1
|
Mueller C, Davis JB, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research: a 2024 update. Expert Rev Proteomics 2024; 21:401-416. [PMID: 39474929 DOI: 10.1080/14789450.2024.2423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Breast cancer subtyping is used clinically for diagnosis, prognosis, and treatment decisions. Subtypes are categorized by cell of origin, histomorphology, gene expression signatures, hormone receptor status, and/or protein levels. Categorizing breast cancer based on gene expression signatures aids in assessing a patient's recurrence risk. Protein biomarkers, on the other hand, provide functional data for selecting therapies for primary and recurrent tumors. We provide an update on protein biomarkers in breast cancer subtypes and their application in prognosis and therapy selection. AREAS COVERED Protein pathways in breast cancer subtypes are reviewed in the context of current protein-targeted treatment options. PubMed, Science Direct, Scopus, and Cochrane Library were searched for relevant studies between 2017 and 17 August 2024. EXPERT OPINION Post-translationally modified proteins and their unmodified counterparts have become clinically useful biomarkers for defining breast cancer subtypes from a therapy perspective. Tissue heterogeneity influences treatment outcomes and disease recurrence. Spatial profiling has revealed complex cellular subpopulations within the breast tumor microenvironment. Deciphering the functional relationships between and within tumor clonal cell populations will further aid in defining breast cancer subtypes and create new treatment paradigms for recurrent, drug resistant, and metastatic disease.
Collapse
Affiliation(s)
- Claudius Mueller
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Justin B Davis
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
2
|
Zattarin E, Taglialatela I, Lobefaro R, Leporati R, Fucà G, Ligorio F, Sposetti C, Provenzano L, Azzollini J, Vingiani A, Ferraris C, Martelli G, Manoukian S, Pruneri G, de Braud F, Vernieri C. Breast cancers arising in subjects with germline BRCA1 or BRCA2 mutations: Different biological and clinical entities with potentially diverse therapeutic opportunities. Crit Rev Oncol Hematol 2023; 190:104109. [PMID: 37643668 DOI: 10.1016/j.critrevonc.2023.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Breast cancers (BCs) arising in carriers of germline BRCA1 and BRCA2 pathogenic variants (PVs) have long been considered as indistinguishable biological and clinical entities. However, the loss of function of BRCA1 or BRCA2 proteins has different consequences in terms of tumor cell reliance on estrogen receptor signaling and tumor microenvironment composition. Here, we review accumulating preclinical and clinical data indicating that BRCA1 or BRCA2 inactivation may differentially affect BC sensitivity to standard systemic therapies. Based on a different crosstalk between BRCA1 or BRCA2 and the ER pathway, BRCA2-mutated Hormone Receptor-positive, HER2-negative advanced BC may be less sensitive to endocrine therapy (ET) plus CDK 4/6 inhibitors (CDK 4/6i), whereas BRCA2-mutated triple-negative breast cancer (TNBC) may be especially sensitive to immune checkpoint inhibitors. If validated in future prospective studies, these data may have relevant clinical implications, thus establishing different treatment paths in patients with BRCA1 or BRCA2 PVs.
