1
|
Wu S, Ma X, Zhang X, Du K, Shi C, Almaamari AA, Han B, Su S, Liu Y. Knockdown of NDUFAF6 inhibits breast cancer progression via promoting mitophagy and apoptosis. Cancer Biol Ther 2025; 26:2445220. [PMID: 39706687 DOI: 10.1080/15384047.2024.2445220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND While NDUFAF6 is implicated in breast cancer, its specific role remains unclear. METHODS The expression levels and prognostic significance of NDUFAF6 in breast cancer were assessed using The Cancer Genome Atlas, Gene Expression Omnibus, Kaplan-Meier plotter and cBio-Portal databases. We knocked down NDUFAF6 in breast cancer cells using small interfering RNA and investigated its effects on cell proliferation and migration ability. We performed gene expression analysis and validated key findings using protein analysis. We also assessed mitochondrial activity and cellular metabolism. RESULTS NDUFAF6 was highly expressed in breast cancer, which was associated with a poorer prognosis. Knockdown of NDUFAF6 reduced the proliferation and migration ability of breast cancer cells. Transcriptome analysis revealed 2,101 differentially expressed genes enriched in apoptosis and mitochondrial signaling pathways. Western blot results showed NDUFAF6 knockdown enhanced apoptosis. In addition, differential gene enrichment analysis was related to mitochondrial signaling pathways, and western blot results verified that mitophagy was enhanced in NDUFAF6 knockdown breast cancer cells. JC-1 assay also showed that mitochondrial dysfunction and reactive oxygen species content were increased after knocking down NDUFAF6. In addition, basal and maximal mitochondrial oxygen consumption decreased, and intracellular glycogen content increased. CONCLUSIONS Knockdown of NDUFAF6 resulted in apoptosis and mitophagy in breast cancer cells and NDUFAF6 may be a potential molecular target for breast cancer therapy.
Collapse
Affiliation(s)
- Shang Wu
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Xindi Ma
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Xiangmei Zhang
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kaiye Du
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- Radiotherapy Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Shi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Ahmed Ali Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Boye Han
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Jalaguier S, Kuehn A, Petitpas C, Dulom A, Jacquemont R, Assi C, Sixou S, Jeschke U, Colinge J, Cavaillès V. The transcription factor RIP140 regulates interferon γ signaling in breast cancer. Int J Cancer 2025; 157:170-182. [PMID: 40065499 PMCID: PMC12062925 DOI: 10.1002/ijc.35405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 05/11/2025]
Abstract
RIP140 (receptor interacting protein of 140 kDa) is an important player in breast cancer (BC) by regulating key cellular pathways such as nuclear hormone receptor signaling. In order to identify additional genes specifically regulated by RIP140 in BC, we performed a transcriptomic analysis after silencing its expression in MCF-7 cells. We identified the interferon γ (IFNγ) signaling as being substantially repressed by RIP140 knockdown. Using the GBP1 (guanylate binding protein 1) gene as a reporter of IFNγ signaling, we demonstrated its robust induction by RIP140 through an ISRE motif, leading to a significant reduction of its induction upon IFNγ treatment. Furthermore, we showed that low levels of RIP140 amplified the IFNγ-dependent inhibition of BC cell proliferation. In line with these data, reanalysis of transcriptomic data obtained in human BC samples revealed that IFNγ levels were associated with good prognosis only for BC patients exhibiting tumors expressing low levels of RIP140, thus confirming its effect on the anti-tumor activity of IFNγ provided by our experimental data. Altogether, this study identifies RIP140 as a new regulator of IFNγ signaling in breast tumorigenesis.
Collapse
Affiliation(s)
- Stéphan Jalaguier
- IRCM, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
- INSERMMontpellierFrance
- Université de MontpellierMontpellierFrance
- Institut régional du Cancer de MontpellierMontpellierFrance
| | - Axel Kuehn
- IRCM, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
- INSERMMontpellierFrance
- Université de MontpellierMontpellierFrance
- Institut régional du Cancer de MontpellierMontpellierFrance
| | - Chloé Petitpas
- IRCM, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
- INSERMMontpellierFrance
- Université de MontpellierMontpellierFrance
- Institut régional du Cancer de MontpellierMontpellierFrance
| | - Arnaud Dulom
- IRCM, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
- INSERMMontpellierFrance
- Université de MontpellierMontpellierFrance
- Institut régional du Cancer de MontpellierMontpellierFrance
| | - Rémy Jacquemont
- IRCM, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
- INSERMMontpellierFrance
- Université de MontpellierMontpellierFrance
- Institut régional du Cancer de MontpellierMontpellierFrance
| | - Cindy Assi
- IRCM, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
- INSERMMontpellierFrance
- Université de MontpellierMontpellierFrance
- Institut régional du Cancer de MontpellierMontpellierFrance
| | - Sophie Sixou
- Faculté des Sciences PharmaceutiquesUniversité Toulouse III—Paul SabatierToulouseFrance
| | - Udo Jeschke
- Department of Obstetrics and GynecologyUniversity Hospital AugsburgAugsburgGermany
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
- INSERMMontpellierFrance
- Université de MontpellierMontpellierFrance
- Institut régional du Cancer de MontpellierMontpellierFrance
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
- INSERMMontpellierFrance
- Université de MontpellierMontpellierFrance
- Institut régional du Cancer de MontpellierMontpellierFrance
- CNRSMontpellierFrance
| |
Collapse
|
3
|
Kuo YC, Chen CL, Lee KL, Wang HF, Drew VJ, Lan PC, Ho YS, Huang YH. Nicotine-driven enhancement of tumor malignancy in triple-negative breast cancer via additive regulation of CHRNA9 and IGF1R. J Pathol 2025; 266:230-245. [PMID: 40244072 DOI: 10.1002/path.6423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cigarette smoking is a significant risk factor for cancer development with complex mechanisms. This study aims to investigate the impact of nicotine exposure on the regulation of stemness- and metastasis-related properties via cholinergic receptor nicotinic alpha 9 subunit (CHRNA9) and insulin-like growth factor-1 receptor (IGF1R) and to evaluate their therapeutic potential in triple-negative breast cancer (TNBC). We performed Kaplan-Meier survival analysis of public databases and revealed that high expression of CHRNA9, IGF1R signaling molecules, and stemness genes was significantly associated with poor recurrence-free survival (RFS) and distant metastasis-free survival (DMFS) in TNBC samples. Additionally, we examined two patient cohorts to determine the clinical associations between the expression levels of different genes (n = 67) and proteins (n = 42) and showed a strong positive correlation between the expression levels of CHRNA9, IGF1R signaling molecules, and stemness markers POU5F1/NANOG in tumor tissues. We carried out nicotine treatment and knockdown of CHRNA9 and IGF1R in TNBC cells to identify the effects on stemness-related properties in vitro. Furthermore, primary and secondary metastatic in vivo animal models were examined using micro-computed tomography (μCT) screening and in situ hybridization with a human Alu probe to detect tumor cells. Nicotine was found to upregulate the expression of CHRNA9, POU5F1, and IGF1R, influencing stemness- and metastasis-related properties. Knockdown of CHRNA9 expression attenuated nicotine-induced stemness-related properties in a TNBC cell model. Furthermore, knockdown of IGF1R expression significantly alleviated nicotine/CHRNA9-induced stemness features and cancer cell metastasis in cell cultures and lung metastatic mouse models. These results demonstrate that nicotine triggers IGF1R signaling, thereby enhancing stemness-related properties, cell migration, invasion, and tumor metastasis, resulting in a poorer prognosis for patients with TNBC. These findings highlight IGF1R as a promising therapeutic target for reducing stemness and metastasis in TNBC patients exposed to environmental nicotine. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Grants
- MOHW103-TD-B-111-01 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW104-TDU-B-212-124-001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW105-TDU-B-212-134001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW106-TDU-B-212-144001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW107-TDU-B-212-114014 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW108-TDU-B-212-124014 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- TMU109-AE1-B02 Taipei Medical University
- NSTC 111-2314-B-038-089-MY3 National Science and Technology Council, Taiwan
- 113-2314-B-038-136 National Science and Technology Council, Taiwan
- NSTC 112-2320-B-039-057 National Science and Technology Council, Taiwan
- MOST 111-2320-B-039-067-MY3 National Science and Technology Council, Taiwan
- NSTC 113-2634-F-039-001 National Science and Technology Council, Taiwan
- MOST 111-2320-B-038-022 National Science and Technology Council, Taiwan
- NSTC 112-2320-B-038-011-MY3 National Science and Technology Council, Taiwan
- CMU113-S-23 China Medical University
Collapse
Affiliation(s)
- Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Good Tissue Practice, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kha-Liang Lee
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Feng Wang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Victor James Drew
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Chi Lan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Good Tissue Practice, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Taichung, Taiwan
| | - Yen-Hua Huang
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
5
|
Soeda I, Shibata M, Inaishi T, Ichikawa T, Sugino K, Kanaya E, Kanda M, Hayashi M, Masuda N. ATPase copper transporting beta attenuates malignant features with high expression as an indicator of favorable prognosis in breast cancer. Breast Cancer 2025:10.1007/s12282-025-01705-7. [PMID: 40316883 DOI: 10.1007/s12282-025-01705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND ATPase copper transporting beta (ATP7B) functions as a copper-transporting ATPase that ejects copper from cells. Although high expression of ATP7B has been reported to increase cisplatin resistance, its role in breast cancer (BC) remains unclear. This study aimed to elucidate the function of ATP7B in BC cells and its significance in patients with BC. METHODS The mRNA and protein expression levels of ATP7B were evaluated in BC and non-cancerous mammary cell lines. Polymerase chain reaction (PCR) array analysis was conducted to determine the correlation between ATP7B and 84 cancer-related genes. ATP7B knockdown was performed using small interfering RNA, and cell proliferation, invasiveness, and migration were analyzed. The associations between the mRNA and protein expression of ATP7B and clinicopathological factors were also investigated in 156 patients with BC. RESULTS ATP7B was found to be highly expressed in estrogen receptor-positive and human epidermal growth factor receptor 2-positive BC cell lines. PCR array analysis revealed a significant correlation between the expression level of ATP7B and those of cadherin 1, estrogen receptor 1, and MET proto-oncogene. ATP7B knockdown significantly increased the proliferation, invasiveness, and migration of MDA-MB-361 and MDA-MB-415 cells. Patients with high ATP7B expression at the mRNA and protein levels experienced favorable prognoses. In addition, ATP7B expression level was identified as an independent prognostic factor in multivariate analysis. CONCLUSIONS ATP7B is involved in promoting anti-cancer activities of tumor suppressors in BC cells across different subtypes and is considered a prognostic marker for BC.
Collapse
Affiliation(s)
- Ikumi Soeda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiro Shibata
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Department of Surgery, Nagoya Ekisaikai Hospital, 4-66, Shonen-cho, Nakagawa-ku, Nagoya, 454-8502, Japan.
| | - Takahiro Inaishi
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Surgery, Komaki City Hospital, 1-20, Joubushi, Komaki, Aichi, 485-8520, Japan
| | - Takahiro Ichikawa
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kayoko Sugino
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Emi Kanaya
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, 930-0194, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Norikazu Masuda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
6
|
Li Q, Li C, Zhang Y, Zheng Z, Wang Y, Yang Y, Zhu Q, Wang R, Xu W, Zhu C, Tian Q, Wang M, Ye L. The tumor suppressor SALL2 opposes chemotherapeutic resistance in breast cancer. Mol Cell Biochem 2025; 480:2971-2983. [PMID: 39572504 PMCID: PMC12048432 DOI: 10.1007/s11010-024-05155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/02/2024] [Indexed: 05/03/2025]
Abstract
Chemotherapy continues to be the primary treatment for certain types of breast cancer. However, despite an initial positive response to chemotherapeutic agents, the development of resistance is inevitable. The exact molecular mechanisms underlying this phenomenon remain unclear. In this research, a significant downregulation of SALL2 expression was observed in chemo-resistant breast cancer, which was attributed to promoter methylation. Decreased SALL2 expression correlated significantly with poorer relapse-free survival in chemotherapy-treated patients with breast cancer. Functionally, SALL2 silencing induced a stem cell-like phenotype in breast cancer cells, fostering resistance to cisplatin both in vitro and in vivo. This resistance was mediated, at least in part, through the transcriptional regulation of BTG2, a negative regulator of stemness, achieved by direct binding to its promoter regions. These findings underscore the critical role of SALL2 in modulating cisplatin response and propose SALL2 as a potential prognostic biomarker for chemotherapy response in breast cancer.
