1
|
Chen K, Zhang Y, Pan Y, Xiang X, Peng C, He J, Huang G, Wang Z, Zhao P. Genomic insights into demographic history, structural variation landscape, and complex traits from 514 Hu sheep genomes. J Genet Genomics 2025; 52:245-257. [PMID: 39643267 DOI: 10.1016/j.jgg.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Hu sheep is an indigenous breed from the Taihu Lake Plain in China, known for its high fertility. Although Hu sheep belong to the Mongolian group, their demographic history and genetic architecture remain inconclusive. Here, we analyze 697 sheep genomes from representatives of Mongolian sheep breeds. Our study suggests that the ancestral Hu sheep first separated from the Mongolian group approximately 3000 years ago. As Hu sheep migrated from the north and flourished in the Taihu Lake Plain around 1000 years ago, they developed a unique genetic foundation and phenotypic characteristics, which are evident in the genomic footprints of selective sweeps and structural variation landscape. Genes associated with reproductive traits (BMPR1B and TDRD10) and horn phenotype (RXFP2) exhibit notable selective sweeps in the genome of Hu sheep. A genome-wide association analysis reveals that structural variations at LOC101110773, MAST2, and ZNF385B may significantly impact polledness, teat number, and early growth in Hu sheep, respectively. Our study offers insights into the evolutionary history of Hu sheep and may serve as a valuable genetic resource to enhance the understanding of complex traits in Hu sheep.
Collapse
Affiliation(s)
- Kaiyu Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuelang Zhang
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Yizhe Pan
- Agricultural Product Quality and Safety Research Center of Huzhou City, Huzhou, Zhejiang 313000, China
| | - Xin Xiang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jiayi He
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Guiqing Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| | - Pengju Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
2
|
Rumpf M, Pautz S, Drebes B, Herberg FW, Müller HAJ. Microtubule-Associated Serine/Threonine (MAST) Kinases in Development and Disease. Int J Mol Sci 2023; 24:11913. [PMID: 37569286 PMCID: PMC10419289 DOI: 10.3390/ijms241511913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Microtubule-Associated Serine/Threonine (MAST) kinases represent an evolutionary conserved branch of the AGC protein kinase superfamily in the kinome. Since the discovery of the founding member, MAST2, in 1993, three additional family members have been identified in mammals and found to be broadly expressed across various tissues, including the brain, heart, lung, liver, intestine and kidney. The study of MAST kinases is highly relevant for unraveling the molecular basis of a wide range of different human diseases, including breast and liver cancer, myeloma, inflammatory bowel disease, cystic fibrosis and various neuronal disorders. Despite several reports on potential substrates and binding partners of MAST kinases, the molecular mechanisms that would explain their involvement in human diseases remain rather obscure. This review will summarize data on the structure, biochemistry and cell and molecular biology of MAST kinases in the context of biomedical research as well as organismal model systems in order to provide a current profile of this field.
Collapse
Affiliation(s)
- Marie Rumpf
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Sabine Pautz
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Benedikt Drebes
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Friedrich W. Herberg
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Hans-Arno J. Müller
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| |
Collapse
|
3
|
Jilderda LJ, Zhou L, Foijer F. Understanding How Genetic Mutations Collaborate with Genomic Instability in Cancer. Cells 2021; 10:342. [PMID: 33562057 PMCID: PMC7914657 DOI: 10.3390/cells10020342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023] Open
Abstract
Chromosomal instability is the process of mis-segregation for ongoing chromosomes, which leads to cells with an abnormal number of chromosomes, also known as an aneuploid state. Induced aneuploidy is detrimental during development and in primary cells but aneuploidy is also a hallmark of cancer cells. It is therefore believed that premalignant cells need to overcome aneuploidy-imposed stresses to become tumorigenic. Over the past decade, some aneuploidy-tolerating pathways have been identified through small-scale screens, which suggest that aneuploidy tolerance pathways can potentially be therapeutically exploited. However, to better understand the processes that lead to aneuploidy tolerance in cancer cells, large-scale and unbiased genetic screens are needed, both in euploid and aneuploid cancer models. In this review, we describe some of the currently known aneuploidy-tolerating hits, how large-scale genome-wide screens can broaden our knowledge on aneuploidy specific cancer driver genes, and how we can exploit the outcomes of these screens to improve future cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (L.J.J.); (L.Z.)
