase-14, as well as NGFR and TNFSF10 which were upregulated twice and more.
Collapse
|
42
|
Hu G, Wang J. Ligand selectivity of estrogen receptors by a molecular dynamics study. Eur J Med Chem 2013; 74:726-35. [PMID: 23694906 DOI: 10.1016/j.ejmech.2013.04.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/09/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Estrogen receptors α (ERα) and β (ERβ) have different physiological functions and expression levels in different tissues. ERα and ERβ are highly homologous and have only two residue substitutions in the binding pocket. This high similarity at the active site stimulates the interests for discovering subtype selective ligands. In this study, molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method have been carried out to analyze the basis of selectivity of three ligands (659, 818 and 041). The calculated binding free energies show that all the ligands bind more tightly to ERβ than to ERα. The dominant free energy components of selectivity for 659 are similar to that for 041, but different from that for 818. The decompositions of free energy contributions and structural analysis imply that there are eight residues primarily contributing to the selectivity for 659, five residues for 041, as well as two residues for 818. The structural analysis implies that two residue substitutions in binding packet cause the position of 659 in ERβ-659 complex to shift relative to that in ERα-659 complex and also cause the conformational changes of other residues in the binding pocket. The higher selectivity for 041 is mainly caused by three residues, Ile373 (Met421), His475 (His524) and Leu476 (Leu525).
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, Dezhou, Shandong 253023, China; Department of Physics, Dezhou University, Dezhou, Shandong 253023, China.
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, Dezhou, Shandong 253023, China; Department of Physics, Dezhou University, Dezhou, Shandong 253023, China.
| |
Collapse
|
43
|
Yadava N, Schneider SS, Jerry DJ, Kim C. Impaired mitochondrial metabolism and mammary carcinogenesis. J Mammary Gland Biol Neoplasia 2013; 18:75-87. [PMID: 23269521 PMCID: PMC3581737 DOI: 10.1007/s10911-012-9271-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial oxidative metabolism plays a key role in meeting energetic demands of cells by oxidative phosphorylation (OxPhos). Here, we have briefly discussed (a) the dynamic relationship that exists among glycolysis, the tricarboxylic acid (TCA) cycle, and OxPhos; (b) the evidence of impaired OxPhos (i.e. mitochondrial dysfunction) in breast cancer; (c) the mechanisms by which mitochondrial dysfunction can predispose to cancer; and (d) the effects of host and environmental factors that can negatively affect mitochondrial function. We propose that impaired OxPhos could increase susceptibility to breast cancer via suppression of the p53 pathway, which plays a critical role in preventing tumorigenesis. OxPhos is sensitive to a large number of factors intrinsic to the host (e.g. inflammation) as well as environmental exposures (e.g. pesticides, herbicides and other compounds). Polymorphisms in over 143 genes can also influence the OxPhos system. Therefore, declining mitochondrial oxidative metabolism with age due to host and environmental exposures could be a common mechanism predisposing to cancer.
Collapse
Affiliation(s)
- Nagendra Yadava
- Pioneer Valley Life Sciences Institute, Springfield, MA 01107, USA.
| | | | | | | |
Collapse
|
44
|
Renoir JM, Marsaud V, Lazennec G. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol 2013; 85:449-65. [DOI: 10.1016/j.bcp.2012.10.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 02/07/2023]
|
45
|
Liu X, Suzuki N, Santosh Laxmi YR, Okamoto Y, Shibutani S. Anti-breast cancer potential of daidzein in rodents. Life Sci 2012; 91:415-9. [PMID: 23227466 DOI: 10.1016/j.lfs.2012.08.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS This study was carried out to explore anti-breast cancer potential of isoflavone daidzein or its related compounds using appropriate animal models and their anti-tumor mechanism. MAIN METHODS Daidzein or its major metabolite equol at a dose molar equivalent to tamoxifen [1.0 mg(2.7 μmol)/kg or 10 mg (27 μmol)/kg/day] was treated orally to rats bearing 7,12-dimethylbenz(a)anthracene(DMBA)-induced mammary tumors or ovariectomized athymic nude mice implanted with human MCF-7 breast cancer xenograft and an estrogen pellet. The growth of tumors was monitored for several weeks after the treatment. The cell-cycle and apoptotic stages in mammary tumors collected from rats were analyzed by flow cytometry. Immunohistochemistry analysis was also used to determine the expression of caspase-3. KEY FINDINGS Oral treatment with daidzein or equol at a human equivalent dose suppressed the growth of both DMBA-induced mammary tumors and human MCF-7 breast cancer xenografts in rodents, the inhibitory activity being superior to that of genistein or tamoxifen. Strong apoptosis induced by daidzein or equol contributes to the anti-tumor potential. SIGNIFICANCE Daidzein and its metabolite equol showed the potential of inhibiting the growth of mammary tumors in rodents. Daidzein or equol could be used as a core structure to design new drugs for breast cancer therapy. Our results indicate that consumption of daidzein may protect against breast cancer.