Collapse
Affiliation(s)
- Qiji Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chenxin Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuhao Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zihan Zheng
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yun Wang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yingqian Yang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qingqing Zhu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Rui Wang
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wanhui Xu
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chengming Zhu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qin Tian
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Meng Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Liping Ye
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Kariri YA, Alsaleem M, Al-Kawaz A, Alhatlani BY, Mongan NP, Green AR, Rakha EA. Cell division cycle 6 is an independent prognostic biomarker in breast cancer. Pathology 2025; 57:297-304. [PMID: 39668074 DOI: 10.1016/j.pathol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 12/14/2024]
Abstract
Cell division cycle 6 (CDC6) is a cell cycle protein involved in cell cycle control, DNA replication and cancer cell apoptosis. This study investigated the prognostic value of CDC6 in breast cancer (BC) utilising large well-characterised cohorts of early-stage BC. CDC6 messenger RNA (mRNA) was assessed using the Molecular Taxonomy of the Breast Cancer International Consortium (n=1980), the Cancer Genome Atlas (n=854) and Kaplan-Meier plotter (n=4,929) cohorts. CDC6 protein expression was evaluated using immunohistochemistry in a large (n=951) well-characterised Nottingham BC cohort. The associations between CDC6, clinicopathological parameters, molecular features and patient outcomes were assessed. High CDC6 expression positively correlated with dysregulation of key BC-related genes, including gene involved in cell cycle, DNA damage repair, epithelial cell migration, and tumour microenvironment control, as well as with markers characteristic of the basal-like phenotype (CK5, CK14 and CK17). High CDC6 mRNA and protein expression were associated with clinicopathological parameters characteristic of aggressive behaviour, including high tumour grade, large tumour size, the presence of lymphovascular invasion and hormone receptor negativity. High CDC6 protein expression was an independent predictor of poor outcome [p=0.007; hazard ratio (HR)=1.3; 95% confidence interval (CI) 1.2-1.9). This study indicates that CDC6 is an independent prognostic biomarker in BC. These results warrant further functional validation for CDC6 as a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Mansour Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Abdulbaqi Al-Kawaz
- Department of Oral Pathology, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | - Bader Y Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Nigel P Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, UK; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK; Pathology Department, Nottingham University Hospitals NHS Trust, Nottingham, UK; Pathology Department, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
8
|
Liu X, Moamer A, Gomes da Silva R, Shoham-Amizlev A, Hamam D, Shams A, Lebrun JJ, Ali S. A novel clinically relevant antagonistic interplay between prolactin and oncogenic YAP-CCN2 pathways as a differentiation therapeutic target in breast cancer. Cell Death Dis 2025; 16:221. [PMID: 40157909 PMCID: PMC11954952 DOI: 10.1038/s41419-025-07547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Cellular differentiation limits cellular plasticity allowing cells to attain their specialized functional characteristics and phenotypes, whereas loss of differentiation is a hallmark of cancer. Thus, characterizing mechanisms underlying differentiation is key to discover new cancer therapeutics. We report a novel functional antagonistic relationship between the prolactin (PRL)/prolactin receptor (PRLR) differentiation pathway and YAP-CCN2 oncogenic pathway in normal mammary epithelial cells and breast cancer cells that is essential for establishing/maintaining acinar morphogenesis, cell-cell junctions and the intracellular localization of apical-basal polarity protein complexes (Par, Crumb and Scrib). Importantly, using CRISPR knockout of the PRLR in MCF7, HR+ breast cancer cells, further revealed that the negative relationship between PRL/PRLR pathway and YAP-CCN2 pathway is critical in suppressing luminal-to-basal stem-like lineage plasticity. Furthermore, the clinical relevance of this interplay was evaluated using bioinformatics approaches on several human datasets, including samples from normal breast epithelium, breast cancer, and 33 other cancer types. This analysis revealed a positive correlation between PRLR and the YAP suppressor Hippo pathway and a co-expression gene network driving favourable patients' survival outcomes in breast cancer. The therapeutic potential of this interplay was also evaluated in vitro using MDA-MB-231 cells, a preclinical model of human triple-negative breast cancer, where treatment with PRL and Verteporfin, an FDA-approved pharmacological YAP-inhibitor, alone or their combination suppressed the expression of the mesenchymal marker vimentin and the stem cell marker CD44 as well as reduced their Ki67 proliferative marker expression. Collectively, our results emphasize the pro-differentiation role of PRL/PRLR pathway in mammary and breast cancer cells and highlight that promoting PRL/PRLR signaling while inhibiting the YAP-CCN2 oncogenic pathway can be exploited as a differentiation-based combination therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Alaa Moamer
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Roger Gomes da Silva
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Aidan Shoham-Amizlev
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Dana Hamam
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Anwar Shams
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Pharmacology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Yari M, Eidi M, Omrani MA, Fazeli Z, Rahmanian M, Ghafouri-Fard S. Comprehensive identification of hub mRNAs and lncRNAs in colorectal cancer using galaxy: an in silico transcriptome analysis. Discov Oncol 2025; 16:282. [PMID: 40056245 DOI: 10.1007/s12672-025-02026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality. Using the Galaxy platform, the present study aimed to assess the differentially expressed genes (DEGs) in CRC patients. The expression data was obtained from the Gene Expression Omnibus database (GSE137327). DEGs were analyzed using Gene Ontology (GO) and GeneMANIA databases to detect the most critical biological pathways and processes. Protein-Protein Interaction Studies (PPIS) identified four hub genes (CCN1, CCL2, FLNC, MYH11). This article presents findings on three mRNAs (CEMIP, MMP7, and DPEP1) and also two notable lncRNAs, EVADR and DLX6-AS1, that have an impact on CRC pathogenesis and play a role in the epithelial-mesenchymal transition in tumor cells. The identified genes and lncRNAs are putative therapeutic targets and diagnostic markers. For instance, CRISPR/Cas9 editing systems can be designed in order to modulate expression of these genes, or edit them for the purpose of inducing sensitivity to conventional therapies. Besides, these genes can be incorporated into clinical prognostic models, offering panels of genes to choose appropriate personalized methods of treatment. Together, these genes represent novel markers and possible therapeutic targets for CRC.
Collapse
Affiliation(s)
- Mohsen Yari
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Milad Eidi
- The Endocrine Genetics Laboratory, Child Health and Human Development Program and Department of Pediatrics, Mcgill University Health Centre Research Institute, Montreal, QC, Canada
| | - Mohammad-Amin Omrani
- Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmanian
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Nakayama H, Murakami A, Nishida-Fukuda H, Fukuda S, Matsugi E, Nakahara M, Kusumoto C, Kamei Y, Higashiyama S. Semaphorin 3F inhibits breast cancer metastasis by regulating the Akt-mTOR and TGFβ signaling pathways via neuropilin-2. Sci Rep 2025; 15:7394. [PMID: 40033046 PMCID: PMC11876635 DOI: 10.1038/s41598-025-91559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Class 3 semaphorins are axon guidance factors implicated in tumor and vascular biology, including invasive activity. Recent studies indicate that semaphorin 3F (SEMA3F) is a potent inhibitor of metastasis; however, its functional role in breast cancer is not fully understood. We found that exogenous SEMA3F inhibited phosphorylation of Akt and mTOR downstream kinase S6K in MDA-MB-231 and MCF7 cells via neuropilin-2 (NRP2) receptor. We also examined the effect of SEMA3F on breast cancer progression in vivo allograft model. The mouse 4T1 breast cancer cells or 4T1 cells overexpressing SEMA3F (4T1-SEMA3F) were implanted into mammary fat pads of Balb/c mice. We found that tumor growth was significantly inhibited in 4T1-SEMA3F injected mice compared to controls. Immunostaining revealed a remarkable reduction in the expression of vimentin, a mesenchymal cell marker, in 4T1-SEMA3F tumors. We also observed that mice injected with 4T1-SEMA3F cells had minimal metastasis to the liver and lungs, compared to controls. As a novel feature, SEMA3F suppressed TGFβ-induced Smad2 phosphorylation, resulting in the inhibition of cell invasiveness and epithelial-to-mesenchymal transition (EMT) in breast cancer. Consistently, a significant correlation between reduced expression of SEMA3F and poor outcome in patients with breast cancer. We conclude that SEMA3F acts as a dual inhibitor of the Akt-mTOR and TGFβ signaling pathways; thus, it has the potential to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, 739-2695, Hiroshima, Japan.
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Toon, 791-0295, Ehime, Japan.
| | - Akari Murakami
- Breast Center, Ehime University Hospital, Toon, 791-0295, Ehime, Japan
| | - Hisayo Nishida-Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8650, Aichi, Japan
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8650, Aichi, Japan
| | - Erina Matsugi
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, 739-2695, Hiroshima, Japan
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, 739-2695, Hiroshima, Japan
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, 739-2695, Hiroshima, Japan
| | - Yoshiaki Kamei
- Breast Center, Ehime University Hospital, Toon, 791-0295, Ehime, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Toon, 791-0295, Ehime, Japan.
- Department of Oncogenesis and Growth Regulation, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan.
| |
Collapse
|
11
|
Echepare M, Picabea B, Arricibita A, Teijeira Á, Pasquier A, Zandueta C, Otegui N, Santamaría E, Fernández-Irigoyen J, Romero O, Sanchez-Cespedes M, Lecanda F, Hernández J, Felip E, Cruz-Bermúdez A, Provencio M, Gentili M, Facchinetti F, Roz L, Montuenga LM, Valencia K. DSTYK Inhibition Sensitizes NSCLC to Taxane-Based Chemotherapy. J Thorac Oncol 2025; 20:345-365. [PMID: 39536877 DOI: 10.1016/j.jtho.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Chemotherapy continues to be the standard treatment for patients noneligible for targeted or immune-based therapies; nevertheless, treatment resistance remains a major clinical challenge. We previously found that expression levels of DSTYK, a poorly explored dual serine/threonine and tyrosine kinase frequently amplified in cancer, identified patients with lung cancer exhibiting poor response to immune checkpoint inhibitors, and found that its inhibition sensitizes to immunotherapy. Seeking to explore the potential of DSTYK targeting in additional indications, we investigated the functional relevance and actionability of DSTYK in lung cancer chemoresistance. METHODS In silico analysis to study the differential sensitivity to paclitaxel, carboplatin, pemetrexed, and cisplatin drugs was performed using pan-cancer human cancer cell line DSTYK CN data downloaded from Depmap portal (https://depmap.org/portal/depmap/). Two cohorts of patients with lung cancer were used. An adjuvant cohort composed of patients with advanced IV-stage lung adenocarcinoma treated with carboplatin plus paclitaxel or carboplatin plus pemetrexed in the first line from VHIO; A neoadjuvant cohort including resectable stage IIIA or IIIB NSCLC tumor samples of patients from NADIM I and NADIM II clinical trials perioperative treated with nivolumab plus chemotherapy (carboplatin + paclitaxel). DSTYK CN was assessed by fluorescence in situ hybridization and quantitative reverse transcription-polymerase chain reaction. Proteomics and bioinformatic analyses were performed to study differentially expressed protein signatures. Functional in vitro experiments (adhesion, migration, and invasion) in both murine and human systems, and in vivo lung orthotopic, intracardiac, and intratibial xenograft and syngeneic models complete the study. RESULTS We show that DSTYK depletion specifically sensitizes lung cancer cells to taxane-based chemotherapy, particularly in combination with carboplatin. Mechanistically, DSTYK ablation remodels the cytoskeleton and impairs distant invasion and metastatic outgrowth in vivo. DSTYK downregulation sensitizes both primary and metastatic lung tumors to chemoimmunotherapy treatment leading to tumor regression in mouse models. Consistently, clinical data of patients with early and advanced lung cancer-in the neoadjuvant and adjuvant settings-show a strong correlation between DSTYK amplification and taxane resistance, underscoring the clinical significance of our findings to inform treatment decision-making. CONCLUSIONS Collectively, our data indicates that DSTYK amplification may be a predictor of resistance to taxane-based treatments and represents an actionable target for these patients.