| |
Collapse
|
4
|
Jiao Y, Li Y, Jiang P, Fu Z, Liu Y. High MAST2 mRNA expression and its role in diagnosis and prognosis of liver cancer. Sci Rep 2019; 9:19865. [PMID: 31882722 PMCID: PMC6934750 DOI: 10.1038/s41598-019-56476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Liver cancer is a high morbidity and low survival disease all over the world. Chromosomal instability is hallmark of liver cancer. Microtubule-associated serine and threonine kinase 2 (MAST2), as a microtubule associated protein, may involve in tumorous chromosomal instability and plays important roles in cell proliferation and survival. The role of MAST2 in liver cancer has not been well elucidated, which is the aim of our study. In this study, The Cancer Genome Atlas database was used to study the MAST2 mRNA expression in liver cancer, and Chi-squared tests were performed to test the correlation between clinical features and MAST2 expression. ROC curve was performed to examined the diagnostic capacity. The prognostic value of MAST2 in liver cancer was assessed through Kaplan-Meier curves as well as Cox analysis. Our results showed MAST2 was upregulated in liver cancer, and the area under the curve (AUC) was 0.925 and indicated powerful diagnostic capability. High MAST2 expression was associated with advanced clinical status such as histological type (p = 0.0059), histologic grade (p = 0.0142), stage (p = 0.0008), T classification (p = 0.0028), N classification (p = 0.0107), survival status (p = 0.0062), and poor prognosis of patients. Importantly, MAST2 was an independent risk factor for patients' prognosis after adjusting for other risk factors including stage, T classification, and residual tumor. In total, MAST2 is a potential diagnostic and prognostic biomarker of liver cancer.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Peiqiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Zhuo Fu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| |
Collapse
|
5
|
Genetic polymorphisms (rs10636 and rs28366003) in metallothionein 2A increase breast cancer risk in Chinese Han population. Aging (Albany NY) 2017; 9:547-555. [PMID: 28228606 PMCID: PMC5361680 DOI: 10.18632/aging.101177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
Genetic polymorphisms of MT2A are frequently observed in many different cancers. We performed this case-control study, including 459 breast cancer (BC) patients and 549 healthy controls from Northwest China, to evaluate the associations between two common MT2A polymorphisms (rs10636 and rs28366003) and BC risk. The MT2A polymorphisms were genotyped via Sequenom MassARRAY. The individuals with the rs28366003 A/G, A/G-G/G genotypes underwent a higher risk of BC (P<0.0001). And, the minor allele G of rs28366003 was related to an increased BC risk (P<0.0001). We also found a significantly increased BC risk with rs10636 polymorphism among homozygote and recessive models (P<0.05). Further subgroup analysis by clinical characteristics of BC patients showed that Scarff, Bloom and Richardson tumor grade (SBR) 1-2 have a higher expression of the minor allele of these two MT2A loci than SBR 3. Our results indicated that the rs10636 and rs28366003 polymorphisms in MT2A increased BC risk in Northwest Chinese Han population.
Collapse
|
6
|
Chudinova EM, Karpov PA, Fokin AI, Yemets AI, Lytvyn DI, Nadezhdina ES, Blume YB. MAST-like protein kinase IREH1 from Arabidopsis thaliana co-localizes with the centrosome when expressed in animal cells. PLANTA 2017; 246:959-969. [PMID: 28717875 DOI: 10.1007/s00425-017-2742-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/31/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The similarity of IREH1 (Incomplete Root Hair Elongation 1) and animal MAST kinases was confirmed; IREH1cDNA was cloned while expressing in cultured animal cells co-localized with the centrosome. In mammals and fruit flies, microtubule-associated serine/threonine-protein kinases (MAST) are strongly involved in the regulation of the microtubule system. Higher plants also possess protein kinases homologous to MASTs, but their function and interaction with the cytoskeleton remain unclear. Here, we confirmed the sequence and structural similarity of MAST-related putative protein kinase IREH1 (At3g17850) and known animal MAST kinases. We report the first cloning of full-length cDNA of the IREH1 from Arabidopsis thaliana. Recombinant GFP-IREH1 protein was expressed in different cultured animal cells. It revealed co-localization with the centrosome without influencing cell morphology and microtubule arrangement. Structural N-terminal region of the IREH1 molecule co-localized with centrosome as well.
Collapse
Affiliation(s)
- Elena M Chudinova
- Institute of Protein Research of Russian Academy of Sciences, Moscow, Russia.
| | - Pavel A Karpov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Artem I Fokin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Dmytro I Lytvyn
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Elena S Nadezhdina
- Institute of Protein Research of Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
7
|
Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev 2017; 31:1939-1957. [PMID: 29066500 PMCID: PMC5710140 DOI: 10.1101/gad.304261.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Zhang et al. identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. They validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. Disruption of the balanced modulation of reversible tyrosine phosphorylation has been implicated in the etiology of various human cancers, including breast cancer. Protein Tyrosine Phosphatase N23 (PTPN23) resides in chromosomal region 3p21.3, which is hemizygously or homozygously lost in some breast cancer patients. In a loss-of-function PTPome screen, our laboratory identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. Now, our TCGA (The Cancer Genome Atlas) database analyses illustrate a correlation between low PTPN23 expression and poor survival in breast cancers of various subtypes. Therefore, we investigated the tumor-suppressive function of PTPN23 in an orthotopic transplantation mouse model. Suppression of PTPN23 in Comma 1Dβ cells induced breast tumors within 56 wk. In PTPN23-depleted tumors, we detected hyperphosphorylation of the autophosphorylation site tyrosine in the SRC family kinase (SFK) FYN as well as Tyr142 in β-catenin. We validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. We demonstrated that tumor outgrowth from PTPN23-deficient BT474 cells was suppressed in a xenograft model in vivo upon treatment with AZD0530, an SFK inhibitor. Furthermore, double knockout of FYN and PTPN23 via CRISPR/CAS9 also attenuated tumor outgrowth from PTPN23 knockout Cal51 cells. Overall, this mechanistic analysis of the tumor-suppressive function of PTPN23 in breast cancer supports the identification of FYN as a therapeutic target for breast tumors with heterozygous or homozygous loss of PTPN23.