Collapse
Affiliation(s)
- Emma Zattarin
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ida Taglialatela
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Ligorio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Caterina Sposetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Leonardo Provenzano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Ferraris
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriele Martelli
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
3
|
Zhang W, Li E, Wang L, Lehmann BD, Chen XS. Transcriptome Meta-Analysis of Triple-Negative Breast Cancer Response to Neoadjuvant Chemotherapy. Cancers (Basel) 2023; 15:2194. [PMID: 37190123 PMCID: PMC10137141 DOI: 10.3390/cancers15082194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with varying responses to neoadjuvant chemotherapy (NAC). The identification of biomarkers to predict NAC response and inform personalized treatment strategies is essential. In this study, we conducted large-scale gene expression meta-analyses to identify genes associated with NAC response and survival outcomes. The results showed that immune, cell cycle/mitotic, and RNA splicing-related pathways were significantly associated with favorable clinical outcomes. Furthermore, we integrated and divided the gene association results from NAC response and survival outcomes into four quadrants, which provided more insights into potential NAC response mechanisms and biomarker discovery.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Emma Li
- California Academy of Mathematics and Science, 1000 E Victoria St, Carson, CA 90747, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian D. Lehmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - X. Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Carmo F, Silva C, Martel F. Inhibition of Glutamine Cellular Uptake Contributes to the Cytotoxic Effect of Xanthohumol in Triple-Negative Breast Cancer Cells. Nutr Cancer 2022; 74:3413-3430. [PMID: 35594207 DOI: 10.1080/01635581.2022.2076889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes the most incident cancer and one of the most common causes of cancer-related death. "Glutamine addiction", an important metabolic feature of cancer cells, is dependent on supply of this amino acid from external sources. In this study, the effect of several polyphenols (catechin, epicatechin, EGCG, catechin:lysine, naringenin, hesperidin, malvidin, delphinidin, kaempferol, quercetin, rutin, myricetin, resveratrol, xanthohumol, and chrysin) upon glutamine (3H-GLN) uptake by human breast epithelial adenocarcinoma cell lines with distinct characteristics (MCF-7 and MDA-MB-231) was assessed.Several polyphenols interfere with 3H-GLN uptake by both cell lines. Xanthohumol markedly decreases total and Na+-dependent 3H-GLN uptake and showed a cytotoxic and anti-proliferative effect in MDA-MB-231 cells. Xanthohumol is as an uncompetitive inhibitor of Na+-dependent 3H-GLN uptake and inhibits GPNA (L-γ-glutamyl-p-nitroanilide)-sensitive, both ASCT2 (alanine, serine, cysteine transporter 2)-mediated and non-ASCT2-mediated 3H-GLN uptake. Xanthohumol does not interfere with the transcription rates of ASCT2. The cytotoxic effect of xanthohumol, but not its anti-proliferative effect, is GPNA-sensitive and related to ASCT2 inhibition. Combination of xanthohumol with the breast cancer chemotherapeutic agent doxorubicin results in an additive anti-proliferative, but not cytotoxic effect.We conclude that targeting glutamine uptake might constitute a potential interesting strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- F Carmo
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - C Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - F Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Feng W, He Y, Xu J, Zhang H, Si Y, Xu J, Li S. A meta-analysis of the effect and safety of platinum-based neoadjuvant chemotherapy in treatment of resectable triple-negative breast cancer. Anticancer Drugs 2022; 33:e52-e60. [PMID: 34371505 PMCID: PMC8670346 DOI: 10.1097/cad.0000000000001196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/06/2021] [Indexed: 12/03/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and fatal subtype of breast cancer. The effectiveness of platinum-based neoadjuvant chemotherapy in treatment of cancer has many divergent opinions. A search was conducted in the PubMed, EBSCO, Web of Science and Cochrane Library databases for relevant studies published before August 2020. The primary endpoint was pathological complete response (pCR) while the secondary endpoints were objective response rate (ORR), overall survival (OS) and progression-free survival (PFS). Nine randomized controlled trials comprised of 1873 patients were included in this meta-analysis. Platinum-based neoadjuvant chemotherapy showed significant improvements in pCR (RR = 1.51, 95% CI, 1.25-1.82, P < 0.001), ORR (RR = 1.20, 95% CI, 1.07-1.34, P = 0.001), OS (HR=0.56; 95% CI, 0.15-0.96, P < 0.001) and PFS (HR = 0.48, 95% CI, 0.22-0.73, P < 0.001) compared to nonplatinum neoadjuvant chemotherapy. Moreover, addition of platinum compounds did not significantly increase the side effects of any grade. However, there was an increase in blood toxicity of grade 3 patients which meant that it was mainly confined to the bone marrow/blood system. Platinum-based neoadjuvant chemotherapy can safely improve short-term and long-term outcomes in resectable TNBC patients.