Collapse
Affiliation(s)
- Mirari Echepare
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Beñat Picabea
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Andrea Arricibita
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain; Program of Immunology and Immunotherapy, CIMA-University of Navarra, Pamplona, Spain
| | - Andrea Pasquier
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
| | - Carolina Zandueta
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
| | - Nerea Otegui
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Enrique Santamaría
- Navarra Health Research Institute (IDISNA), Pamplona, Spain; Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Navarra Health Research Institute (IDISNA), Pamplona, Spain; Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain
| | - Octavio Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | | | - Fernando Lecanda
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
| | - Javier Hernández
- Department of Pathology, Hospital Universitari Vall d'Hebron & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enriqueta Felip
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Institute of Oncology (VIHO), Universitat Autonoma de Barcelona, Spain
| | - Alberto Cruz-Bermúdez
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Mariano Provencio
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Marco Gentili
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Facchinetti
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luis M Montuenga
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Karmele Valencia
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
12
|
Hu Y, Zhang Y, Ding M, Xu R. HOXA10-AS Enhances Gastric Cancer Cell Proliferation, Migration, and Invasion via the p38 MAPK/STAT3 Signaling Pathway. J Biochem Mol Toxicol 2025; 39:e70187. [PMID: 39987516 DOI: 10.1002/jbt.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/11/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Gastric cancer (GC) represents a major global health concern, with over 1 million new cases diagnosed annually worldwide. Emerging studies have highlighted the significant correlation between long noncoding RNAs (lncRNAs) and the progression of GC. The objective of the current study is to investigate the roles and mechanism of lncRNA homeobox A10 antisense RNA (HOXA10-AS) in modulating malignant properties of GC cells. RT-qPCR was employed to detect HOXA10-AS expression in GC cells or human normal gastric epithelium cells. The cellular localization of HOXA10-AS and mRNA HOXA10 were detected using RNA fractionation assays. Colony forming assays and Transwell assays were performed to assess the proliferative, invasive, and migratory capabilities of GC cells. Western blot analysis was used to determine protein levels of epithelial mesenchymal transition (EMT) markers in GC cells. RNA immunoprecipitation, RNA pulldown assays and luciferase assays were conducted to explore gene interaction. As shown by experimental results, HOXA10-AS showed high expression in GC cells. The silencing of HOXA10-AS led to weakened proliferative, invasive, and migratory abilities of GC cells, as well as inhibition of the EMT process. Moreover, HOXA10-AS positively regulated HOXA10 expression by interacting with miR-29a/b/c-3p. Additionally, overexpression of HOXA10 counteracted the repressive impacts on malignant cellular process caused by the knockdown of HOXA10-AS. Furthermore, HOXA10-AS activated the p38 MAPK/STAT3 signaling pathway via upregulation of HOXA10. In conclusion, HOXA10-AS upregulates HOXA10 expression through interaction with miR-29a/b/c-3p. The resultant increase in HOXA10 expression activates the p38 MAPK/STAT3 signaling, thereby promoting GC cell growth, migration, invasion, and EMT process.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Ding
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ruisi Xu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Khan A, Ali SS, Zahid MA, Abdelsalam SS, Albekairi N, Al‐Zoubi RM, Shkoor M, Wei D, Agouni A. Exploring the Dynamic Interplay of Deleterious Variants on the RAF1-RAP1A Binding in Cancer: Conformational Analysis, Binding Free Energy, and Essential Dynamics. Proteins 2025; 93:684-701. [PMID: 39498560 PMCID: PMC11809134 DOI: 10.1002/prot.26759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 02/11/2025]
Abstract
The RAF1-RAP1A interaction activates the MAPK/ERK pathway which is very crucial in the carcinogenesis process. This protein complex influences tumor formation, proliferation, and metastasis. Understanding aberrant interactions driven by clinical mutations is vital for targeted therapies. Hence, the current study focuses on the screening of clinically reported substitutions in the RAF1 and RAP1A genes using predictive algorithms integrated with all-atoms simulation, essential dynamics, and binding free energy methods. Survival analysis results revealed a strong association between RAF1 and RAP1A expression levels and diminished survival rates in cancer patients across different cancer types. Integrated machine learning algorithms showed that among the 134 mutations reported for these 2 proteins, only 13 and 35 were classified as deleterious mutations in RAF1 and RAP1P, respectively. Moreover, one mutation in RAF1 reported elevated levels of binding between RAF1 and RAP1P while in RAP1A, 7 mutations were reported to increase the binding affinity. The high-binding mutations, P34Q and V60F, were subjected to protein-protein coupling which confirmed the increase in the binding affinity. Wild-type and mutant RAF1-RAP1P bound complexes were subjected to molecular simulation investigation, revealing enhanced structural stability, increased compactness, and stabilized residue fluctuations of the mutant systems in contrast to the wild-type. In addition, hydrogen bonding analysis revealed a variation in the binding paradigm which further underscores the impact of these substitutions on the coupling of RAF1 and RAP1A. Principal component analysis (PCA) and free energy landscape (FEL) evaluation further determined dynamical variations in the wild-type and mutant complexes. Finally, the Gibbs free energy for each complex was estimated and found to be -71.94 ± 0.38 kcal/mol for the wild-type, -95.57 ± 0.37 kcal/mol for the V60F, and -85.76 ± 0.72 kcal/mol for P34Q complex. These findings confirm the effect of these variants on increasing the binding affinity of RAF1 to RAP1P. These mutations can therefore be targeted for cancer therapy to modulate the activity of the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU HealthQatar UniversityDohaQatar
| | - Syed Shujait Ali
- Center for Biotechnology and MicrobiologyUniversity of SwatSwatPakistan
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU HealthQatar UniversityDohaQatar
| | | | | | - Raed M. Al‐Zoubi
- Surgical Research Section, Department of SurgeryHamad Medical CorporationDohaQatar
- Department of Biomedical Sciences, College of Health Sciences, QU HealthQatar UniversityDohaQatar
- Department of ChemistryJordan University of Science and TechnologyIrbidJordan
| | - Mohanad Shkoor
- Department of Chemistry, College of Arts and ScienceQatar UniversityDohaQatar
| | - Dong‐Qing Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
14
|
Haque MA, Poullikkas T, Al-Amin Kaisar FM, Haque S, Khatun MH, Mamun A, Khan A. PHLPP1 depletion promotes tumorigenesis and stemness in triple-negative breast cancer cells through AKT signaling. Med Oncol 2025; 42:80. [PMID: 39979645 DOI: 10.1007/s12032-025-02630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), is a major cause of women's mortality, and effective treatment options are still lacking due to the absence of known mechanisms and biomarkers. Therefore, unveiling novel molecular mechanisms to identify potential biomarkers is urgently needed to ensure an effective TNBC treatment. In this study, we investigated the role of PHLPP1, a tumor suppressor gene, in the tumorigenesis and induction of cancer stem cells in TNBC using publicly available data and experimental protocols. Our study found that lower levels of PHLPP1 contributed negatively to patient overall survival. In addition, loss of PHLPP1 increased breast cancer cell proliferation, long-term colony regrowth ability, and the number of migrated and invaded cells. Consequently, we designed a stable PHLPP1 knockdown (KD) cell line to understand its impact through its stemness potential. As expected, PHLPP1 KD dramatically upregulated breast cancer stemness markers (NANOG, OCT4, and SOX2) expression and significantly increased cancer stem cell frequencies in TNBC cells. Mechanistically, PHLPP1 loss enhanced AKT phosphorylation at Ser473, thus activating AKT signaling, leading to larger tumor formation in vivo and elevated stemness expression. This study concludes that PHLPP1 has the capability to reduce the expression of cancer stemness genes by negatively regulating the AKT signaling pathway. Therefore, these findings may pave the way for discoveries in the context of cancer stemness and future strategies for developing effective treatment options for TNBC patients.
Collapse
Affiliation(s)
- Md Anwarul Haque
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Thanasis Poullikkas
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET, Maastricht, The Netherlands
| | - F M Al-Amin Kaisar
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shariful Haque
- Department of Pharmacy, Pabna University of Science and Technology, Pabna, 6600, Bangladesh
| | - Mst Hajera Khatun
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, 6204, Bangladesh
| | - Al Mamun
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Alam Khan
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
15
|
Madoz-Gúrpide J, Serrano-López J, Sanz-Álvarez M, Morales-Gallego M, Rodríguez-Pinilla SM, Rovira A, Albanell J, Rojo F. Adaptive Proteomic Changes in Protein Metabolism and Mitochondrial Alterations Associated with Resistance to Trastuzumab and Pertuzumab Therapy in HER2-Positive Breast Cancer. Int J Mol Sci 2025; 26:1559. [PMID: 40004024 PMCID: PMC11855744 DOI: 10.3390/ijms26041559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is overexpressed in approximately 15-20% of breast cancers, leading to aggressive tumour growth and poor prognosis. Anti-HER2 therapies, such as trastuzumab and pertuzumab, have significantly improved the outcomes for patients with HER2-positive breast cancer by blocking HER2 signalling. However, intrinsic and acquired resistance remains a major clinical challenge, limiting the long-term effectiveness of these therapies. Understanding the mechanisms of resistance is essential for developing strategies to overcome it and improve the therapeutic outcomes. We generated multiple HER2-positive breast cancer cell line models resistant to trastuzumab and pertuzumab combination therapy. Using mass spectrometry-based proteomics, we conducted a comprehensive analysis to identify the mechanisms underlying resistance. Proteomic analysis identified 618 differentially expressed proteins, with a core of 83 overexpressed and 118 downregulated proteins. Through a series of advanced bioinformatics analyses, we identified significant protein alterations and signalling pathways potentially responsible for the development of resistance, revealing key alterations in the protein metabolism, mitochondrial function, and signalling pathways, such as MAPK, TNF, and TGFβ. These findings identify mitochondrial activity and detoxification processes as pivotal mechanisms underlying the resistance to anti-HER2 therapy. Additionally, we identified key proteins, including ANXA1, SLC2A1, and PPIG, which contribute to the tumour progression and resistance phenotype. Our study suggests that targeting these pathways and proteins could form the basis of novel therapeutic strategies to overcome resistance in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Juan Madoz-Gúrpide
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| | - Juana Serrano-López
- Department of Haematology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain;
| | - Marta Sanz-Álvarez
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| | - Miriam Morales-Gallego
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| | - Socorro María Rodríguez-Pinilla
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| | - Ana Rovira
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain;
| | - Joan Albanell
- Department of Medical Oncology, Hospital del Mar—CIBERONC, 08003 Barcelona, Spain;
| | - Federico Rojo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| |
Collapse
|
16
|
Ching KWC, Mokhtar NF, Tye GJ. Identification of significant hub genes and pathways associated with metastatic breast cancer and tolerogenic dendritic cell via bioinformatics analysis. Comput Biol Med 2025; 184:109396. [PMID: 39549529 DOI: 10.1016/j.compbiomed.2024.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Metastatic breast cancer (MBC) is an advanced-stage breast cancer associated with more than 90 % of cancer-related deaths. Immunosuppressive properties of tolerogenic dendritic cells (tolDCs) in tumour immune microenvironment (TIME) may be a risk factor for the rapid progression to MBC. However, the exact connections between the two are unknown. The aim of the current study is to uncover gene signatures and key pathways associated with MBC and tolDCs via an integrated bioinformatics approach. Gene expression profiles of MBC and tolDCs were retrieved from Gene Expression Omnibus (GEO) to identify common differentially expressed genes (DEGs). From DGE analysis, 529 upregulated common DEGs and 367 downregulated common DEGs had been identified. In enrichment analysis, common DEGs enriched in GO terms of defense response to virus and KEGG pathway of transcriptional misregulation in cancer were reported to be significantly associated with MBC and tolDCs. From the constructed PPI networks, 23 hub genes were identified, although only 5 genes were significant; 3 upregulated (ISG15, OAS2 and RSAD2) and 2 downregulated (eEF2 and PPARG) as they were found to be significantly correlated and had the same expression trend as predicted in validation analysis of overall survival (OS) analysis, expression levels, immune infiltration analysis and immunohistochemistry (IHC) analysis. These 5 hub genes can now be exploited in developing novel therapeutic interventions and as diagnostic biomarkers for enhancing the clinical outcomes of MBC patients.
Collapse
Affiliation(s)
- Kirstie Wong Chee Ching
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Main Campus, 11800, Pulau Pinang, Malaysia.
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
17
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
18
|
Jeong EJ, Kim E, Kim YS. Identification of novel therapeutic targets for head and neck squamous cell carcinoma through bioinformatics analysis. Sci Rep 2024; 14:32102. [PMID: 39739088 PMCID: PMC11686289 DOI: 10.1038/s41598-024-83680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous cancer with limited therapeutic options. Using publicly available datasets, we identified the WD repeat domain 54 (WDR54) gene as a potential therapeutic target in HNSCC. Gene expression profiling interactive analysis version 2 (GEPIA2) was used to identify genes differentially overexpressed in HNSCC. Our results showed that WDR54, a member of the WD40 repeat domain family, was overexpressed in HNSCC tumor samples. Analysis of three gene expression omnibus datasets showed that WDR54 was overexpressed in tumor samples. Using the UALCAN database, we showed that WDR54 expression in patients with HNSCC at different tumor stages gradually increased with disease progression. We confirmed the association between WDR54 and metastasis using TNMplot.com. WDR54 was overexpressed in metastatic samples compared to that in normal and tumor samples. Kaplan-Meier analysis showed that patients with high WDR54 levels had a poorer prognosis. Additionally, WDR54 expression was correlated with the epidermal growth factor receptor, which is frequently overexpressed in HNSCC. Our findings suggest that WDR54 is a promising biomarker and therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Eun-Jeong Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Konyang University College of Medicine, Daejeon, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, 35365, Seoul, Korea
| | - Eunjeong Kim
- Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, Department of Biology, College of Natural Sciences, KNU G-LAMP Research Center, KNU, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, 35365, Seoul, Korea.