Collapse
Affiliation(s)
- Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John Erby Wilkinson
- Unit for Laboratory Animal Medicine, Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
8
|
Shandiz FH, Ghaffarzadegan K, Fariman SJ, Akbarzadeh M, Elyasi S, Mohammadpour AH. Evaluation of serum levels of 8-oxo-2′-deoxyguanosine as a prognostic factor in nonmetastatic breast cancer patients. BREAST CANCER MANAGEMENT 2017. [DOI: 10.2217/bmt-2017-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
Aim: 8-OxodG protein has been introduced recently as a new biomarker for breast cancer, according to its role in tumor progression and invasion. In this study, we investigated prognostic value of 8-Oxo-2′-deoxyguanosine (8-OxodG) protein in nonmetastatic breast cancer patients excluding confounding factor. Materials & methods: Before any adjuvant chemotherapy or surgery, serum level of 8-OxodG protein was determined in 79 patients with nonmetastatic breast cancer. All patients follow up for 5 years regarding cancer recurrence and survival. Results: Cumulative risk of recurrence 5 years after the beginning of the study was 0.86 and there was no significant correlation between 8-OxodG and the recurrence rate (p = 0.78). Conclusion: The serum levels of 8-OxodG protein may not be an appropriate prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Fatemeh Homaei Shandiz
- Solid Tumor Treatment Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saeed Jahani Fariman
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Akbarzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Oishi T, Iino K, Okawa Y, Kakizawa K, Matsunari S, Yamashita M, Taniguchi T, Maekawa M, Suda T, Oki Y. DNA methylation analysis in malignant pheochromocytoma and paraganglioma. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2016; 7:12-20. [PMID: 29067245 PMCID: PMC5651299 DOI: 10.1016/j.jcte.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/05/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022]
Abstract
AIMS In recent years, aberrant DNA methylation of specific CpG sites has been detected in many types of malignant tumors, and the epigenetic regulation of promoter CpG sites is considered an important mechanism underlying carcinogenesis. This study aimed to establish the epigenetics of the malignant transformation of malignant pheochromocytoma (PCC) and paraganglioma (PGL) by performing a methylation analysis. MATERIALS AND METHODS Based on the results of the Infinium HumanMethylation450 BeadChip array using DNA samples of PCC/PGL patients, candidate CpG sites that were hyper/hypo-methylated in metastatic tumors relative to those in the primary tumors of 2 patients with malignant PCC/PGL were selected. The methylation levels of the chosen candidate CpG sites were evaluated quantitatively. RESULTS Twelve CpG sites were selected as hypermethylated candidates, and 16 CpG sites were selected as hypomethylated candidates. Using two quantitative methylation analysis methods, one hypermethylated site (cg02119938) and one hypomethylated site (cg26870725) remained as candidates. These sites were related to ACSBG1 (acyl-CoA synthetase bubblegum family member 1) and MAST1 (microtubule-associated serine-threonine kinase 1), respectively. Immunohistochemical studies of ACSBG1 and MAST1 revealed that epigenetic changes in the malignant transformation of PCC/PGL might be associated with ACSBG1 silencing or MAST1 overexpression. CONCLUSIONS Here, we report two noteworthy genes, ACSBG1 and MAST1; the aberrant promoter methylation/demethylation of these genes might be involved in their silencing/expression in malignant PCC/PGL. Further investigations are necessary to determine the role of ACSBG1 and/or MAST1 expression in malignant transformation and to establish pathological markers that can evaluate the malignant potential of PCC/PGL.
Collapse
Affiliation(s)
- Toshihiro Oishi
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazumi Iino
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yuta Okawa
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Keisuke Kakizawa
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shoko Matsunari
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Miho Yamashita
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Terumi Taniguchi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yutaka Oki
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Family and Community Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Corresponding author at: Department of Family and Community Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431-3192, Japan.Department of Family and Community MedicineHamamatsu University School of Medicine1-20-1 Handayama Higashi-kuHamamatsu431-3192Japan
| |
Collapse
|
10
|
Hudler P, Britovsek NK, Grazio SF, Komel R. Association between polymorphisms in segregation genes BUB1B and TTK and gastric cancer risk. Radiol Oncol 2016; 50:297-307. [PMID: 27679546 PMCID: PMC5024654 DOI: 10.1515/raon-2015-0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2015] [Accepted: 08/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Malignant transformation of normal gastric cells is a complex and multistep process, resulting in development of heterogeneous tumours. Susceptible genetic background, accumulation of genetic changes, and environmental factors play an important role in gastric carcinogenesis. Single nucleotide polymorphisms (SNPs) in mitotic segregation genes could be responsible for inducing the slow process of accumulation of genetic changes, leading to genome instability. PATIENTS AND METHODS We performed a case-control study of polymorphisms in mitotic kinases TTK rs151658 and BUB1B rs1031963 and rs1801376 to assess their effects on gastric cancer risk. We examined the TTK abundance in gastric cancer tissues using immunoblot analysis. RESULTS C/G genotype of rs151658 was more frequent in patients with diffuse type of gastric cancer and G/G genotype was more common in intestinal types of gastric cancers (p = 0.049). Polymorphic genotype A/A of rs1801376 was associated with higher risk for developing diffuse type of gastric cancer in female population (p = 0.007), whereas A/A frequencies were increased in male patients with subserosa tumour cell infiltration (p = 0.009). T/T genotype of rs1031963 was associated with well differentiated tumours (p = 0.035). TT+CT genotypes of rs1031963 and GG+AG genotypes of rs1801376 were significantly associated with gastric cancer risk (dominant model; OR = 2,929, 95% CI: 1.281-6.700; p = 0.017 and dominant model; OR = 0,364, 95% CI: 0.192-0.691; p = 0.003 respectively). CONCLUSIONS Our results suggest that polymorphisms in mitotic kinases TTK and BUB1B may contribute to gastric tumorigenesis and risk of tumour development. Further investigations on large populations and populations of different ethnicity are needed to determine their clinical utility.