Collapse
Affiliation(s)
- Wuna Feng
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Jingsi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Hongya Zhang
- Thyroid and Breast Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo
| | - Yuexiu Si
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaxuan Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Shengzhou Li
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo
| |
Collapse
|
6
|
Acevedo F, Sánchez C, Walbaum B. Terapia personalizada en cáncer de mama precoz. Implicancias prácticas. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Tan YT, Ou-Yang L, Jiang X, Yan H, Zhang XF. Identifying Gene Network Rewiring Based on Partial Correlation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:513-521. [PMID: 32750866 DOI: 10.1109/tcbb.2020.3002906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is an important task to learn how gene regulatory networks change under different conditions. Several Gaussian graphical model-based methods have been proposed to deal with this task by inferring differential networks from gene expression data. However, most existing methods define the differential networks as the difference of precision matrices, which may include false differential edges caused by the change of conditional variances. In addition, prior information about the condition-specific networks and the differential networks can be obtained from other domains. It is useful to incorporate prior information into differential network analysis. In this study, we propose a new differential network analysis method to address the above challenges. Instead of using the precision matrices, we define the differential networks as the difference of partial correlations, which can exclude the spurious differential edges due to the variants of conditional variances. Furthermore, prior information from multiple hypothesis testing is incorporated using a weighted fused penalty. Simulation studies show that our method outperforms the competing methods. We also apply our method to identify the differential network between luminal A and basal-like subtypes of breast cancers and the differential network between acute myeloid leukemia tumors and normal samples. The hub genes in the differential networks identified by our method carry out important biological functions.
Collapse
|
8
|
Silva C, Andrade N, Rodrigues I, Ferreira AC, Soares ML, Martel F. The pro-proliferative effect of interferon-γ in breast cancer cell lines is dependent on stimulation of ASCT2-mediated glutamine cellular uptake. Life Sci 2021; 286:120054. [PMID: 34662550 DOI: 10.1016/j.lfs.2021.120054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is a risk factor for breast cancer initiation and progression. Glutamine (GLN) is a critical nutrient for cancer cells. The aim of this study was to investigate the effect of T2DM-associated compounds upon GLN uptake by breast cancer cells. MAIN METHODS The in vitro uptake of 3H-GLN by breast cancer (MCF-7 and MDA-MB-231) and non-tumorigenic (MCF-12A) cell lines was measured. KEY FINDINGS 3H-GLN uptake in the three cell lines is mainly Na+-dependent and sensitive to the ASCT2 inhibitor GPNA. IFN-γ increased total and Na+-dependent 3H-GLN uptake in the two breast cancer cell lines, and insulin increased total and Na+-dependent 3H-GLN uptake in the non-tumorigenic cell line. GPNA abolished the increase in 3H-GLN uptake promoted by these T2DM-associated compounds. ASCT2 knockdown confirmed that the increase in 3H-GLN uptake caused by IFN-γ (in breast cancer cells) and by insulin (in non-tumorigenic cells) is ASCT2-dependent. IFN-γ (in MDA-MB-231 cells) and insulin (in MCF-12A cells) increased ASCT2 transcript and protein levels. Importantly, the pro-proliferative effect of IFN-γ in breast cancer cell lines was associated with an increase in 3H-GLN uptake which was GPNA-sensitive, blocked by ASCT2 knockdown and mediated by activation of the PI3K-, STAT3- and STAT1 intracellular signalling pathways. SIGNIFICANCE IFN-γ and insulin possess pro-proliferative effects in breast cancer and non-cancer cell lines, respectively, which are dependent on an increase in ASCT2-mediated glutamine transport. Thus, an effective inhibition of ASCT2-mediated glutamine uptake may be a therapeutic strategy against human breast cancer in T2DM patients.