| |
Collapse
|
19
|
Maldonado H, Dreger M, Bedgood LD, Kyriakou T, Wolanska KI, Rigby ME, Marotta VE, Webster JM, Wang J, Rusilowicz-Jones EV, Marshall JF, Coulson JM, Macpherson IR, Hurlstone A, Morgan MR. A trafficking regulatory subnetwork governs α Vβ 6 integrin-HER2 cross-talk to control breast cancer invasion and drug resistance. SCIENCE ADVANCES 2024; 10:eadk9944. [PMID: 39630893 PMCID: PMC11616693 DOI: 10.1126/sciadv.adk9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
HER2 and αVβ6 integrin are independent predictors of breast cancer survival and metastasis. We identify an αVβ6/HER2 cross-talk mechanism driving invasion, which is dysregulated in drug-resistant HER2+ breast cancer cells. Proteomic analyses reveal ligand-bound αVβ6 recruits HER2 and a trafficking subnetwork, comprising guanosine triphosphatases RAB5 and RAB7A and the Rab regulator guanine nucleotide dissociation inhibitor 2 (GDI2). The RAB5/RAB7A/GDI2 functional module mediates direct cross-talk between αVβ6 and HER2, affecting receptor trafficking and signaling. Acute exposure to trastuzumab increases recruitment of the subnetwork to αVβ6, but trastuzumab resistance decouples GDI2 recruitment. GDI2, RAB5, and RAB7A cooperate to regulate migration and transforming growth factor-β activation to promote invasion. However, these mechanisms are dysregulated in trastuzumab-resistant cells. In patients, RAB5A, RAB7A, and GDI2 expression correlates with patient survival and αVβ6 expression predicts relapse following trastuzumab treatment. Thus, the RAB5/RAB7A/GDI2 subnetwork regulates αVβ6-HER2 cross-talk to drive breast cancer invasion but is subverted in trastuzumab-resistant cells to drive αVβ6-independent and HER2-independent tumor progression.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Marcel Dreger
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lara D. Bedgood
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Theano Kyriakou
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Katarzyna I. Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Megan E. Rigby
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Valeria E. Marotta
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Justine M. Webster
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Jun Wang
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Emma V. Rusilowicz-Jones
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Judy M. Coulson
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Iain R. Macpherson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Adam Hurlstone
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mark R. Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|
20
|
Yakushi A, Sugimoto M, Sasaki T. Co-expression network and survival analysis of breast cancer inflammation and immune system hallmark genes. Comput Biol Chem 2024; 113:108204. [PMID: 39270542 DOI: 10.1016/j.compbiolchem.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The tertiary lymphoid structure (TLS) plays a central role in cancer immune response, and its gene expression pattern, called the TLS signature, has shown prognostic value in breast cancer. The formation of TLS and tumor-associated high endothelial venules (TA-HEVs), responsible for lymphocytic infiltration within the TLS, is associated with the expression of cancer hallmark genes (CHGs) related to immunity and inflammation. In this study, we performed co-expression network analysis of immune- and inflammation-related CHGs to identify predictive genes for breast cancer. In total, 382 immune- and inflammation-related CHGs with high expression variance were extracted from the GSE86166 microarray dataset of patients with breast cancer. CHGs were classified into five modules by applying weighted gene co-expression network analysis. The survival analysis results for each module showed that one module comprising 45 genes was statistically significant for relapse-free and overall survival. Four network properties identified key genes in this module with high prognostic prediction abilities: CD34, CXCL12, F2RL2, JAM2, PROS1, RAPGEF3, and SELP. The prognostic accuracy of the seven genes in breast cancer was synergistic and exceeded that of other predictors in both small and large public datasets. Enrichment analysis predicted that these genes had functions related to leukocyte infiltration of TA-HEVs. There was a positive correlation between key gene expression and the TLS signature, suggesting that gene expression levels are associated with TLS density. Co-expression network analysis of inflammation- and immune-related CHGs allowed us to identify genes that share a standard function in cancer immunity and have a high prognostic predictive value. This analytical approach may contribute to the identification of prognostic genes in TLS.
Collapse
Affiliation(s)
- Ayaka Yakushi
- Graduate School of Advanced Mathematical and Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan; Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takanori Sasaki
- Graduate School of Advanced Mathematical and Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan.
| |
Collapse
|
21
|
Habeshian TS, Cannavale KL, Slezak JM, Shu YH, Chien GW, Chen X, Shi F, Siegmund KD, Van Den Eeden SK, Huang J, Chao CR. DNA methylation markers for risk of metastasis in a cohort of men with localized prostate cancer. Epigenetics 2024; 19:2308920. [PMID: 38525786 DOI: 10.1080/15592294.2024.2308920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Accurately identifying life-threatening prostate cancer (PCa) at time of diagnosis remains an unsolved problem. We evaluated whether DNA methylation status of selected candidate genes can predict the risk of metastasis beyond clinical risk factors in men with untreated PCa. A nested case-control study was conducted among men diagnosed with localized PCa at Kaiser Permanente California between 01/01/1997-12/31/2006 who did not receive curative treatments. Cases were those who developed metastasis within 10 years from diagnosis. Controls were selected using density sampling. Ninety-eight candidate genes were selected from functional categories of cell cycle control, metastasis/tumour suppressors, cell signalling, cell adhesion/motility/invasion, angiogenesis, and immune function, and 41 from pluripotency genes. Cancer DNA from diagnostic biopsy blocks were extracted and analysed. Associations of methylation status were assessed using CpG site level and principal components-based analysis in conditional logistic regressions. In 215 cases and 404 controls, 27 candidate genes were found to be statistically significant in at least one of the two analytical approaches. The agreement between the methods was 25.9% (7 candidate genes, including 2 pluripotency markers). The DNA methylation status of several candidate genes was significantly associated with risk of metastasis in untreated localized PCa patients. These findings may inform future risk prediction models for PCa metastasis beyond clinical characteristics.
Collapse
Affiliation(s)
- Talar S Habeshian
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kimberly L Cannavale
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff M Slezak
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Yu-Hsiang Shu
- Biostatistics and Innovations, Biostatistics and Programming, Clinical Affairs, Inari Medical, CA, USA
| | - Gary W Chien
- Department of Urology, Los Angeles Medical Center, Kaiser Permanente Southern California, Los Angeles, CA, USA
| | - XuFeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Feng Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Chun R Chao
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
22
|
Gurung R, Masood M, Singh P, Jha P, Sinha A, Ajmeriya S, Sharma M, Dohare R, Haque MM. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach. J Appl Genet 2024; 65:839-851. [PMID: 38358594 DOI: 10.1007/s13353-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a diverse group of tumors arising from oral cavity, oropharynx, larynx, and hypopharynx squamous epithelium, posing significant morbidity. Aquaporins (AQPs) are membrane proteins forming water channels, some associated with carcinomas. Chromobox (CBX) family is known to modulate physiological and oncological processes. In our study, we analyzed AQPs and CBXs having significant expression followed by their prognostic and mutational assessment. Next, we performed enrichment and tumor infiltration analysis followed by HPA validation. Lastly, we established a 3-node miRNA-TF-mRNA regulatory network and performed protein-protein docking of the highest-degree subnetwork motif between TF and mRNA. Significant upregulation of CBX3/2 and downregulation of AQP3/5/7 correlated with poor overall survival (OS) in HNSC patients. The most significant pathway, GO-BP, GO-MF, and GO-CC terms associated with AQP3 and CBX3 were passive transport by aquaporins, response to vitamin, glycerol channel activity, and condensed chromosome, centromeric region. AQP3 negatively correlated withCD 4 + T cells, positively withCD 8 + T cells and B cells, and negatively with tumor purity, whereas CBX3 positively correlated withCD 4 + T cells, negatively withCD 8 + T cells and B cells, and positively with tumor purity. Three-node miRNA-TF-mRNA regulatory network revealed a highest-degree subnetwork motif comprising one TF (SMAD3), one miRNA (miR-423-5p), and one mRNA (AQP3). Protein-protein interaction studies suggested a direct interaction between AQP3 and Smad3 proteins. We concluded that AQP3 and CBX3 hold potential as treatment strategies and individual prognostic biomarkers, while further protein-protein interaction studies of AQP3 could offer insights into its interactions with Smad3 proteins.
Collapse
Affiliation(s)
- Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, 842004, India
| | - Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Milin Sharma
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
23
|
Al-Harazi O, El Allali A, Kaya N, Colak D. Identification of Diagnostic and Prognostic Subnetwork Biomarkers for Women with Breast Cancer Using Integrative Genomic and Network-Based Analysis. Int J Mol Sci 2024; 25:12779. [PMID: 39684488 DOI: 10.3390/ijms252312779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer remains a major global health concern and a leading cause of cancer-related deaths among women. Early detection and effective treatment are essential in improving patient survival. Advances in omics technologies have provided deeper insights into the molecular mechanisms underlying breast cancer. This study aimed to identify subnetwork markers with diagnostic and prognostic potential by integrating genome-wide gene expression data with protein-protein interaction networks. We identified four significant subnetworks revealing potentially important hub genes, including VEGFA, KIF4A, ZWINT, PTPRU, IKBKE, STYK1, CENPO, and UBE2C. The diagnostic and prognostic potentials of these subnetworks were validated using independent datasets. Unsupervised principal component analysis demonstrated a clear separation of breast cancer patients from healthy controls across multiple datasets. A KNN classification model, based on these subnetworks, achieved an accuracy of 97%, sensitivity of 98%, specificity of 94%, and area under the curve (AUC) of 96%. Moreover, the prognostic significance of these subnetwork markers was validated using independent transcriptomic datasets comprising over 4000 patients. These findings suggest that subnetwork markers derived from integrated genomic network analyses can enhance our understanding of the molecular landscape of breast cancer, potentially leading to improved diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Olfat Al-Harazi
- Molecular Oncology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dilek Colak
- Molecular Oncology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
24
|
Wang X, Feng B, Guo HY, Yao FF, Song HN, Wang XY, Sun XC, Wang K, Ge YC, Cui R. Roles of cathepsin S expression levels on the prognosis and tumour microenvironment in clear cell renal cell carcinoma. Discov Oncol 2024; 15:690. [PMID: 39570472 PMCID: PMC11582264 DOI: 10.1007/s12672-024-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a link between the enzyme cathepsin S (CTSS) and tumour development. However, the potential involvement and molecular functions of CTSS in clear cell renal cell carcinoma (ccRCC) remain unclear. METHODS We downloaded original data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated them using R. Kaplan-Meier plots of integrated expression scores were used to analyse survival outcomes. Additionally, we investigated mRNA expression, clinicopathological features, immune infiltrates, and single-cell sequencing analysis of CTSS in ccRCC. In vitro experiments were conducted with qRT-PCR and IHC staining. RESULTS CTSS transcriptomic and proteomic levels were higher in ccRCC than in para-cancerous tissues. Low CTSS expression was correlated with poor prognosis in patients with ccRCC. Our data demonstrated that the expression of CTSS was strongly correlated with immune cell infiltration levels and gene markers of immune cells, chemokines, and receptors. Single-cell sequencing analysis demonstrated that CTSS expression was detectable in monocytes/macrophages. Finally, certain chemicals were confirmed to affect CTSS expression. CONCLUSION Our findings indicate that CTSS offers promise as a prognostic biomarker and novel immune-related therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Nephrology, The First People's Hospital in Jinzhou, Dalian, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Bei Feng
- Department of Nephrology, Jingzhou Central Hospital, Hubei, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Hai-Ying Guo
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Fei-Fei Yao
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui-Nan Song
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi-Yue Wang
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Chen Sun
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Kai Wang
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yu-Chen Ge
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Rui Cui
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
25
|
Diallo MT, Chen B, Yan Z, Sun Q, Liu G, Wang Y, Ren J, Wang D. Targeted therapy for KIF3C: A study on the mechanism of combined therapy with KIF3C signaling pathway, afatinib, and MT-DC (ac)phosphoramide in regulating gastric cancer cell proliferation. Cell Signal 2024; 125:111514. [PMID: 39580063 DOI: 10.1016/j.cellsig.2024.111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND KIF3C serves as a motor protein that facilitates axonal transport in neuronal cells. It belongs to the kinesin superfamily and plays a crucial role in the development of various cancers. However, the role of KIF3C in gastric cancer (GC) the third-highest cause of cancer-related deaths remains unclear. To investigate the regulatory mechanisms and expression patterns of KIF3C in GC and their implications for GC progression, we conducted a series of in vitro and in vivo experiments. METHODS We employed bioinformatics tools, including GEPIA, Kaplan-Meier plotter, and cBioPortal, to examine the role of KIF3C in GC, with a focus on its prognostic significance and associated signaling pathways. Furthermore, we conducted immunohistochemistry, real-time polymerase chain reaction (RT-PCR), western blot analyses, cell function and signaling pathway experiments. We further assessed the impact of combination therapy with afatinib and MT-DC (ac) phosphoramidite alongside KIF3C knockdown and overexpression in GC cells and a xenograft mouse model experiment. RESULTS Kaplan-Meier and Cox regression analyses revealed that high KIF3C expression in GC is significantly associated with poor prognosis. Genomic alteration and immune microenvironment analyses provided insights into the underlying causes of abnormal KIF3C expression. We observed that KIF3C knockdown decreased the proliferation of GC tumor cells. Additionally, KIF3C was overexpressed in GC and elevated expression was significantly correlated with tumor prognosis. We demonstrated that KIF3C knockdown and overexpression could significantly inhibit and promote tumor cell proliferation, respectively, through the combination therapy by modulating PI3K, AKT, and cell cycle signaling pathways. Notably, tumor size and the number of GC nodules were significantly reduced in the Sh-KIF3C group compared to the Sh-ctrl group. CONCLUSION Our findings highlight the potential of KIF3C as a biomarker for tumor progression diagnosis, establishing it as a pivotal therapeutic target for combating tumor advancement in GC.