Collapse
Affiliation(s)
- Petra Hudler
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Ljubljana, Slovenia
| | - Nina Kocevar Britovsek
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Ljubljana, Slovenia
| | - Snjezana Frkovic Grazio
- University Clinical Hospital Ljubljana, Department of Obstetrics and Gynecology, Department of Gynecological Pathology and Cytology, Ljubljana, Slovenia
| | - Radovan Komel
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Ljubljana, Slovenia
| |
Collapse
|
11
|
Wu MY, Zhang XF, Dai DQ, Ou-Yang L, Zhu Y, Yan H. Regularized logistic regression with network-based pairwise interaction for biomarker identification in breast cancer. BMC Bioinformatics 2016; 17:108. [PMID: 26921029 PMCID: PMC4769543 DOI: 10.1186/s12859-016-0951-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2015] [Accepted: 01/28/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To facilitate advances in personalized medicine, it is important to detect predictive, stable and interpretable biomarkers related with different clinical characteristics. These clinical characteristics may be heterogeneous with respect to underlying interactions between genes. Usually, traditional methods just focus on detection of differentially expressed genes without taking the interactions between genes into account. Moreover, due to the typical low reproducibility of the selected biomarkers, it is difficult to give a clear biological interpretation for a specific disease. Therefore, it is necessary to design a robust biomarker identification method that can predict disease-associated interactions with high reproducibility. RESULTS In this article, we propose a regularized logistic regression model. Different from previous methods which focus on individual genes or modules, our model takes gene pairs, which are connected in a protein-protein interaction network, into account. A line graph is constructed to represent the adjacencies between pairwise interactions. Based on this line graph, we incorporate the degree information in the model via an adaptive elastic net, which makes our model less dependent on the expression data. Experimental results on six publicly available breast cancer datasets show that our method can not only achieve competitive performance in classification, but also retain great stability in variable selection. Therefore, our model is able to identify the diagnostic and prognostic biomarkers in a more robust way. Moreover, most of the biomarkers discovered by our model have been verified in biochemical or biomedical researches. CONCLUSIONS The proposed method shows promise in the diagnosis of disease pathogenesis with different clinical characteristics. These advances lead to more accurate and stable biomarker discovery, which can monitor the functional changes that are perturbed by diseases. Based on these predictions, researchers may be able to provide suggestions for new therapeutic approaches.
Collapse
Affiliation(s)
- Meng-Yun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Guoding Road, Shanghai, 200433, China. .,Key Laboratory of Mathematical Economics SUFE, Ministry of Education, Guoding Road, Shanghai, 200433, China.
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Luoyu Road, Wuhan, 430079, China.
| | - Dao-Qing Dai
- Intelligent Data Center and Department of Mathematics, Sun Yat-Sen University, Xingang West Road, Guangzhou, 510275, China.
| | - Le Ou-Yang
- College of Information Engineering, Shenzhen University, Nanhai Avenue, Shenzhen, 518060, China.
| | - Yuan Zhu
- School of Automation, China University of Geosciences, Lumo Road, Wuhan, 430074, China.
| | - Hong Yan
- Department of Electronic and Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, 999077, China.
| |
Collapse
|
12
|
Chai F, Liang Y, Zhang F, Wang M, Zhong L, Jiang J. Systematically identify key genes in inflammatory and non-inflammatory breast cancer. Gene 2015; 575:600-14. [PMID: 26403314 DOI: 10.1016/j.gene.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2015] [Revised: 08/27/2015] [Accepted: 09/11/2015] [Indexed: 01/13/2023]
Abstract
Although the gene expression in breast tumor stroma, playing a critical role in determining inflammatory breast cancer (IBC) phenotype, has been proved to be significantly different between IBC and non-inflammatory breast cancer (non-IBC), more effort needs to systematically investigate the gene expression profiles between tumor epithelium and stroma and to efficiently uncover the potential molecular networks and critical genes for IBC and non-IBC. Here, we comprehensively analyzed and compared the transcriptional profiles from IBC and non-IBC patients using hierarchical clustering, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, and identified PDGFRβ, SUMO1, COL1A1, FYN, CAV1, COL5A1 and MMP2 to be the key genes for breast cancer. Interestingly, PDGFRβ was found to be the hub gene in both IBC and non-IBC; SUMO1 and COL1A1 were respectively the key genes for IBC and non-IBC. These analysis results indicated that those key genes might play important role in IBC and non-IBC and provided some clues for future studies.
Collapse
Affiliation(s)
- Fan Chai
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yan Liang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Fan Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Minghao Wang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Ling Zhong
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
13
|
Jung YS, Chun HY, Yoon MH, Park BJ. Elevated estrogen receptor-α in VHL-deficient condition induces microtubule organizing center amplification via disruption of BRCA1/Rad51 interaction. Neoplasia 2015; 16:1070-81. [PMID: 25499220 PMCID: PMC4309251 DOI: 10.1016/j.neo.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023] Open
Abstract
Since loss of VHL is frequently detected early phase genetic event in human renal cell carcinoma, pVHL is assumed to be indispensable for suppression of tumor initiation step. However, induction of HIF-1α, target of pVHL E3 ligase, is more adequate to angiogenesis step after tumor mass formation. Concerning this, it has been reported that pVHL is involved in centrosome location during metaphase and regulates ER-α signaling. Here, we provide the evidences that pVHL-mediated ER-α suppression is critical for microtubule organizing center (MTOC) maintaining and elevated ER-α promotes MTOC amplification through disruption of BRCA1-Rad51 interaction. In fact, numerous MTOC in VHL- or BRCA1-deficient cells are reduced by Fulvestrant, inhibitor of ER-α expression as well as antagonist. In addition, we reveal that activation of ER signaling can increase γ-tubulin, core factor of TuRC and render the resistance to Taxol. Thus, Fulvestrant but not Tamoxifen, antagonist against ER-α, can restore the Taxol sensitivity in VHL- or BRCA1-deficient cells. Our results suggest that pVHL-mediated ER-α suppression is important for regulation of MTOC as well as drug resistance.