Collapse
Affiliation(s)
- Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Ilda Rodrigues
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - António Carlos Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Laboratório de Apoio à Investigação em Medicina Molecular, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Miguel Luz Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Laboratório de Apoio à Investigação em Medicina Molecular, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Klaric KA, Riaz N, Asleh K, Wang XQ, Atalla T, Strickland S, Nielsen TO, Kos Z. SOX10 is a highly specific biomarker of basal-like breast cancer. Histopathology 2021; 80:589-597. [PMID: 34725848 DOI: 10.1111/his.14592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022]
Abstract
AIMS Basal-like breast cancer is an aggressive molecular subtype associated with younger age and early relapse. Most cases lack expression of estrogen receptor (ER), progesterone receptor, and human epidermal growth factor receptor 2, limiting targeted therapeutic options. Basal-like breast cancer is defined by expression of genes in the outer/basally-located epithelial layer of mammary glands including those encoding cytokeratins 5 and 14, and epidermal growth factor receptor (EGFR). SOX10, a readily available immunohistochemical stain, is expressed in a subset of breast cancers, particularly triple-negative carcinomas. In this study, we sought to (i) assess the association between SOX10 expression and intrinsic molecular subtypes as defined by PAM50 gene expression and (ii) compare the performance of SOX10 to other surrogate markers of basal-like subtype, including CK5, EGFR, nestin and INPP4b. METHODS AND RESULTS SOX10 immunostaining was performed on tissue microarrays constructed from a contemporary series enriched for ER negative and weakly positive cancers, which had also undergone PAM50 gene profiling. A total of 211 cases were informative for both SOX10 immunohistochemistry (IHC) and PAM50 subtype, including 103 basal-like. Staining for SOX10 was positive in 73/103 basal-like cancers and only 2/108 other subtypes (p<0.001), resulting in a sensitivity of 70.9% and a specificity of 98.1%. SOX10 was more specific than the other tested basal-markers and the results were independent of estrogen receptor status. CONCLUSIONS SOX10 is a moderately sensitive, but highly specific IHC biomarker for the basal-like intrinsic subtype of breast cancer, which unlike other commonly used IHC biomarkers, is independent of hormone receptor status.
Collapse
Affiliation(s)
- Kristina-Ana Klaric
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Nazia Riaz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver, BC, Canada.,Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Pakistan
| | - Karama Asleh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver, BC, Canada
| | - Xiu Qing Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver, BC, Canada
| | - Tadros Atalla
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Sarah Strickland
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver, BC, Canada
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
10
|
Li K, Fan J, Qin X, Wei Q. Novel therapeutic compounds for prostate adenocarcinoma treatment: An analysis using bioinformatic approaches and the CMap database. Medicine (Baltimore) 2020; 99:e23768. [PMID: 33371142 PMCID: PMC7748316 DOI: 10.1097/md.0000000000023768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Prostate adenocarcinoma is the most frequently diagnosed malignancy, particularly for people >70 years old. The main challenge in the treatment of advanced neoplasm is bone metastasis and therapeutic resistance for known oncology drugs. Novel treatment methods to prolong the survival time and improve the life quality of these specific patients are required. The present study attempted to screen potential therapeutic compounds for the tumor through bioinformatics approaches, in order to provide conceptual treatment for this malignant disease. METHODS Differentially expressed genes were obtained from the Gene Expression Omnibus database and submitted into the Connectivity Map database for the detection of potentially associated compounds. Target genes were extracted from the search results. Functional annotation and pathway enrichment were performed for the confirmation. Survival analysis was used to measure potential therapeutic effects. RESULTS It was revealed that 3 compounds (vanoxerine, tolnaftate, and gabexate) may help to prolong the disease-free survival time from tumor metastasis of patients with the tumor. A total of 6 genes [also-keto reductase family 1 member C3 (AKR1C3), collagen type III α 1 chain (COL3A1), lipoprotein lipase (LPL), glucuronidase, β pseudogene 11 (GUSBP11), apolipoprotein E (APOE), and collagen type I α 1 chain (COL1A1)] were identified to be the potential therapeutic targets for the aforementioned compounds. CONCLUSION In the present study, it was speculated that 3 compounds may function as the potential therapeutic drugs of bone metastatic prostate adenocarcinoma; however, further studies verifying vitro and in vivo are necessary.