Collapse
Affiliation(s)
- Maladho Tanta Diallo
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Bangquan Chen
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Zhang Yan
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Guanghao Liu
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Yong Wang
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Jun Ren
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China.
| | - Daorong Wang
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China.
| |
Collapse
|
26
|
Sadaf, Zafar M, Massey S, Aloliqi AA, Anwar S, Ali A, Hussain MA, Bhardwaj T, Dev K. LATS2 and FAT4 as key candidate genes of hippo pathway associated with the risk and progression of breast cancer: an in-silico approach. Sci Rep 2024; 14:28857. [PMID: 39572650 PMCID: PMC11582630 DOI: 10.1038/s41598-024-79688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The 2020 cancer report states that breast cancer remains a significant cause of death for females, despite the use of various strategies for early detection and treatment. However, there are still gaps in the fight against this disease. Researchers are exploring the hippo pathway, one of eight significant pathways involved in cancer progression, for potential biomarkers to use in personalized therapeutics. METHODS The current study used bioinformatic tools such as DEGs analysis, Methsurv, Km Plotter to generate data that can predict molecular biomarkers associated with hippo pathway in breast cancer development and treatment. The protein-protein interaction pathway was generated using the STRING database to find associations of hippo pathway genes with other dysregulated genes in breast cancer datasets. A disease enrichment study was also done to explore the potential of the hippo pathway in various aspects. RESULTS LATS2 and FAT4 genes of the hippo pathway have shown an interesting association with overall survival, hypermethylation, genetic alterations, and decreased expression levels in the breast cancer cohort. Our findings suggest that both of these genes are associated with breast cancer progression and diagnosis and can be utilized as predictive biomarkers by oncologists for personalized therapy in patients.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mubashir Zafar
- Department of Family and Community Medicine, College of Medicine, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Sheersh Massey
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdulaziz A Aloliqi
- Department of Basic health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51542, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Abrar Ali
- Department of Ophthalmology, College of Medicine, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Malik Asif Hussain
- Department of Pathology, College of Medicine, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Tulika Bhardwaj
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
27
|
He C, Chen Y, Zhang X, Feng H, Rao Y, Ji T, Wang W. Down-regulation of ESRP2 inhibits breast cancer cell proliferation via inhibiting cyclinD1. Sci Rep 2024; 14:28475. [PMID: 39557898 PMCID: PMC11574003 DOI: 10.1038/s41598-024-77980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Epithelial splicing regulatory protein 2 (ESRP2),an important alternative splicing protein of mRNA, is reported to have a dual role in tumors, which can promote or inhibit the occurrence and development of tumors. However, the function and mechanism of ESRP2 in breast cancer (BC) remain unclear. The distribution of ESRP2 expression in breast cancer and the correlation between ESRP2 expression and the overall survival rate were detected by The Cancer Genome Atlas (TCGA) database. Gene Ontology(GO)analysis, containing biological process, cellular components, and molecular function, was utilized to evaluate the potential mechanism of ESRP2 in breast cancer. The ESRP2 expression in breast cancer cell lines was detected by real-time quantitative PCR analysis (RT-qPCR) and western blotting. Cell clone was performed to examine the proliferation of ESRP2 knockdown in MCF-7 cells. The cell cycle was measured by flow cytometry assays. The role of ESRP2 knockdown in synergistic effect with chemotherapeutic agents was also determined by MTT assay. Bioinformatics analysis demonstrated that the ESRP2 gene was elevated in breast cancer cells and its overexpression was strongly correlated with shorter overall survival. GO analysis revealed that ESRP2 expression was related to cell proliferation. ESRP2 mRNA and protein expression were elevated in breast cancer cell lines, compared to the normal human breast cell line MCF-10 A. Dwon-regulation of ESRP2 inhibited cell proliferation and promoted the sensitivity of chemotherapy drug, Cisplatin(DDP) and Paclitaxel (TAXOL), in MCF-7 cells.Additionally, ESRP2 knockdown obstructed the cell cycle at the G1 phase and caused a decrease in cyclinD1 protein expression. These findings reveal that ESRP2 is highly expressed in breast cancer and is correlated with poor prognosis in breast cancer patients. ESRP2 knockdown can inhibit MCF-7 cell proliferation by arresting the cell cycle at the G1 phase and promoting the sensitivity of chemotherapy drugs (DDP and TAXOL)in MCF-7 cells. ESRP2 may be required for the regulation of breast cancer progression, as well as a critical target for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Caiping He
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuting Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Ximin Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou Civil Aviation College, Guangzhou, Guangdong, China
| | - Huancun Feng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yuzhen Rao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Tangyang Ji
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenya Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Fang K, Ohihoin AG, Liu T, Choppavarapu L, Nosirov B, Wang Q, Yu XZ, Kamaraju S, Leone G, Jin VX. Integrated single-cell analysis reveals distinct epigenetic-regulated cancer cell states and a heterogeneity-guided core signature in tamoxifen-resistant breast cancer. Genome Med 2024; 16:134. [PMID: 39558215 PMCID: PMC11572372 DOI: 10.1186/s13073-024-01407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Inter- and intra-tumor heterogeneity is considered a significant factor contributing to the development of endocrine resistance in breast cancer. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) allow us to explore inter- and intra-tumor heterogeneity at single-cell resolution. However, such integrated single-cell analysis has not yet been demonstrated to characterize the transcriptome and chromatin accessibility in breast cancer endocrine resistance. METHODS In this study, we conducted an integrated analysis combining scRNA-seq and scATAC-seq on more than 80,000 breast tissue cells from two normal tissues (NTs), three primary tumors (PTs), and three tamoxifen-treated recurrent tumors (RTs). A variety of cell types among breast tumor tissues were identified, PT- and RT-specific cancer cell states (CSs) were defined, and a heterogeneity-guided core signature (HCS) was derived through such integrated analysis. Functional experiments were performed to validate the oncogenic role of BMP7, a key gene within the core signature. RESULTS We observed a striking level of cell-to-cell heterogeneity among six tumor tissues and delineated the primary to recurrent tumor progression, underscoring the significance of these single-cell level tumor cell clusters classified from scRNA-seq data. We defined nine CSs, including five PT-specific, three RT-specific, and one PT-RT-shared CSs, and identified distinct open chromatin regions of CSs, as well as a HCS of 137 genes. In addition, we predicted specific transcription factors (TFs) associated with the core signature and novel biological/metabolism pathways that mediate the communications between CSs and the tumor microenvironment (TME). We finally demonstrated that BMP7 plays an oncogenic role in tamoxifen-resistant breast cancer cells through modulating MAPK signaling pathways. CONCLUSIONS Our integrated single-cell analysis provides a comprehensive understanding of the tumor heterogeneity in tamoxifen resistance. We envision this integrated single-cell epigenomic and transcriptomic measure will become a powerful approach to unravel how epigenetic factors and the tumor microenvironment govern the development of tumor heterogeneity and to uncover potential therapeutic targets that circumvent heterogeneity-related failures.
Collapse
Affiliation(s)
- Kun Fang
- Data Science Institute, MCW Cancer Center and Mellowes Center for Genome Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Aigbe G Ohihoin
- Cell and Developmental Biology PhD Program, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tianxiang Liu
- Data Science Institute, MCW Cancer Center and Mellowes Center for Genome Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lavanya Choppavarapu
- Data Science Institute, MCW Cancer Center and Mellowes Center for Genome Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Bakhtiyor Nosirov
- Department of Cancer Research, Luxembourg Institute of Health, NORLUX Neuro-Oncology Laboratory and Multiomics Data Science Research Group, Strassen, L-1445, Luxembourg
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sailaja Kamaraju
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Gustavo Leone
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Victor X Jin
- Data Science Institute, MCW Cancer Center and Mellowes Center for Genome Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
29
|
Piemonte KM, Ingles NN, Weber-Bonk KL, Valentine MJ, Majmudar PR, Singh S, Keri RA. Targeting YES1 Disrupts Mitotic Fidelity and Potentiates the Response to Taxanes in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3556-3573. [PMID: 39037997 PMCID: PMC11534525 DOI: 10.1158/0008-5472.can-23-2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Clinical trials examining broad-spectrum Src family kinase (SFK) inhibitors revealed significant dose-limiting toxicities, preventing advancement for solid tumors. SFKs are functionally heterogeneous, thus targeting individual members is a potential strategy to elicit antitumor efficacy while avoiding toxicity. Here, we identified that YES1 is the most highly overexpressed SFK in triple-negative breast cancer (TNBC) and is associated with poor patient outcomes. Disrupting YES1, genetically or pharmacologically, induced aberrant mitosis, centrosome amplification, multipolar spindles, and chromosomal instability. Mechanistically, YES1 sustained FOXM1 protein levels and elevated expression of FOXM1 target genes that control centrosome function and are essential for effective and accurate mitotic progression. In both in vitro and in vivo TNBC models, YES1 suppression potentiated the efficacy of taxanes, cornerstone drugs for TNBC that require elevated chromosomal instability for efficacy. Clinically, elevated expression of YES1 was associated with worse overall survival of patients with TNBC treated with taxane and anthracycline combination regimens. Together, this study demonstrates that YES1 is an essential regulator of genome stability in TNBC that can be leveraged to improve taxane efficacy. Significance: YES1 is a sentinel regulator of genomic maintenance that controls centrosome homeostasis and chromosome stability through FOXM1, revealing this pathway as a therapeutic vulnerability for enhancing taxane efficacy in triple-negative breast cancer.
Collapse
Affiliation(s)
- Katrina M. Piemonte
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Natasha N. Ingles
- Department of Pathology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Mitchell J. Valentine
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Parth R. Majmudar
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Salendra Singh
- Center for Immunotherapy and Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Ruth A. Keri
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
- Center for Immunotherapy and Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| |
Collapse
|
30
|
Phillips JB, Park SS, Lin CH, Cho J, Lim S, Aurora R, Kim JH, Angajala A, Park B, Stone JK, Wang B, Kahn AG, Lim STS, Kim JH, Ahn EYE, Tan M. SON is an essential RNA splicing factor promoting ErbB2 and ErbB3 expression in breast cancer. Br J Cancer 2024; 131:1437-1449. [PMID: 39313574 PMCID: PMC11519869 DOI: 10.1038/s41416-024-02853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND In breast cancer, ErbB receptors play a critical role, and overcoming drug resistance remains a major challenge in the clinic. However, intricate regulatory mechanisms of ErbB family genes are poorly understood. Here, we demonstrate SON as an ErbB-regulatory splicing factor and a novel therapeutic target for ErbB-positive breast cancer. METHODS SON and ErbB expression analyses using public database, patient tissue microarray, and cell lines were performed. SON knockdown assessed its impact on cell proliferation, apoptosis, kinase phosphorylation, RNA splicing, and in vivo tumour growth. RNA immunoprecipitation was performed to measure SON binding. RESULTS SON is highly expressed in ErbB2-positive breast cancer patient samples, inversely correlating with patient survival. SON knockdown induced intron retention in selective splice sites within ErbB2 and ErbB3 transcripts, impairing effective RNA splicing and reducing protein expression. SON disruption suppressed downstream kinase signalling of ErbB2/3, including the Akt, p38, and JNK pathways, with increased vulnerability in ErbB2-positive breast cancer cells compared to ErbB2-negative cells. SON silencing in ErbB2-positive breast cancer xenografts led to tumour regression in vivo. CONCLUSION We identified SON as a novel RNA splicing factor that plays a critical role in regulating ErbB2/3 expression, suggesting SON is an ideal therapeutic target in ErbB2-positive breast cancers.
Collapse
Affiliation(s)
- Joshua B Phillips
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seong-Sik Park
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggido, Republic of Korea
| | - Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Juyoung Cho
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggido, Republic of Korea
| | - Sangbin Lim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ritu Aurora
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Jin-Hwan Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Bohye Park
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua K Stone
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Bin Wang
- Department of Math and Statistics, University of South Alabama, Mobile, AL, USA
| | - Andrea G Kahn
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ssang-Taek Steve Lim
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jung-Hyun Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggido, Republic of Korea.
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
31
|
Bae SY, Ling HH, Chen Y, Chen H, Kumar D, Zhang J, Viny AD, DePinho RA, Giancotti FG. Mediator Subunit Med4 Enforces Metastatic Dormancy in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.18.566087. [PMID: 38014033 PMCID: PMC10680920 DOI: 10.1101/2023.11.18.566087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Long term survival of breast cancer patients is limited due to recurrence from metastatic dormant cancer cells. However, the mechanisms by which these dormant breast cancer cells survive and awaken remain poorly understood. Our unbiased genome-scale genetic screen in mice identified Med4 as a novel cancer-cell intrinsic gatekeeper in metastatic reactivation. MED4 haploinsufficiency is prevalent in metastatic breast cancer patients and correlates with poorer prognosis. Syngeneic xenograft models revealed that Med4 enforces breast cancer dormancy. Contrary to the canonical function of the Mediator complex in activating gene expression, Med4 maintains 3D chromatin compaction and enhancer landscape, by preventing enhancer priming or activation through the suppression of H3K4me1 deposition. Med4 haploinsufficiency disrupts enhancer poise and reprograms the enhancer dynamics to facilitate extracellular matrix (ECM) gene expression and integrin-mediated mechano-transduction, driving metastatic growth. Our findings establish Med4 as a key regulator of cellular dormancy and a potential biomarker for high-risk metastatic relapse.