Collapse
Affiliation(s)
- Youn-Sang Jung
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Ho-Young Chun
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
14
|
Purrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, Bojesen SE, Andrulis IL, Cox A, Hall P, Carpenter J, Yannoukakos D, Haiman CA, Fasching PA, Mannermaa A, Winqvist R, Brenner H, Lindblom A, Chenevix-Trench G, Benitez J, Swerdlow A, Kristensen V, Guénel P, Meindl A, Darabi H, Eriksson M, Fagerholm R, Aittomäki K, Blomqvist C, Nordestgaard BG, Nielsen SF, Flyger H, Wang X, Olswold C, Olson JE, Mulligan AM, Knight JA, Tchatchou S, Reed MWR, Cross SS, Liu J, Li J, Humphreys K, Clarke C, Scott R, Fostira F, Fountzilas G, Konstantopoulou I, Henderson BE, Schumacher F, Le Marchand L, Ekici AB, Hartmann A, Beckmann MW, Hartikainen JM, Kosma VM, Kataja V, Jukkola-Vuorinen A, Pylkäs K, Kauppila S, Dieffenbach AK, Stegmaier C, Arndt V, Margolin S, Balleine R, Arias Perez JI, Pilar Zamora M, Menéndez P, Ashworth A, Jones M, Orr N, Arveux P, Kerbrat P, Truong T, Bugert P, Toland AE, Ambrosone CB, Labrèche F, Goldberg MS, Dumont M, Ziogas A, Lee E, Dite GS, Apicella C, Southey MC, Long J, Shrubsole M, Deming-Halverson S, Ficarazzi F, Barile M, Peterlongo P, Durda K, Jaworska-Bieniek K, Tollenaar RAEM, Seynaeve C, Brüning T, Ko YD, Van Deurzen CHM, Martens JWM, Kriege M, Figueroa JD, Chanock SJ, Lissowska J, Tomlinson I, Kerin MJ, Miller N, Schneeweiss A, Tapper WJ, Gerty SM, Durcan L, Mclean C, Milne RL, Baglietto L, dos Santos Silva I, Fletcher O, Johnson N, Van'T Veer LJ, Cornelissen S, Försti A, Torres D, Rüdiger T, Rudolph A, Flesch-Janys D, Nickels S, Weltens C, Floris G, Moisse M, Dennis J, Wang Q, Dunning AM, Shah M, Brown J, Simard J, Anton-Culver H, Neuhausen SL, Hopper JL, Bogdanova N, Dörk T, Zheng W, Radice P, Jakubowska A, Lubinski J, Devillee P, Brauch H, Hooning M, García-Closas M, Sawyer E, Burwinkel B, Marmee F, Eccles DM, Giles GG, Peto J, Schmidt M, Broeks A, Hamann U, Chang-Claude J, Lambrechts D, Pharoah PDP, Easton D, Pankratz VS, Slager S, Vachon CM, Couch FJ. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Hum Mol Genet 2014; 23:6034-46. [PMID: 24927736 PMCID: PMC4204763 DOI: 10.1093/hmg/ddu300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2013] [Revised: 05/20/2014] [Accepted: 06/10/2014] [Indexed: 01/01/2023] Open
Abstract
Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.