Collapse
|
46
|
Role of estrogen receptor β in gynecological cancer. Gynecol Oncol 2012; 127:673-6. [DOI: 10.1016/j.ygyno.2012.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022]
|
47
|
Catanuto P, Fornoni A, Pereira-Simon S, Wu F, Burnstein KL, Xia X, Conti F, Lenzi A, Elliot S. In vivo 17β-estradiol treatment contributes to podocyte actin stabilization in female db/db mice. Endocrinology 2012; 153:5888-95. [PMID: 23070549 PMCID: PMC3512061 DOI: 10.1210/en.2012-1637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We recently showed that 17β-estradiol (E(2)) treatment ameliorated type 2 diabetic glomerulosclerosis in mice in part by protecting podocyte structure and function. Progressive podocyte damage is characterized by foot process effacement, vacuolization, detachment of podocytes from the glomerular basement membrane, and apoptosis. In addition, podocytes are highly dependent on the preservation of their actin cytoskeleton to ensure proper function and survival. Because E(2) administration prevented podocyte damage in our study on diabetic db/db mice and has been shown to regulate both actin cytoskeleton and apoptosis in other cell types and tissues, we investigated whether actin remodeling and apoptosis were prevented in podocytes isolated from E(2)-treated diabetic db/db mice. We performed G-actin/F-actin assays, Western analysis for Hsp25 expression, Ras-related C(3) botulinum toxin substrate 1 (Rac1) activity, and apoptosis assays on previously characterized podocytes isolated from both in vivo-treated placebo and E(2) female db/db mice. We found that in vivo E(2) protects against a phenotype change in the cultured podocytes characterized by a percent increase of F-actin vs. G-actin, suppression of Hsp25 expression and transcriptional activation, increase of Rac1 activity, and decreased apoptotic intermediates. We conclude from these studies that E(2) treatment protects against podocyte damage and may prevent/reduce diabetes-induced kidney disease.
Collapse
Affiliation(s)
- Paola Catanuto
- Study Group and Laboratory on Sex and Gender Differences in Health and Disease, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Renoir JM. Estradiol receptors in breast cancer cells: associated co-factors as targets for new therapeutic approaches. Steroids 2012; 77:1249-61. [PMID: 22917634 DOI: 10.1016/j.steroids.2012.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Estrogen receptors α (ERα) and β (ERβ) are nuclear receptors which transduce estradiol (E2) response in many tissues including the mammary gland and breast cancers (BC). They activate or inhibit specific genes involved in cell cycle progression and cell survival through multiple enzyme activities leading to malignant transformation. Hormone therapy (antiestrogens (AEs) and aromatase inhibitors (AIs) have been widely used to block the mitogenic action of E2 in patients with ER-positive BC. ERs act in concert with numerous other proteins outside and inside the nucleus where co-activators such as histone modifying enzymes help reaching optimum gene activation. Moreover, E2-mediated gene regulation can occur through ERs located at the plasma membrane or G protein-coupled estrogen receptor (GPER), triggering protein kinase signaling cascades. Classical AEs as well as AIs are inefficient to block the cascades of events emanating from the membrane and from E2 binding to GPER, leading patients to escape anti-hormone treatments and hormone therapy resistance. Many pathways are involved in resistance, mostly resulting from over-expression of growth factor membrane receptors, in particular the HER2/ErbB2 which can be inhibited by specific antibodies or tyrosine kinases inhibitors. Together with the Hsp90 molecular chaperone machinery, a complex interplay between ERs, co-activators, co-repressors and growth factor-activated membrane pathways represents potent targets which warrant to be manipulated alone and in combination to designing novel therapies. The discovery of new potential targets arising from micro array studies gives the opportunity to activate or inhibit different new ER-modulating effectors for innovative therapeutic interventions.