Collapse
Affiliation(s)
- Seong-Yeon Bae
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Hsiang-Hsi Ling
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Yi Chen
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Hong Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Dhiraj Kumar
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jiankang Zhang
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Aaron D. Viny
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Filippo G. Giancotti
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
32
|
Dixcy Jaba Sheeba JM, Hegde S, Tamboli N, Nadig N, Keshavamurthy R, Ranganathan P. Gene expression signature of castrate resistant prostate cancer. Gene 2024; 925:148603. [PMID: 38788815 DOI: 10.1016/j.gene.2024.148603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Prostate gland is a highly androgen dependent gland and hence the first line of treatment for metastatic prostate cancer happens to be androgen ablation. This is achieved by multiple non-surgical methods. However, most of these cancers although respond well initially, become resistant to androgen ablation sooner or later. These cancers then become extremely aggressive and difficult to treat, thereby drastically affect the patient prognosis. Identification of a gene expression signature for castrate resistant prostate cancer may aid in identification of mechanisms responsible for castrate resistance, which in turn would help in better management of the disease. METHODS: Patient samples belonging to a. Control group; b. Castrate Sensitive group and c. Castrate Resistant group were collected. Gene expression profiling was performed on these samples using RNA-seq. Differentially expressed genes between control and castrate sensitive as well as control and castrate resistant groups were identified. This data was compared with data from The Cancer Genome Atlas (TCGA) in order to get relevance in prognosis. RESULTS: We have identified 481 differentially expressed genes between control and castrate sensitive groups; and 446 genes differentially expressed between control and castrate resistant groups. We have also identified 364 genes which are expressed in the castrate resistant group alone, which is of interest since these may have an implication in evolution of castrate resistance and also prognosis. When compared to prostate cancer data from TCGA, 763 genes were found in common to our dataset. With this, a CaS and CaR signature was defined. Using criteria such as overall survival, disease-free survival, progression-free survival and biochemical recurrence, we have identified genes that may have relevance in progression to castrate resistance and in prognosis. Functional annotation of these genes may give an insight into the mechanism of development of castrate resistance.
Collapse
Affiliation(s)
| | - Shraddha Hegde
- Centre for Human Genetics, Electronic City, Bengaluru, India
| | | | - Namratha Nadig
- Centre for Human Genetics, Electronic City, Bengaluru, India
| | | | | |
Collapse
|
33
|
Gan S, Macalinao DG, Shahoei SH, Tian L, Jin X, Basnet H, Bibby C, Muller JT, Atri P, Seffar E, Chatila W, Karacay A, Chanda P, Hadjantonakis AK, Schultz N, Brogi E, Bale TA, Moss NS, Murali R, Pe'er D, Massagué J. Distinct tumor architectures and microenvironments for the initiation of breast cancer metastasis in the brain. Cancer Cell 2024; 42:1693-1712.e24. [PMID: 39270646 DOI: 10.1016/j.ccell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Brain metastasis, a serious complication of cancer, hinges on the initial survival, microenvironment adaptation, and outgrowth of disseminated cancer cells. To understand the early stages of brain colonization, we investigated two prevalent sources of cerebral relapse, triple-negative (TNBC) and HER2+ (HER2BC) breast cancers. Using mouse models and human tissue samples, we found that these tumor types colonize the brain, with a preference for distinctive tumor architectures, stromal interfaces, and autocrine programs. TNBC models tend to form perivascular sheaths with diffusive contact with astrocytes and microglia. In contrast, HER2BC models tend to form compact spheroids driven by autonomous tenascin C production, segregating stromal cells to the periphery. Single-cell transcriptomics of the tumor microenvironment revealed that these architectures evoke differential Alzheimer's disease-associated microglia (DAM) responses and engagement of the GAS6 receptor AXL. The spatial features of the two modes of brain colonization have relevance for leveraging the stroma to treat brain metastasis.
Collapse
Affiliation(s)
- Siting Gan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sayyed Hamed Shahoei
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xin Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine Bibby
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James T Muller
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pranita Atri
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evan Seffar
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid Chatila
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ali Karacay
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pharto Chanda
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nelson S Moss
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
34
|
Liu G, Yang X, Li N. Towards key genes identification for breast cancer survival risk with neural network models. Comput Biol Chem 2024; 112:108143. [PMID: 39142146 DOI: 10.1016/j.compbiolchem.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
Breast cancer, one common malignant tumor all over the world, has a considerably high rate of recurrence, which endangers the health and life of patients. While more and more data have been available, how to leverage the gene expression data to predict the survival risk of cancer patients and identify key genes has become a hot topic for cancer research. Therefore, in this work, we investigate the gene expression and clinical data of breast cancer patients, specifically a novel framework is proposed focusing on the survival risk classification and key gene identification task. We firstly combine the differential expression and univariate Cox regression analysis to achieve dimensional reduction of gene expression data. The median survival time is subsequently proposed as the risk classification threshold and a learning model based on neural network is trained to classify the survival risk of patients. Innovatively, in this work, the activation region visualization technology is selected as the identification tool, which identify 20 key genes related to the survival risk of breast cancer patients. We further analyze the gene function of these 20 key genes based on STRING database. It is critical to learn that, the genetic biomarkers identified in this paper may possess value for the following clinical treatment of breast cancer according to the literature findings. Importantly, the genetic biomarkers identified in this paper may possess value for the following clinical treatment of breast cancer according to the literature findings. Our work accomplishes the objective of proposing a targeted approach to enhancing the survival analysis and therapeutic strategies in breast cancer through advanced computational techniques and gene analysis.
Collapse
Affiliation(s)
- Gang Liu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xiao Yang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Nan Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
35
|
Yu W, Zhang Q, Ali M, Chen B, Sun Q, Wang D. ACTL8 Promotes the Progression of Gastric Cancer Through PI3K/AKT/mTOR Signaling Pathway. Dig Dis Sci 2024; 69:3786-3798. [PMID: 39322809 PMCID: PMC11489201 DOI: 10.1007/s10620-024-08649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Actin-like protein 8 (ACTL8) significantly correlates with tumor growth and prognosis across various cancer types. Nevertheless, the potential relationship between ACTL8 and gastric cancer (GC) remains uncertain. OBJECTIVE This study aimed to elucidate the role of ACTL8 in human GC cells and to explore its mechanism. METHODS Bioinformatics analysis tools, such as GEPIA2, Kaplan-Meier, and STRING, were utilized for a comprehensive investigation of the characteristics and functional roles of ACTL8 in GC, including differential expression, prognostic value, and related signaling pathways. Subsequently, gene expression analyses, cell function assays, and signaling pathway experiments were conducted to verify key findings. RESULTS Bioinformatics analysis showed that ACTL8 was significantly elevated in GC and closely associated with poor prognosis. Gene expression experiments confirmed the bioinformatics results. Furthermore, ACTL8 knockdown markedly reduced GC cell proliferation and inhibited migration and invasion. Mechanistically, a significant increase in the phosphorylation levels of signaling proteins was observed in GC cells following ACTL8 overexpression, and PI3K/Akt/mTOR pathway inhibitors could reverse this effect. CONCLUSION ACTL8 expression is significantly upregulated in GC cells and is closely correlated with poor patient prognosis. Further mechanistic studies revealed that ACTL8 may promote GC cell migration and proliferation through activation of the PI3K/Akt/mTOR signaling pathway. Consequently, ACTL8 emerges as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Wenhao Yu
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qi Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Muhammad Ali
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Bangquan Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Daorong Wang
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China.
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China.
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
36
|
Taha M, Yousef E, Badr AN, Salama RA, Maurice N. Expression profile and functional analysis of miR-301b in patients with breast cancer: A bioinformatics, biochemical, and histopathological study. Pathol Res Pract 2024; 262:155536. [PMID: 39173462 DOI: 10.1016/j.prp.2024.155536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND microRNAs (miRNAs) are crucial regulators of various biological processes and molecular functions. Aberrant miRNA expression has been linked in many studies to neoplastic transformation. Among these miRNAs, dysregulation of miR-301b-5p was associated with different types of cancer including breast cancer. Although many research works have investigated the function of miR-301b in carcinogenesis, few have examined its expression, biological, and clinical implications in breast cancer. METHODS we examined the expression levels of miR-301b-5p in human cancerous breast tissue compared to normal breast controls using different bioinformatic tools and RT-qPCR analyses. RESULTS we detected that miR-301b-5p was differentially expressed in cancerous breast tissue when compared to normal controls. MiR-301b-5p was detected to be upregulated in high-grade (Grade 3) and triple-negative breast cancers. A significant strong positive correlation was detected between miR-301b and Ki-67, the commonly used proliferative marker in breast cancer. Bioinformatics analyses using the KM plotter revealed that miR-301b has significant prognostic power in assessing the OS of patients with breast cancer. The study also identified many fundamental biological processes and regulatory pathways associated with the investigated miR-301b-related hub genes. Interestingly, the expression pattern and prognostic significance of PTEN, the top hub gene regulated by miR-301b, highlighted the prognostic significance of PTEN in breast cancer. CONCLUSION The current study findings suggest the potential use of miR-301b-5p as a possible diagnostic and prognostic biomarker in breast cancer. Moreover, this study emphasized the clinical and biological relevance of miR-301b-5p in breast cancer.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Einas Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin Elkom 3251, Egypt
| | | | - Rasha A Salama
- College of Medicine, Ras Al khaimah Medical and Health Science University, UAE; Department of Community Medicine, Kasr Al Ainy Faculty of Medicine, Cairo University, Egypt
| | - Nadine Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
37
|
Sajib MS, Zahra FT, Lamprou M, Akwii RG, Park JH, Osorio M, Tullar P, Doci CL, Zhang C, Huveneers S, Van Buul JD, Wang MH, Markiewski MM, Srivastava SK, Zheng Y, Gutkind JS, Hu J, Bickel U, Maeda DY, Zebala JA, Lionakis MS, Trasti S, Mikelis CM. Tumor-induced endothelial RhoA activation mediates tumor cell transendothelial migration and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614304. [PMID: 39372784 PMCID: PMC11451620 DOI: 10.1101/2024.09.22.614304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endothelial barrier plays an active role in transendothelial tumor cell migration during metastasis, however, the endothelial regulatory elements of this step remain obscure. Here we show that endothelial RhoA activation is a determining factor during this process. Breast tumor cell-induced endothelial RhoA activation is the combined outcome of paracrine IL-8-dependent and cell-to-cell contact β 1 integrin-mediated mechanisms, with elements of this pathway correlating with clinical data. Endothelial-specific RhoA blockade or in vivo deficiency inhibited the transendothelial migration and metastatic potential of human breast tumor and three murine syngeneic tumor cell lines, similar to the pharmacological blockade of the downstream RhoA pathway. These findings highlight endothelial RhoA as a potent, universal target in the tumor microenvironment for anti-metastatic treatment of solid tumors.
Collapse
|
38
|
Takeda M, Ito H, Kitahata K, Sato S, Nishide A, Gamo K, Managi S, Tezuka T, Yoshizawa A, Kim M. α-Parvin Expression in Breast Cancer Tissues: Correlation with Clinical Parameters and Prognostic Significance. Cells 2024; 13:1572. [PMID: 39329755 PMCID: PMC11430769 DOI: 10.3390/cells13181572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Stromal cells play a critical role in the tumor microenvironment of breast cancer (BC), as they are recruited by tumor cells and regulate the metastatic spread. Though high expression of α-parvin, a member of the parvin family of actin-binding proteins, is reported to be associated with a poor prognosis and metastasis in several cancers, its role in carcinogenesis has not been thoroughly explored. Therefore, we aimed to examine the expression of α-parvin in BC patients by compartmentalizing and quantifying tissues to determine whether α-parvin can be a potential therapeutic target. We performed immunohistochemical (IHC) staining of α-parvin in BC tissues, and the IHC scores were calculated in the overall tissue, stroma, and epithelium using image analysis software. The expression of α-parvin was significantly higher in BC tissues (p = 0.0002) and BC stroma (p < 0.0001) than in normal tissues. Furthermore, all α-parvin scores were significantly positively correlated with the proliferation marker Ki67. The overall and stroma scores are associated with the tumor, (lymph) node, and metastasis (TNM) classification, stage, and grade. These results suggest that high expression of α-parvin in stroma is associated with BCs and might be a new predictive marker for diagnosing BC.
Collapse
Affiliation(s)
- Midori Takeda
- Laboratory of Integrative Molecular Medicine, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi 606-8501, Kyoto, Japan; (M.T.)