Collapse
Affiliation(s)
- Kristen S Purrington
- Department of Health Sciences Research, Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, USA
| | | | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics
| | | | - Stig E Bojesen
- Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Irene L Andrulis
- Ontario Cancer Genetics Network, Department of Molecular Genetics
| | - Angela Cox
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, USA
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | | | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, Division of Breast Cancer Research, Institute of Cancer Research, Sutton, UK
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway, Faculty of Medicine (Faculty Division Ahus), University of Oslo (UiO), Oslo, Norway
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics
| | | | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, Oncology and Clinical Genetics
| | | | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
| | | | | | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Julia A Knight
- Prosserman Centre for Health Research, Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sandrine Tchatchou
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Malcolm W R Reed
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | | | - Christine Clarke
- Westmead Institute for Cancer Research, Sydney Medical School Westmead, University of Sydney at the Westmead Millennium Institute, Westmead, Australia
| | - Rodney Scott
- Division of Genetics, Hunter Area Pathology Service and University of Newcastle, Newcastle, Australia
| | - Florentia Fostira
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - George Fountzilas
- Department of Medical Oncology, "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, USA
| | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research
| | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rosemary Balleine
- Westmead Millenium Institute for Medical Research, Sydney, Australia
| | | | - M Pilar Zamora
- Servicio de Oncología Médica, Hospital Universitario La Paz, Madrid, Spain
| | | | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre and Division of Breast Cancer Research
| | | | - Nick Orr
- Breakthrough Breast Cancer Research Centre and Division of Breast Cancer Research
| | - Patrick Arveux
- Center Georges-Francois Leclerc, Registry of Gynecologic Tumors, Dijon, France
| | - Pierre Kerbrat
- Centre Eugène Marquis, Department of Medical Oncology, Rennes, France
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Peter Bugert
- German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Heidelberg, Germany
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - France Labrèche
- Department of Environmental & Occupational Health and of Social & Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, Canada, Division of Clinical Epidemiology, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada
| | - Martine Dumont
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
| | - Argyrios Ziogas
- Department of Epidemiology, University of California Irvine, Irvine, USA
| | - Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gillian S Dite
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | - Carmel Apicella
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | | | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Martha Shrubsole
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Sandra Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Filomena Ficarazzi
- Cogentech Cancer Genetic Test Laboratory, Milan, Italy, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Caroline Seynaeve
- Family Cancer Clinic, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Centrer, Rotterdam, The Netherlands
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | | | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mieke Kriege
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Michael J Kerin
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Nicola Miller
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | | | - Susan M Gerty
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lorraine Durcan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Catriona Mclean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Roger L Milne
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Laura Baglietto
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Isabel dos Santos Silva
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Laura J Van'T Veer
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Sten Cornelissen
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, Center for Primary Health Care Research, University of Lund, Malmö, Sweden
| | - Diana Torres
- Molecular Genetics of Breast Cancer, Institute of Human Genetics, Pontificia University Javeriana, Bogota, Colombia
| | - Thomas Rüdiger
- Institute of Pathology, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Matthieu Moisse
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium, Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Judith Brown
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Jacques Simard
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, USA
| | | | - John L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | | | - Thilo Dörk
- Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy and
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Peter Devillee
- Department of Human Genetics & Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, University of Tübingen, Tübingen, Germany
| | - Maartje Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Elinor Sawyer
- Division of Cancer Studies, Kings College London, Guy's Hospital, London, UK
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederick Marmee
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Graham G Giles
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Julian Peto
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Marjanka Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium, Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | - Fergus J Couch
- Department of Health Sciences Research, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA,
| |
Collapse
|
15
|
Fine mapping reveals that promotion susceptibility locus 1 (Psl1) is a compound locus with multiple genes that modify susceptibility to skin tumor development. G3-GENES GENOMES GENETICS 2014; 4:1071-9. [PMID: 24700353 PMCID: PMC4065250 DOI: 10.1534/g3.113.009688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Although it is well known that the majority of human cancers occur as the result of exposure to environmental carcinogens, it is clear that not all individuals exposed to a specific environmental carcinogen have the same risk of developing cancer. Considerable evidence indicates that common allelic variants of low-penetrance, tumor susceptibility genes are responsible for this interindividual variation in risk. We previously reported a skin tumor promotion susceptibility locus, Psl1, which maps to the distal portion of chromosome 9, that modified skin tumor promotion susceptibility in the mouse. Furthermore, Psl1 was shown to consist of at least two subloci (i.e., Psl1.1 and Psl1.2) and that glutathione S-transferase alpha 4 (Gsta4), which maps to Psl1.2, is a skin tumor promotion susceptibility gene. Finally, variants of human GSTA4 were found to be associated with risk of nonmelanoma skin cancer. In the current study, a combination of nested and contiguous C57BL/6 congenic mouse strains, each inheriting a different portion of the Psl1 locus from DBA/2, were tested for susceptibility to skin tumor promotion with 12-O-tetradecanoylphorbol-13-acetate. These analyses indicate that Psl1 is a compound locus with at least six genes, including Gsta4, that modify skin tumor promotion susceptibility. More than 550 protein-coding genes map within the Psl1 locus. Fine mapping of the Psl1 locus, along with two-strain haplotype analysis, gene expression analysis, and the identification of genes with amino acid variants, has produced a list of fewer than 25 candidate skin tumor promotion susceptibility genes.
Collapse
|
16
|
MAST2 and NOTCH1 translocations in breast carcinoma and associated pre-invasive lesions. Hum Pathol 2013; 44:2837-44. [PMID: 24140425 DOI: 10.1016/j.humpath.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/22/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 11/21/2022]
Abstract
There are several mutations and structural variations common to breast cancer. Many of these genomic changes are thought to represent driver mutations in oncogenesis. Less well understood is how and when these changes take place in breast cancer development. Previous studies have identified gene rearrangements in the microtubule-associated serine-threonine kinase (MAST) and NOTCH gene families in 5% to 7% of invasive breast cancers. Some of these translocations can be detected by fluorescence in situ hybridization (FISH) allowing for examination of the correlation between these genomic changes and concurrent morphologic changes in early breast neoplasia. NOTCH and MAST gene rearrangements were identified by FISH in a large series of breast cancer cases organized on tissue microarrays (TMA). When translocations were identified by TMA, we performed full cross-section FISH to evaluate concurrent pre-invasive lesions. FISH break-apart assays were designed for NOTCH1 and MAST2 gene rearrangements. Translocations were identified in 16 cases of invasive carcinoma; 10 with MAST2 translocations (2.0%) and 6 cases with NOTCH1 translocations (1.2%). Whole section FISH analysis of these cases demonstrated that the translocations are present in the majority of concurrent ductal carcinoma in situ (DCIS) (6/8). When DCIS wasn't associated with an invasive component, it was never translocated (0/170, P=.0048). We have confirmed the presence of MAST and NOTCH family gene rearrangements in invasive breast carcinoma, and show that FISH studies can effectively be used with TMAs to screen normal, pre-invasive, and coexisting invasive disease. Our findings suggest that these translocations occur during the transition to DCIS and/or invasive carcinoma.