Collapse
Affiliation(s)
- Kai Li
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| | - Jingyuan Fan
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| | - Xinyi Qin
- Graduate School of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Qingjun Wei
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| |
Collapse
|
11
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
12
|
Swiatnicki MR, Andrechek ER. How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective. J Mammary Gland Biol Neoplasia 2019; 24:231-243. [PMID: 31227983 DOI: 10.1007/s10911-019-09433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Human breast cancer is a heterogeneous disease with numerous subtypes that have been defined through immunohistological, histological, and gene expression patterns. The diversity of breast cancer has made the study of its various underlying causes complex. To facilitate the examination of particular facets of breast cancer, mouse models have been generated, ranging from carcinogen induced models to genetically engineered mice. While mouse models have been generated to mimic the initiating event, including p53 loss, BRCA loss, or overexpression of HER2 / Neu / erbB2, other genomic events are often not well characterized. However, these secondary genetic events are often critical to the mouse tumor evolution, subtype, and outcome, just as they are in human breast cancer. As such, these other genomic events are a critical component of what models are chosen to study specific subtypes of human breast cancer. Here we review the genomic analyses that have been completed for various genetically engineered mouse models, how they compare to human breast cancer, and detail how this information can be used in choosing a mouse model for analysis.
Collapse
Affiliation(s)
- Matthew R Swiatnicki
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
13
|
Rafieenia F, Abbaszadegan MR, Poursheikhani A, Razavi SMS, Jebelli A, Molaei F, Aghaee‐Bakhtiari SH. In silico evidence of high frequency of miRNA‐related SNPs in Esophageal Squamous Cell Carcinoma. J Cell Physiol 2019; 235:966-978. [DOI: 10.1002/jcp.29012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Rafieenia
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | | | - Amir Jebelli
- Stem Cell and Regenerative Medicine Research Department Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch Mashhad Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Hamid Aghaee‐Bakhtiari
- Bioinformatics Research Group Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
14
|
Basu A, Ramamoorthi G, Jia Y, Faughn J, Wiener D, Awshah S, Kodumudi K, Czerniecki BJ. Immunotherapy in breast cancer: Current status and future directions. Adv Cancer Res 2019; 143:295-349. [PMID: 31202361 DOI: 10.1016/bs.acr.2019.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer, one of the leading causes of death in women in the United States, challenges therapeutic success in patients due to tumor heterogeneity, treatment resistance, metastasis and disease recurrence. Knowledge of immune system involvement in normal breast development and breast cancer has led to extensive research into the immune landscape of breast cancer and multiple immunotherapy clinical trials in breast cancer patients. However, poor immunogenicity and T-cell infiltration along with heightened immunosuppression in the tumor microenvironment have been identified as potential challenges to the success of immunotherapy in breast cancer. Oncodrivers, owing to their enhanced expression and stimulation of tumor cell proliferation and survival, present an excellent choice for targeted immunotherapy development in breast cancer. Loss of anti-tumor immune response specific to oncodrivers has been reported in breast cancer patients as well. Dendritic cell vaccines have been tested for their efficacy in generating anti-tumor T-cell response against specific tumor-associated antigens and oncodrivers and have shown improved survival outcome in patients. Here, we review the current status of immunotherapy in breast cancer, focusing on dendritic cell vaccines and their therapeutic application in breast cancer. We further discuss future directions of breast cancer immunotherapy and potential combination strategies involving dendritic cell vaccines and existing chemotherapeutics for improved efficacy and better survival outcome in breast cancer.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Yongsheng Jia
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jon Faughn
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Doris Wiener
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Sabrina Awshah
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| |
Collapse
|
15
|
Gilding LN, Somervaille TCP. The Diverse Consequences of FOXC1 Deregulation in Cancer. Cancers (Basel) 2019; 11:E184. [PMID: 30764547 PMCID: PMC6406774 DOI: 10.3390/cancers11020184] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Forkhead box C1 (FOXC1) is a transcription factor with essential roles in mesenchymal lineage specification and organ development during normal embryogenesis. In keeping with these developmental properties, mutations that impair the activity of FOXC1 result in the heritable Axenfeld-Rieger Syndrome and other congenital disorders. Crucially, gain of FOXC1 function is emerging as a recurrent feature of malignancy; FOXC1 overexpression is now documented in more than 16 cancer types, often in association with an unfavorable prognosis. This review explores current evidence for FOXC1 deregulation in cancer and the putative mechanisms by which FOXC1 confers its oncogenic effects.