- Urban Institute & Department of Civil Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi 819-0395, Fukuoka, Japan
| | - Hiroaki Ito
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto-shi 606-8507, Kyoto, Japan
| | - Keisuke Kitahata
- Laboratory of Integrative Molecular Medicine, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi 606-8501, Kyoto, Japan; (M.T.)
| | - Sota Sato
- Laboratory of Integrative Molecular Medicine, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi 606-8501, Kyoto, Japan; (M.T.)
| | - Akira Nishide
- Laboratory of Integrative Molecular Medicine, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi 606-8501, Kyoto, Japan; (M.T.)
| | - Kanae Gamo
- FIMECS, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa-shi 251-0012, Kanagawa, Japan
| | - Shunsuke Managi
- Urban Institute & Department of Civil Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi 819-0395, Fukuoka, Japan
| | - Tohru Tezuka
- Laboratory of Integrative Molecular Medicine, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi 606-8501, Kyoto, Japan; (M.T.)
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Nara Medical University, 840 Shijo-cho, Kashihara-shi 634-8521, Nara, Japan
| | - Minsoo Kim
- Laboratory of Integrative Molecular Medicine, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi 606-8501, Kyoto, Japan; (M.T.)
| |
Collapse
|
39
|
Vicente-Muñoz S, Davis JC, Lane A, Lane AN, Waltz SE, Wells SI. Lipid profiling of RON and DEK-dependent signaling in breast cancer guides discovery of gene networks predictive of poor outcomes. Front Oncol 2024; 14:1382986. [PMID: 39351361 PMCID: PMC11440356 DOI: 10.3389/fonc.2024.1382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Recurrent and metastatic breast cancer is frequently treatment resistant. A wealth of evidence suggests that reprogrammed lipid metabolism supports cancer recurrence. Overexpression of the RON and DEK oncoproteins in breast cancer is associated with poor outcome. Both proteins promote cancer metastasis in laboratory models, but their influence on lipid metabolite levels remain unknown. To measure RON- and DEK-dependent steady-state lipid metabolite levels, a nuclear magnetic resonance (NMR)-based approach was utilized. The observed differences identified a lipid metabolism-related gene expression signature that is prognostic of overall survival (OS), distant metastasis-free survival (DMFS), post-progression survival (PPS), and recurrence-free survival (RFS) in patients with breast cancer. RON loss led to decreased cholesterol and sphingomyelin levels, whereas DEK loss increased total fatty acid levels and decreased free glycerol levels. Lipid-related genes were then queried to define a signature that predicts poor outcomes for patients with breast cancer patients. Taken together, RON and DEK differentially regulate lipid metabolism in a manner that predicts and may promote breast cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Sara Vicente-Muñoz
- Translational Metabolomics Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - James C. Davis
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Susan E. Waltz
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Susanne I. Wells
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
40
|
Strathearn LS, Spender LC, Schoenherr C, Mason S, Edwards R, Blyth K, Inman GJ. C1orf106 ( INAVA) Is a SMAD3-Dependent TGF-β Target Gene That Promotes Clonogenicity and Correlates with Poor Prognosis in Breast Cancer. Cells 2024; 13:1530. [PMID: 39329715 PMCID: PMC11429573 DOI: 10.3390/cells13181530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Transforming Growth Factor-β (TGF-β) can have both tumour-promoting and tumour-suppressing activity in breast cancer. Elucidating the key downstream mediators of pro-tumorigenic TGF-β signalling in this context could potentially give rise to new therapeutic opportunities and/or identify biomarkers for anti-TGF-β directed therapy. Here, we identify C1orf106 (also known as innate immunity activator INAVA) as a novel TGF-β target gene which is induced in a SMAD3-dependent but SMAD2/SMAD4-independent manner in human and murine cell lines. C1orf106 expression positively correlates with tumourigenic or metastatic potential in human and murine breast cancer cell line models, respectively, and is required for enhanced migration and invasion in response to TGF-β stimulation. C1orf106 promoted self-renewal and colony formation in vitro and may promote tumour-initiating frequency in vivo. High C1orf106 mRNA expression correlates with markers of aggressiveness and poor prognosis in human breast cancer. Taken together, our findings indicate that C1orf106 may act as a tumour promoter in breast cancer.
Collapse
Affiliation(s)
- Lauren S. Strathearn
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Lindsay C. Spender
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Christina Schoenherr
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Susan Mason
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Ruaridh Edwards
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Gareth J. Inman
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| |
Collapse
|
41
|
Hegde S, Wagh K, Narayana SM, Abikar A, Nambiar S, Ananthamurthy S, Narayana NH, Reddihalli PV, Chandraiah S, Ranganathan P. microRNA profile of endometrial cancer from Indian patients-identification of potential biomarkers for prognosis. Biochem Biophys Rep 2024; 39:101812. [PMID: 39282095 PMCID: PMC11395764 DOI: 10.1016/j.bbrep.2024.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Endometrial cancer is one of the major cancers in women throughout the world. If diagnosed early, these cancers are treatable and the prognosis is usually good. However, one major problem in treating endometrial cancer is accurate diagnosis and staging. Till date, the choice method for diagnosis and staging is histopathology. Although there are few molecular markers identified, they are not always sufficient in making accurate diagnosis and deciding on therapeutic strategy. As a result, very often patients are under treated or over treated. In this study, our group has profiled microRNAs from Indian patients using NGS-based approach. We have identified 212 differentially expressed microRNAs in endometrial cancer. Among these, there are 17 novel miRNAs. Since this data represents only Indian cohort and also lacks survival data, validation across other populations is necessary before being considered as biomarkers. As one approach towards this, these microRNAs have also been compared to data from TCGA, which represent other populations and also correlated to relevance in overall survival. Using in-silico approaches, mRNA targets of the miRNAs have been predicted. After comparing with TCGA, we have identified 16 miRNA-mRNA pairs which could be potential prognostic biomarkers for endometrial cancer. This is the first miRNA profiling report from Indian cohort and one of the very few studies which have identified potential biomarkers of prognosis in endometrial cancer.
Collapse
Affiliation(s)
| | | | | | - Apoorva Abikar
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy for Higher Education, Manipal, India
| | | | | | | | | | - Savitha Chandraiah
- Vani Vilas Hospital, Bangalore Medical College and Research Institute, Bengaluru, India
| | - Prathibha Ranganathan
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy for Higher Education, Manipal, India
| |
Collapse
|
42
|
Gohari N, Abbasi E, Akrami H. Comprehensive analysis of the prognostic value of glutathione S-transferases Mu family members in breast cancer. Cell Biol Int 2024; 48:1313-1325. [PMID: 38922769 DOI: 10.1002/cbin.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer (BC) remains a significant public health concern globally, with a high number of reported cases and a substantial number of deaths every year. Accumulating reactive oxygen species (ROS) and oxidative stress are related to BC and the Glutathione S-transferases Mu (GSTM) family is one of the most important enzymatic detoxifiers associated with many cancers. In this study, UALCAN, Kaplan-Meier plotter, bc-GenExMiner, cBioPortal, STRING, Enrichr, and TIMER databases were employed to carry out a comprehensive bioinformatic analysis and provide new insight into the prognostic value of GSTMs in BC. GSTM2-5 genes in mRNA and protein levels were found to be expressed at lower levels in breast tumors compared to normal tissues, and reduction in mRNA levels is linked to shorter overall survival (OS) and relapse-free survival (RFS). The lower mRNA levels of GSTMs were strongly associated with the worse Scarff-Bloom-Richardson (SBR) grades (p < 0.0001). The mRNA levels of all five GSTMs were substantially higher in estrogen receptor (ER)-positive and progesterone receptor (PR)-positive compared to ER-negative and PR-negative BC patients. As well, when nodal status was compared, GSTM1, GSTM3, and GSTM5 were significantly higher in nodal-positive BC patients (p < .01). Furthermore, GSTM4 had the most gene alteration (4%) among other family members, and GSTM5 showed the strongest correlation with CD4+ T cells (Cor= .234, p = 2.22e-13). In conclusion, our results suggest that GSTM family members may be helpful as biomarkers for prognosis and as therapeutic targets in BC.
Collapse
Affiliation(s)
- Nazanin Gohari
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Elham Abbasi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Akrami
- Associate Professor in Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Zhang Y, Tang L, Liu H, Cheng Y. The Multiple Functions of HB-EGF in Female Reproduction and Related Cancer: Molecular Mechanisms and Targeting Strategies. Reprod Sci 2024; 31:2588-2603. [PMID: 38424408 DOI: 10.1007/s43032-024-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Heparin-binding growth factor (HB-EGF) is a member of the epidermal growth factor (EGF) ligand family which has a crucial role in women's health. However, there is a lack of comprehensive review to summarize the significance of HB-EGF. Therefore, this work first described the expression patterns of HB-EGF in the endometrium and ovary of different species and gestational time. Then, the focus was on exploring how it promotes the successful implantation and regulates the process of decidualization and the function of ovarian granulosa cells as an intermediate molecule. Otherwise, we also focused on the clinical and prognostic significance of HB-EGF in female-related cancers (including ovarian cancer, cervical cancer, and endometrial cancer) and breast cancer. Lastly, the article also summarizes the current drugs targeting HB-EGF in the treatment of ovarian cancer and breast cancer. Overall, these studies found that the expression of HB-EGF in the endometrium is spatiotemporal and species-specific. And it mediates the dialogue between the blastocyst and endometrium, promoting synchronous development of the blastocyst and endometrium as an intermediate molecule. HB-EGF may serve as a potentially valuable prognostic clinical indicator in tumors. And the specific inhibitor of HB-EGF (CRM197) has a certain anti-tumor ability, which can exert synergistic anti-tumor effects with conventional chemotherapy drugs. However, it also suggests that more research is needed in the future to elucidate its specific mechanisms and to accommodate clinical studies with a larger sample size to clarify its clinical value.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
44
|
Ingebriktsen LM, Humlevik ROC, Svanøe AA, Sæle AKM, Winge I, Toska K, Kalvenes MB, Davidsen B, Heie A, Knutsvik G, Askeland C, Stefansson IM, Hoivik EA, Akslen LA, Wik E. Elevated expression of Aurora-A/AURKA in breast cancer associates with younger age and aggressive features. Breast Cancer Res 2024; 26:126. [PMID: 39198859 PMCID: PMC11360479 DOI: 10.1186/s13058-024-01882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Aurora kinase A (AURKA) is reported to be overexpressed in breast cancer. In addition to its role in regulating cell cycle and mitosis, studies have reported AURKA involvements in oncogenic signaling in suppressing BRCA1 and BRCA2. We aimed to characterize AURKA protein and mRNA expression in a breast cancer cohort of the young, investigating its relation to clinico-pathologic features and survival, and exploring age-related AURKA-associated biological processes. METHODS Aurora kinase A immunohistochemical staining was performed on tissue microarrays of primary tumors from an in-house breast cancer cohort (n = 355) with information on clinico-pathologic data, molecular markers, and long and complete follow-up. A subset of the in-house cohort (n = 127) was studied by the NanoString Breast Cancer 360 expression panel for exploration of mRNA expression. METABRIC cohorts < 50 years at breast cancer diagnosis (n = 368) were investigated for differentially expressed genes and enriched gene sets in AURKA mRNA high tumors stratified by age. Differentially expressed genes and gene sets were investigated using network analyses and g:Profiler. RESULTS High Aurora kinase A protein expression associated with aggressive clinico-pathologic features, a basal-like subtype, and high risk of recurrence score. These patterns were confirmed using mRNA data. High AURKA gene expression demonstrated independent prognostic value when adjusted for traditional clinico-pathologic features and molecular subtypes. Notably, high AURKA expression significantly associated with reduced disease-specific survival within patients below 50 years, also within the luminal A subtype. Tumors of high AURKA expression showed gene expression patterns reflecting increased DNA damage activation and higher BRCAness score. CONCLUSIONS Our findings indicate higher AURKA expression in young breast cancer, and associations between high Aurora-A/AURKA and aggressive tumor features, including higher tumor cell proliferation, and shorter survival, in the young. Our findings point to AURKA as a marker for increased DNA damage and DNA repair deficiency and suggest AURKA as a biomarker of clinical relevance in young breast cancer.