Collapse
|
17
|
Jang JH, Cotterchio M, Borgida A, Liu G, Gallinger S, Cleary SP. Interaction of polymorphisms in mitotic regulator genes with cigarette smoking and pancreatic cancer risk. Mol Carcinog 2013; 52 Suppl 1:E103-9. [PMID: 23908141 DOI: 10.1002/mc.22037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2012] [Revised: 03/13/2013] [Accepted: 03/21/2013] [Indexed: 11/05/2022]
Abstract
Mitotic regulator genes have been associated with several cancers, however little is known about their possible association with pancreatic cancer. Smoking and family history are the strongest risk factors for this highly fatal disease. The main purpose of this study was to determine if polymorphisms of mitotic regulator genes are associated with pancreatic cancer and whether they modify the association between cigarette smoking and pancreatic cancer risk. A population-based case-control study was conducted in Ontario with 455 pathology-confirmed pancreatic cancer cases and 893 controls. Cigarette smoking history was collected using questionnaires and DNA obtained from blood samples. Genotypes were determined by mass-spectrometry. Odds ratio estimates were obtained using multivariate logistic regression. Interactions between genetic variant and smoking were assessed using stratified analyses and the likelihood ratio statistic (significance P < 0.05). Variants of MCPH1, FYN, APC, PRKCA, NIN, TopBP1, RIPK1, and SNW1 were not independently associated with pancreatic cancer risk. A significant interaction was observed between pack-years and MCPH1-2550-C > T (P = 0.02). Compared to never smokers, individuals with 10-27 pack-years and MCPH1-2550-CC genotype were at increased risk for pancreatic cancer (MVOR = 2.49, 95% confidence interval [95% CI]: 1.55, 4.00) as were those with >27 pack-years and MCPH1-2550-TC genotype (MVOR = 2.42, 95% CI: 1.45, 4.05). A significant interaction was observed between smoking status and TopBP1-3257-A > G (P = 0.04) using a dominant model. Current smokers with the TopBP1-3257 A allele were at increased risk for pancreatic cancer (MVOR = 2.55, 95% CI: 1.77, 3.67). MCPH1-2550-C > T and TopBP1-3257-A > G modify the association between smoking and pancreatic cancer. These findings provide insights into the potential molecular mechanisms behind smoking-associated pancreatic cancer.
Collapse
Affiliation(s)
- Ji-Hyun Jang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Goode EL, Chenevix-Trench G, Hartmann LC, Fridley BL, Kalli KR, Vierkant RA, Larson MC, White KL, Keeney GL, Oberg TN, Cunningham JM, Beesley J, Johnatty SE, Chen X, Goodman KE, Armasu SM, Rider DN, Sicotte H, Schmidt MM, Elliott EA, Høgdall E, Kjær SK, Fasching PA, Ekici AB, Lambrechts D, Despierre E, Høgdall C, Lundvall L, Karlan BY, Gross J, Brown R, Chien J, Duggan DJ, Tsai YY, Phelan CM, Kelemen LE, Peethambaram PP, Schildkraut JM, Shridhar V, Sutphen R, Couch FJ, Sellers TA. Assessment of hepatocyte growth factor in ovarian cancer mortality. Cancer Epidemiol Biomarkers Prev 2011; 20:1638-48. [PMID: 21724856 PMCID: PMC3153603 DOI: 10.1158/1055-9965.epi-11-0455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Invasive ovarian cancer is a significant cause of gynecologic cancer mortality. METHODS We examined whether this mortality was associated with inherited variation in approximately 170 candidate genes/regions [993 single-nucleotide polymorphisms (SNPs)] in a multistage analysis based initially on 312 Mayo Clinic cases (172 deaths). Additional analyses used The Cancer Genome Atlas (TCGA; 127 cases, 62 deaths). For the most compelling gene, we immunostained Mayo Clinic tissue microarrays (TMA, 326 cases) and conducted consortium-based SNP replication analysis (2,560 cases, 1,046 deaths). RESULTS The strongest initial mortality association was in HGF (hepatocyte growth factor) at rs1800793 (HR = 1.7, 95% CI = 1.3-2.2, P = 2.0 × 10(-5)) and with overall variation in HGF (gene-level test, P = 3.7 × 10(-4)). Analysis of TCGA data revealed consistent associations [e.g., rs5745709 (r(2) = 0.96 with rs1800793): TCGA HR = 2.4, CI = 1.4-4.1, P = 2.2 × 10(-3); Mayo Clinic + TCGA HR = 1.6, CI = 1.3-1.9, P = 7.0 × 10(-5)] and suggested genotype correlation with reduced HGF mRNA levels (P = 0.01). In Mayo Clinic TMAs, protein levels of HGF, its receptor MET (C-MET), and phospho-MET were not associated with genotype and did not serve as an intermediate phenotype; however, phospho-MET was associated with reduced mortality (P = 0.01) likely due to higher expression in early-stage disease. In eight additional ovarian cancer case series, HGF rs5745709 was not associated with mortality (HR = 1.0, CI = 0.9-1.1, P = 0.87). CONCLUSIONS We conclude that although HGF signaling is critical to migration, invasion, and apoptosis, it is unlikely that HGF genetic variation plays a major role in ovarian cancer mortality. Furthermore, any minor role is not related to genetically-determined expression. IMPACT Our study shows the utility of multiple data types and multiple data sets in observational studies.