Collapse
|
49
|
Lam HM, Babu CS, Wang J, Yuan Y, Lam YW, Ho SM, Leung YK. Phosphorylation of human estrogen receptor-beta at serine 105 inhibits breast cancer cell migration and invasion. Mol Cell Endocrinol 2012; 358:27-35. [PMID: 22370157 PMCID: PMC3348253 DOI: 10.1016/j.mce.2012.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 12/30/2022]
Abstract
Multiple phosphorylation sites on the human estrogen receptor (hER)α were identified and shown to influence mammary carcinogenesis. In contrast, functional phosphorylation sites of hERβ have yet to be experimentally identified and validated. Here, using mass spectrometry, we uncovered three serines (S75, S87, and S105) in the N-terminus of hERβ as targets of ERK1/2 and p38 kinases. We raised a specific antibody against phosphorylated S105 (pS105) and demonstrated that this site was endogenously phosphorylated in MDA-MB-231 and BT-474 cells. A phospho-mimetic mutant generated from hERβ1 was found to exhibit higher transactivation activity than hERβ1. Ectopic expression of this mutant inhibited cell migration and invasion, but did not affect cell growth and cell-cycle progression in these cell models. In breast cancer specimens, pS105-hERβ immunoreactivity was detected with a higher prevalence and intensity than that of hERβ1. These results underscore the functional importance of the first experimentally identified hERβ-phosphorylation site in breast cancer.
Collapse
Affiliation(s)
- Hung-Ming Lam
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - C.V. Suresh Babu
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Yong Yuan
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Ying-Wai Lam
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Cincinnati Cancer Center, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Cincinnati Veteran Affairs Medical Center, Cincinnati, OH 45220
- To whom correspondence should be addressed (co-corresponding authors): Yuet-Kin Leung, Ph.D., Division of Environmental Genetics and Molecular Toxicology, Kettering Complex, Room 331, 3223 Eden Avenue, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center, PO Box 670056, Cincinnati, OH 45267, Tel: 513- 558-5181, Fax: 513-558-5155, , Shuk-Mei Ho, Ph.D., Kettering Complex, Room 128, 3223 Eden Avenue, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center, PO Box 670056, Cincinnati, OH 45267, Tel: 513- 558-5701, Fax: 513-558-5155,
| | - Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Cincinnati Cancer Center, University of Cincinnati Medical Center, Cincinnati, OH 45267
- To whom correspondence should be addressed (co-corresponding authors): Yuet-Kin Leung, Ph.D., Division of Environmental Genetics and Molecular Toxicology, Kettering Complex, Room 331, 3223 Eden Avenue, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center, PO Box 670056, Cincinnati, OH 45267, Tel: 513- 558-5181, Fax: 513-558-5155, , Shuk-Mei Ho, Ph.D., Kettering Complex, Room 128, 3223 Eden Avenue, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center, PO Box 670056, Cincinnati, OH 45267, Tel: 513- 558-5701, Fax: 513-558-5155,
| |
Collapse
|
50
|
Li H, Tu Z, An L, Qian Z, Achilefu S, Gu Y. Inhibitory effects of ERβ on proliferation, invasion, and tumor formation of MCF-7 breast cancer cells--prognostication for the use of ERβ-selective therapy. PHARMACEUTICAL BIOLOGY 2012; 50:839-849. [PMID: 22486657 DOI: 10.3109/13880209.2011.637506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Estrogen is well-known as an important factor in the physiological functions and pathological processes of breast. Estrogen receptor β (ERβ) is expressed in the majority of breast cancers at lower levels compared with the normal breast tissue. OBJECTIVE The effect of ERβ on the characteristics of breast tumor cells and its prognostication for the use of ERβ-selective therapy were investigated here for the first time. MATERIALS AND METHODS ERβ was overexpressed in ERα positive MCF-7 breast cancer cells by gene transfection. The proliferation, motility, and xenografts growth of MCF-7 cells were investigated by MTT assays, wound-healing assay and animal study. RESULTS Results demonstrated that ERβ-GFP localized in both the cytoplasm and the nucleus in the presence of 17β-estradiol (E2), with stronger fluorescence-signal intensity in the nucleus, 2.8-times higher than that in the cytoplasm. The ERβ overexpressed MCF-7 cells resulted in a 38.7% decreased growth rate and motility in vitro. Furthermore, ERβ overexpression enhanced the antiproliferative effects of phytoestrogen, antiestrogen, and histone deacetylase inhibitor. Exogenous ERβ expression reduced tumor volume by 99% at 27 days postadministration, indicated that overexpression of ERβ led to retardation of tumor formation and growth in immunodeficient mice. DISCUSSION AND CONCLUSION This study provided a relatively new evidence to support that ERβ is an important modulator of proliferation and motility of breast cancer cells, and implied for the first time a possibility for the use of novel ERβ-selective therapies in breast cancer treatment.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Engineering, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|