Collapse
Affiliation(s)
- L Niall Gilding
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| |
Collapse
|
16
|
Sharma P, López-Tarruella S, García-Saenz JA, Khan QJ, Gómez HL, Prat A, Moreno F, Jerez-Gilarranz Y, Barnadas A, Picornell AC, Monte-Millán MD, González-Rivera M, Massarrah T, Pelaez-Lorenzo B, Palomero MI, González Del Val R, Cortés J, Fuentes-Rivera H, Morales DB, Márquez-Rodas I, Perou CM, Lehn C, Wang YY, Klemp JR, Mammen JV, Wagner JL, Amin AL, O'Dea AP, Heldstab J, Jensen RA, Kimler BF, Godwin AK, Martín M. Pathological Response and Survival in Triple-Negative Breast Cancer Following Neoadjuvant Carboplatin plus Docetaxel. Clin Cancer Res 2018; 24:5820-5829. [PMID: 30061361 PMCID: PMC6279513 DOI: 10.1158/1078-0432.ccr-18-0585] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/21/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Prognostic value of pathologic complete response (pCR) and extent of pathologic response attained with anthracycline-free platinum plus taxane neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) is unknown. We report recurrence-free survival (RFS) and overall survival (OS) according to degree of pathologic response in patients treated with carboplatin plus docetaxel NAC. PATIENTS AND METHODS One-hundred and ninety patients with stage I-III TNBC were treated with neoadjuvant carboplatin (AUC6) plus docetaxel (75 mg/m2) every 21 days × 6 cycles. pCR (no evidence of invasive tumor in breast and axilla) and Residual cancer burden (RCB) were evaluated. Patients were followed for recurrence and survival. Extent of pathologic response was associated with RFS and OS using the Kaplan-Meier method. RESULTS Median age was 51 years, and 52% were node-positive. pCR and RCB I rates were 55% and 13%, respectively. Five percent of pCR patients, 0% of RCB I patients, and 58% of RCB II/III patients received adjuvant anthracyclines. Three-year RFS and OS were 79% and 87%, respectively. Three-year RFS was 90% in patients with pCR and 66% in those without pCR [HR = 0.30; 95% confidence interval (CI), 0.14-0.62; P = 0.0001]. Three-year OS was 94% in patients with pCR and 79% in those without pCR (HR = 0.25; 95% CI, 0.10-0.63; P = 0.001). Patients with RCB I demonstrated 3-year RFS (93%) and OS (100%) similar to those with pCR. On multivariable analysis, higher tumor stage, node positivity, and RCB II/III were associated with worse RFS. CONCLUSIONS Neoadjuvant carboplatin plus docetaxel yields encouraging efficacy in TNBC. Patients achieving pCR or RCB I with this regimen demonstrate excellent 3-year RFS and OS without adjuvant anthracycline.
Collapse
Affiliation(s)
- Priyanka Sharma
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas.
| | - Sara López-Tarruella
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain
| | | | - Qamar J Khan
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Henry L Gómez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Fernando Moreno
- Department of Medical Oncology, Hospital Clínico San Carlos, Madrid, Spain
| | - Yolanda Jerez-Gilarranz
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain
| | - Agustí Barnadas
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antoni C Picornell
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain
| | - María Del Monte-Millán
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain
| | - Milagros González-Rivera
- Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Tatiana Massarrah
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain
| | | | - María Isabel Palomero
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain
| | - Ricardo González Del Val
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain
| | - Javier Cortés
- Department of Oncology, Ramón y Cajal University Hospital, Madrid, Spain. Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Hugo Fuentes-Rivera
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Denisse Bretel Morales
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Iván Márquez-Rodas
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain
| | - Charles M Perou
- Departments of Genetics and Pathology & Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carolyn Lehn
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Yen Y Wang
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Jennifer R Klemp
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Joshua V Mammen
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Jamie L Wagner
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Amanda L Amin
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Anne P O'Dea
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Jaimie Heldstab
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Roy A Jensen
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Bruce F Kimler
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Andrew K Godwin
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, Kansas
| | - Miguel Martín
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain.