Collapse
Affiliation(s)
- Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Asmann YW, Hossain A, Necela BM, Middha S, Kalari KR, Sun Z, Chai HS, Williamson DW, Radisky D, Schroth GP, Kocher JPA, Perez EA, Thompson EA. A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines. Nucleic Acids Res 2011; 39:e100. [PMID: 21622959 PMCID: PMC3159479 DOI: 10.1093/nar/gkr362] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
SnowShoes-FTD, developed for fusion transcript detection in paired-end mRNA-Seq data, employs multiple steps of false positive filtering to nominate fusion transcripts with near 100% confidence. Unique features include: (i) identification of multiple fusion isoforms from two gene partners; (ii) prediction of genomic rearrangements; (iii) identification of exon fusion boundaries; (iv) generation of a 5′–3′ fusion spanning sequence for PCR validation; and (v) prediction of the protein sequences, including frame shift and amino acid insertions. We applied SnowShoes-FTD to identify 50 fusion candidates in 22 breast cancer and 9 non-transformed cell lines. Five additional fusion candidates with two isoforms were confirmed. In all, 30 of 55 fusion candidates had in-frame protein products. No fusion transcripts were detected in non-transformed cells. Consideration of the possible functions of a subset of predicted fusion proteins suggests several potentially important functions in transformation, including a possible new mechanism for overexpression of ERBB2 in a HER-positive cell line. The source code of SnowShoes-FTD is provided in two formats: one configured to run on the Sun Grid Engine for parallelization, and the other formatted to run on a single LINUX node. Executables in PERL are available for download from our web site: http://mayoresearch.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm.
Collapse
Affiliation(s)
- Yan W Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer. Breast Cancer Res Treat 2011; 129:617-22. [PMID: 21607584 DOI: 10.1007/s10549-011-1587-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2011] [Accepted: 05/10/2011] [Indexed: 02/08/2023]
Abstract
Mitotic regulatory pathways insure proper timing of mitotic entry, sister chromatid cohesion and separation, and cytokinesis. Disruption of this process results in inappropriate chromosome segregation and aneuploidy, and appears to contribute to cancer. Specifically, disregulation and somatic mutation of mitotic regulators has been observed in human cancers, and overexpression of mitotic regulators is common in aggressive and late stage tumors. However, the role of germline variation in mitotic pathways and risk of cancer is not well understood. We tested 1,084 haplotype-tagging and functional variants from 164 genes in mitotic regulatory pathways in 791 Caucasian women with breast cancer and 843 healthy controls for association with risk of overall and high grade breast cancer. Sixty-one single nucleotide polymorphisms (SNPs) from 40 genes were associated (P < 0.05) with risk of breast cancer in a log-additive model. In addition, 60 SNPs were associated (P < 0.05) with risk of high grade breast cancer. However, none of these associations were significant after Bonferroni correction for multiple testing. In gene-level analyses, CDC25C, SCC1/RAD21, TLK2, and SMC6L1 were associated (P < 0.05) with overall breast cancer risk, CDC6, CDC27, SUMO3, RASSF1, KIF2, and CDC14A were associated with high grade breast cancer risk, and EIF3S10 and CDC25A were associated with both. Further investigation in breast and other cancers are needed to understand the influence of inherited variation in mitotic genes on tumor grade and cancer risk.
Collapse
|
21
|
Couch FJ, Wang X, Bamlet WR, de Andrade M, Petersen GM, McWilliams RR. Association of mitotic regulation pathway polymorphisms with pancreatic cancer risk and outcome. Cancer Epidemiol Biomarkers Prev 2010; 19:251-7. [PMID: 20056645 DOI: 10.1158/1055-9965.epi-09-0629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mitosis is a highly regulated process that serves to ensure the fidelity of cell division. The disruption of mitotic regulators leading to aneuploidy and polyploidy is commonly observed in cancer cells. Single nucleotide polymorphisms (SNP) in regulators of mitosis may promote chromosome missegregation and influence pancreatic cancer and/or survival. METHODS Thirty-four SNPs, previously associated with breast cancer risk, from 33 genes involved in the regulation of mitosis, were investigated for associations with pancreatic cancer risk in 1,143 Caucasian patients with pancreatic adenocarcinoma and 1,097 unaffected controls from the Mayo Clinic. Associations with survival from pancreatic cancer were also assessed using 1,030 pancreatic cancer cases with known outcome. RESULTS Two SNPs in the APC (rs2431238) and NIN (rs10145182) loci, of 34 examined, were significantly associated with pancreatic cancer risk (P = 0.035 and P = 0.038, respectively). Further analyses of individuals categorized by smoking and body mass index identified several SNPs displaying significant associations (P < 0.05) with pancreatic cancer risk, including APC rs2431238 in individuals with high body mass index (>/=30; P = 0.031) and NIN rs10145182 in ever smokers (P = 0.01). In addition, survival analyses detected significant associations between SNPs in EIF3S10 and overall survival (P = 0.009), SNPs from five genes and survival in resected cancer cases (P < 0.05), and SNPs from two other genes (P < 0.05) and survival of locally advanced cancer cases. CONCLUSION Common variation in genes encoding regulators of mitosis may independently influence pancreatic cancer susceptibility and survival.
Collapse
Affiliation(s)
- Fergus J Couch
- Department of Laboratory Medicine and Pathology, Stabile 2-42, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|