Collapse
Grants
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- University of Bergen (incl Haukeland University Hospital)
Collapse
Affiliation(s)
- L M Ingebriktsen
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - R O C Humlevik
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - A A Svanøe
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - A K M Sæle
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - I Winge
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - K Toska
- Section for Cancer Genomics, Haukeland University Hospital, Bergen, Norway
| | - M B Kalvenes
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - B Davidsen
- Department of Surgery, Section for Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - A Heie
- Department of Surgery, Section for Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - G Knutsvik
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - C Askeland
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - I M Stefansson
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - E A Hoivik
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - L A Akslen
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - E Wik
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
45
|
Deng K, Yuan L, Xu Z, Qin F, Zheng Z, Huang L, Jiang W, Qin J, Sun Y, Zheng T, Ou X, Zheng L, Li S. Study of LY9 as a potential biomarker for prognosis and prediction of immunotherapy efficacy in lung adenocarcinoma. PeerJ 2024; 12:e17816. [PMID: 39193519 PMCID: PMC11348898 DOI: 10.7717/peerj.17816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Background Lymphocyte antigen 9 (LY9) participates in the development of several tumors and diseases but has not been reported yet in lung adenocarcinoma (LUAD). Methods First, we analyzed the expression and prognostic value of LY9 in pan-cancer, including LUAD. Additionally, we conducted a correlation analysis of LY9 expression in LUAD with immune cell infiltration using the TIMER database and the CIBERSORT algorithm, and with immune checkpoints using the GEPIA database. Also, we constructed a potential ceRNA network for LY9. Furthermore, we explored LY9-related pathways by Gene Set Enrichment Analysis (GSEA). Finally, validation of differential expression at the mRNA level was obtained from the GEO database. We collected LUAD tissues for Quantitative Real-time PCR (qRT-PCR) to verify the expression of LY9, CD8, and CD4 and calculated the correlation between them. We also conducted immunohistochemistry (IHC) to verify the protein expression of LY9. Results Results showed that LY9 was highly expressed in various tumors, including LUAD. Besides, patients with high LY9 expression presented longer overall survival (OS) and more multiple lymphocyte infiltrations. The expression of LY9 in LUAD strongly and positively correlates with multiple immune cell infiltration and immune checkpoints. The functional enrichment analysis indicated that LY9 was involved in multiple immune-related pathways and non-small cell lung cancer. Moreover, a ceRNA regulatory network of LINC00943-hsa-miR-141-3p-LY9 might be involved. Finally, GSE68465 dataset confirmed differential expression of LY9 mRNA levels in LUAD and the qRT-PCR results verified LY9 had a strong and positive correlation with CD4 and CD8 T cells. Unfortunately, IHC did not detect the expression of LY9 protein level in tumor tissues and WB experiments validated the protein expression of LY9 in the OCI-AML-2 cell line. Conclusions Therefore, we hypothesized that LY9 could serve as a potential, novel prognostic biomarker for LUAD and could predict immunotherapy efficacy at the mRNA level.
Collapse
Affiliation(s)
- Kun Deng
- Department of Thoracic and Cardiovascular Surgery, The Second People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, People’s Hospital of Deyang, Deyang, Sichuan, China
| | - Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Scientific Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwen Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuliu Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqi Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinhuai Ou
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liping Zheng
- Catheterization Laboratory of Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
46
|
Wang Z, Wang H. Acyl-CoA Thioesterase 8 (ACOT8) is a Poor Prognostic Biomarker in Breast Cancer. Pharmgenomics Pers Med 2024; 17:403-421. [PMID: 39188355 PMCID: PMC11346483 DOI: 10.2147/pgpm.s459762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose This study aimed to investigate the expression of Acyl-CoA thioesterase 8 (ACOT8) in breast cancer (BC) and its association with clinicopathological characteristics, patient survival, and immune infiltration. Methods We conducted a comprehensive analysis of ACOT8 mRNA differential expression across various cancer types, followed by survival analysis. We focused on BC, where ACOT8 expression was evaluated at both the mRNA and protein levels using online databases, qRT-PCR, and immunohistochemistry. Associations between ACOT8 expression and clinicopathological parameters were assessed using different databases. Additionally, we investigated the prognostic significance of ACOT8 in BC patients by analyzing various cohorts and databases. Furthermore, we predicted a potential signaling pathway and identified miR-1-3p as a possible upstream regulator of ACOT8. Finally, the relationship between ACOT8 and immune system infiltration, as well as immune checkpoint molecules, was examined. Results Our findings demonstrated upregulated ACOT8 mRNA and protein levels in BC. Elevated ACOT8 expression correlated positively with various clinicopathological characteristics, indicating an unfavorable prognosis for patients. Functional enrichment analysis suggested ACOT8 involvement in lipid metabolism, mitochondrial components, and ribosomal functions. Moreover, we identified connections between ACOT8 and immune system markers, immune cell infiltration, and immune checkpoints. Conclusion This study provides compelling evidence for ACOT8 upregulation in BC and its association with clinicopathological features and patient outcomes. Additionally, our findings suggest that targeting ACOT8 and immune checkpoints might enhance the effectiveness of immunotherapy in BC patients.
Collapse
Affiliation(s)
- Ziyun Wang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Hua Wang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| |
Collapse
|
47
|
Moragas N, Fernandez-Nogueira P, Recalde-Percaz L, Inman JL, López-Plana A, Bergholtz H, Noguera-Castells A, Del Burgo PJ, Chen X, Sorlie T, Gascón P, Bragado P, Bissell M, Carbó N, Fuster G. The SEMA3F-NRP1/NRP2 axis is a key factor in the acquisition of invasive traits in in situ breast ductal carcinoma. Breast Cancer Res 2024; 26:122. [PMID: 39138514 PMCID: PMC11320849 DOI: 10.1186/s13058-024-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND A better understanding of ductal carcinoma in situ (DCIS) is urgently needed to identify these preinvasive lesions as distinct clinical entities. Semaphorin 3F (SEMA3F) is a soluble axonal guidance molecule, and its coreceptors Neuropilin 1 (NRP1) and NRP2 are strongly expressed in invasive epithelial BC cells. METHODS We utilized two cell line models to represent the progression from a healthy state to the mild-aggressive or ductal carcinoma in situ (DCIS) stage and, ultimately, to invasive cell lines. Additionally, we employed in vivo models and conducted analyses on patient databases to ensure the translational relevance of our results. RESULTS We revealed SEMA3F as a promoter of invasion during the DCIS-to-invasive ductal carcinoma transition in breast cancer (BC) through the action of NRP1 and NRP2. In epithelial cells, SEMA3F activates epithelialmesenchymal transition, whereas it promotes extracellular matrix degradation and basal membrane and myoepithelial cell layer breakdown. CONCLUSIONS Together with our patient database data, these proof-of-concept results reveal new SEMA3F-mediated mechanisms occurring in the most common preinvasive BC lesion, DCIS, and represent potent and direct activation of its transition to invasion. Moreover, and of clinical and therapeutic relevance, the effects of SEMA3F can be blocked directly through its coreceptors, thus preventing invasion and keeping DCIS lesions in the preinvasive state.
Collapse
MESH Headings
- Humans
- Neuropilin-1/metabolism
- Neuropilin-1/genetics
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Neuropilin-2/metabolism
- Neuropilin-2/genetics
- Neoplasm Invasiveness
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Cell Line, Tumor
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Epithelial-Mesenchymal Transition/genetics
- Animals
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Gene Expression Regulation, Neoplastic
- Signal Transduction
Collapse
Affiliation(s)
- Núria Moragas
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Patricia Fernandez-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona (UB), 08036, Barcelona, Spain
| | - Leire Recalde-Percaz
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Anna López-Plana
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Aleix Noguera-Castells
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Barcelona, Catalonia, Spain
| | - Pedro J Del Burgo
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Xieng Chen
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Therese Sorlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Mina Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain.
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain.
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), UVIC-UCC, Vic, Spain.
| |
Collapse
|
48
|
Woodcock CL, Alsaleem M, Toss MS, Lothion-Roy J, Harris AE, Jeyapalan JN, Blatt N, Rizvanov AA, Miftakhova RR, Kariri YA, Madhusudan S, Green AR, Rutland CS, Fray RG, Rakha EA, Mongan NP. The role of the ALKBH5 RNA demethylase in invasive breast cancer. Discov Oncol 2024; 15:343. [PMID: 39127986 PMCID: PMC11317455 DOI: 10.1007/s12672-024-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most common internal RNA modification and is involved in regulation of RNA and protein expression. AlkB family member 5 (ALKBH5) is a m6A demethylase. Given the important role of m6A in biological mechanisms, m6A and its regulators, have been implicated in many disease processes, including cancer. However, the contribution of ALKBH5 to invasive breast cancer (BC) remains poorly understood. The aim of this study was to evaluate the clinicopathological value of ALKBH5 in BC. METHODS Publicly available data were used to investigate ALKBH5 mRNA alterations, prognostic significance, and association with clinical parameters at the genomic and transcriptomic level. Differentially expressed genes (DEGs) and enriched pathways with low or high ALKBH5 expression were investigated. Immunohistochemistry (IHC) was used to assess ALKBH5 protein expression in a large well-characterised BC series (n = 1327) to determine the clinical significance and association of ALKBH5 expression. RESULTS Reduced ALKBH5 mRNA expression was significantly associated with poor prognosis and unfavourable clinical parameters. ALKBH5 gene harboured few mutations and/or copy number alternations, but low ALKBH5 mRNA expression was seen. Patients with low ALKBH5 mRNA expression had a number of differentially expressed genes and enriched pathways, including the cytokine-cytokine receptor interaction pathway. Low ALKBH5 protein expression was significantly associated with unfavourable clinical parameters associated with tumour progression including larger tumour size and worse Nottingham Prognostic Index group. CONCLUSION This study implicates ALKBH5 in BC and highlights the need for further functional studies to decipher the role of ALKBH5 and RNA m6A methylation in BC progression.
Collapse
Affiliation(s)
- Corinne L Woodcock
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Jennifer Lothion-Roy
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Anna E Harris
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jennie N Jeyapalan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Nataliya Blatt
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Albert A Rizvanov
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Regina R Miftakhova
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Yousif A Kariri
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University 33, 11961, Shaqra, Saudi Arabia
| | - Srinivasan Madhusudan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Catrin S Rutland
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Rupert G Fray
- School of Biosciences, Plant Science Division, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
- Pathology Department, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Nigel P Mongan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
49
|
Wang X, Chi W, Ma Y, Zhang Q, Xue J, Shao ZM, Xiu B, Wu J, Chi Y. DUSP4 enhances therapeutic sensitivity in HER2-positive breast cancer by inhibiting the G6PD pathway and ROS metabolism by interacting with ALDOB. Transl Oncol 2024; 46:102016. [PMID: 38843658 PMCID: PMC11214528 DOI: 10.1016/j.tranon.2024.102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Breast cancer (BC) poses a global threat, with HER2-positive BC being a particularly hazardous subtype. Despite the promise shown by neoadjuvant therapy (NAT) in improving prognosis, resistance in HER2-positive BC persists despite emerging targeted therapies. The objective of this study is to identify markers that promote therapeutic sensitivity and unravel the underlying mechanisms. METHODS We conducted an analysis of 86 HER2-positive BC biopsy samples pre-NAT using RNA-seq. Validation was carried out using TCGA, Kaplan‒Meier Plotter, and Oncomine databases. Phenotype verification utilized IC50 assays, and prognostic validation involved IHC on tissue microarrays. RNA-seq was performed on wild-type/DUSP4-KO cells, while RT‒qPCR assessed ROS pathway regulation. Mechanistic insights were obtained through IP and MS assays. RESULTS Our findings reveal that DUSP4 enhances therapeutic efficacy in HER2-positive BC by inhibiting the ROS pathway. Elevated DUSP4 levels correlate with increased sensitivity to HER2-targeted therapies and improved clinical outcomes. DUSP4 independently predicts disease-free survival (DFS) and overall survival (OS) in HER2-positive BC. Moreover, DUSP4 hinders G6PD activity via ALDOB dephosphorylation, with a noteworthy association with heightened ROS levels. CONCLUSIONS In summary, our study unveils a metabolic reprogramming paradigm in BC, highlighting DUSP4's role in enhancing therapeutic sensitivity in HER2-positive BC cells. DUSP4 interacts with ALDOB, inhibiting G6PD activity and the ROS pathway, establishing it as an independent prognostic predictor for HER2-positive BC patients.
Collapse
Affiliation(s)
- Xuliren Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiru Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuwei Ma
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jingyan Xue
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bingqiu Xiu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Yayun Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
50
|
Han B, Zhen F, Sun Y, Sun B, Wang HY, Liu W, Huang J, Liang X, Wang YR, Chen XS, Li SJ, Hu J. Tumor suppressor KEAP1 promotes HSPA9 degradation, controlling mitochondrial biogenesis in breast cancer. Cell Rep 2024; 43:114507. [PMID: 39003742 DOI: 10.1016/j.celrep.2024.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The oxidative-stress-related protein Kelch-like ECH-associated protein 1 (KEAP1) is a substrate articulator of E3 ubiquitin ligase, which plays an important role in the ubiquitination modification of proteins. However, the function of KEAP1 in breast cancer and its impact on the survival of patients with breast cancer remain unclear. Our study demonstrates that KEAP1, a positive prognostic factor, plays a crucial role in regulating cell proliferation, apoptosis, and cell cycle transition in breast cancer. We investigate the underlying mechanism using human tumor tissues, high-throughput detection technology, and a mouse xenograft tumor model. KEAP1 serves as a key regulator of cellular metabolism, the reprogramming of which is one of the hallmarks of tumorigenesis. KEAP1 has a significant effect on mitochondrial biogenesis and oxidative phosphorylation by regulating HSPA9 ubiquitination and degradation. These results suggest that KEAP1 could serve as a potential biomarker and therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Bing Han
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Fang Zhen
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Yue Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China
| | - Hong-Yi Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Wei Liu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Jian Huang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang Province 150081, China
| | - Ya-Ru Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Xue-Song Chen
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province 150001, China.
| | - Shui-Jie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| | - Jing Hu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|