| |
Collapse
|
17
|
Fan TC, Yeo HL, Hsu HM, Yu JC, Ho MY, Lin WD, Chang NC, Yu J, Yu AL. Reciprocal feedback regulation of ST3GAL1 and GFRA1 signaling in breast cancer cells. Cancer Lett 2018; 434:184-195. [PMID: 30040982 DOI: 10.1016/j.canlet.2018.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
GFRA1 and RET are overexpressed in estrogen receptor (ER)-positive breast cancers. Binding of GDNF to GFRA1 triggers RET signaling leading to ER phosphorylation and estrogen-independent transcriptional activation of ER-dependent genes. Both GFRA1 and RET are membrane proteins which are N-glycosylated but no O-linked sialylation site on GFRA1 or RET has been reported. We found GFRA1 to be a substrate of ST3GAL1-mediated O-linked sialylation, which is crucial to GDNF-induced signaling in ER-positive breast cancer cells. Silencing ST3GAL1 in breast cancer cells reduced GDNF-induced phosphorylation of RET, AKT and ERα, as well as GDNF-mediated cell proliferation. Moreover, GDNF induced transcription of ST3GAL1, revealing a positive feedback loop regulating ST3GAL1 and GDNF/GFRA1/RET signaling in breast cancers. Finally, we demonstrated ST3GAL1 knockdown augments anti-cancer efficacy of inhibitors of RET and/or ER. Moreover, high expression of ST3GAL1 was associated with poor clinical outcome in patients with late stage breast cancer and high expression of both ST3GAL1 and GFRA1 adversely impacted outcome in those with high grade tumors.
Collapse
Affiliation(s)
- Tan-Chi Fan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hui Ling Yeo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Huan-Ming Hsu
- Department of Surgery, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Cherng Yu
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wen-Der Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taoyuan, Taiwan
| | - Nai-Chuan Chang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Pediatrics/Hematology Oncology, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
18
|
Donzelli S, Milano E, Pruszko M, Sacconi A, Masciarelli S, Iosue I, Melucci E, Gallo E, Terrenato I, Mottolese M, Zylicz M, Zylicz A, Fazi F, Blandino G, Fontemaggi G. Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-associated macrophages. Breast Cancer Res 2018; 20:59. [PMID: 29921315 PMCID: PMC6009061 DOI: 10.1186/s13058-018-0990-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Background As crucial regulators of the immune response against pathogens, macrophages have been extensively shown also to be important players in several diseases, including cancer. Specifically, breast cancer macrophages tightly control the angiogenic switch and progression to malignancy. ID4, a member of the ID (inhibitors of differentiation) family of proteins, is associated with a stem-like phenotype and poor prognosis in basal-like breast cancer. Moreover, ID4 favours angiogenesis by enhancing the expression of pro-angiogenic cytokines interleukin-8, CXCL1 and vascular endothelial growth factor. In the present study, we investigated whether ID4 protein exerts its pro-angiogenic function while also modulating the activity of tumour-associated macrophages in breast cancer. Methods We performed IHC analysis of ID4 protein and macrophage marker CD68 in a triple-negative breast cancer series. Next, we used cell migration assays to evaluate the effect of ID4 expression modulation in breast cancer cells on the motility of co-cultured macrophages. The analysis of breast cancer gene expression data repositories allowed us to evaluate the ability of ID4 to predict survival in subsets of tumours showing high or low macrophage infiltration. By culturing macrophages in conditioned media obtained from breast cancer cells in which ID4 expression was modulated by overexpression or depletion, we identified changes in the expression of ID4-dependent angiogenesis-related transcripts and microRNAs (miRNAs, miRs) in macrophages by RT-qPCR. Results We determined that ID4 and macrophage marker CD68 protein expression were significantly associated in a series of triple-negative breast tumours. Interestingly, ID4 messenger RNA (mRNA) levels robustly predicted survival, specifically in the subset of tumours showing high macrophage infiltration. In vitro and in vivo migration assays demonstrated that expression of ID4 in breast cancer cells stimulates macrophage motility. At the molecular level, ID4 protein expression in breast cancer cells controls, through paracrine signalling, the activation of an angiogenic programme in macrophages. This programme includes both the increase of angiogenesis-related mRNAs and the decrease of members of the anti-angiogenic miR-15b/107 group. Intriguingly, these miRNAs control the expression of the cytokine granulin, whose enhanced expression in macrophages confers increased angiogenic potential. Conclusions These results uncover a key role for ID4 in dictating the behaviour of tumour-associated macrophages in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-0990-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Donzelli
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Elisa Milano
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Andrea Sacconi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Ilaria Iosue
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elisa Melucci
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Enzo Gallo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistics Unit, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marcella Mottolese
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy. .,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
19
|
Abstract
Breast cancer is the most common cancer among women and represents one of the top five leading causes of cancer-related mortality. Inherited and acquired genetic mutations as well as epigenetic aberrations are known to be important contributors to the development and progression of breast cancer. Recent developments in high-throughput technologies have increased our understanding of the molecular changes in breast cancer, leading to the identification of distinctive genetic and epigenetic modifications in different breast cancer molecular subtypes. These genetic and epigenetic changes in luminal A, luminal B, ERBB2/HER2-enriched, basal-like, and normal-like breast cancer subtypes are discussed in this chapter. Furthermore, recent epigenome studies provided more information about further stratification of breast cancer subtypes, with essential role in the appropriate diagnosis and treatment of breast cancer. Thus, the inclusion of both genetic and epigenetic information in breast cancer clinical care could provide critical scientific base for precision medicine in breast cancer.
Collapse
|
20
|
El Ansari R, McIntyre A, Craze ML, Ellis IO, Rakha EA, Green AR. Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology 2017; 72:183-190. [DOI: 10.1111/his.13334] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Rokaya El Ansari
- Academic Pathology; University of Nottingham; Nottingham City Hospital; Nottingham UK
| | - Alan McIntyre
- Cancer Biology Unit; Division of Cancer and Stem Cells; School of Medicine; University of Nottingham; Nottingham City Hospital; Nottingham UK
| | - Madeleine L Craze
- Academic Pathology; University of Nottingham; Nottingham City Hospital; Nottingham UK
| | - Ian O Ellis
- Academic Pathology; University of Nottingham; Nottingham City Hospital; Nottingham UK
- Cellular Pathology; Nottingham University Hospitals NHS Trust; Nottingham UK
| | - Emad A Rakha
- Academic Pathology; University of Nottingham; Nottingham City Hospital; Nottingham UK
- Cellular Pathology; Nottingham University Hospitals NHS Trust; Nottingham UK
| | - Andrew R Green
- Academic Pathology; University of Nottingham; Nottingham City Hospital; Nottingham UK
| |
Collapse
|
21
|
Khosravi-Shahi P, Cabezón-Gutiérrez L, Custodio-Cabello S. Metastatic triple negative breast cancer: Optimizing treatment options, new and emerging targeted therapies. Asia Pac J Clin Oncol 2017; 14:32-39. [DOI: 10.1111/ajco.12748] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/11/2017] [Indexed: 12/23/2022]
|
22
|
Yotsukura S, Karasuyama M, Takigawa I, Mamitsuka H. Exploring phenotype patterns of breast cancer within somatic mutations: a modicum in the intrinsic code. Brief Bioinform 2017; 18:619-633. [PMID: 27197545 DOI: 10.1093/bib/bbw040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 11/12/2022] Open
Abstract
Triple-negative (TN) breast cancer (BC) patients have limited treatment options and poor prognosis even after extant treatments and standard chemotherapeutic regimens. Linking TN patients to clinically known phenotypes with appropriate treatments is vital. Location-specific sequence variants are expected to be useful for this purpose by identifying subgroups within a disease population. Single gene mutational signatures have been widely reported, with related phenotypes in literature. We thoroughly survey currently available mutations (and mutated genes), linked to BC phenotypes, to demonstrate their limited performance as sole predictors/biomarkers to assign phenotypes to patients. We then explore mutational combinations, as a pilot study, using The Cancer Genome Atlas Research Network mutational data of BC and three machine learning methods: association rules (limitless arity multiple procedure), decision tree and hierarchical disjoint clustering. The study results in a patient classification scheme through combinatorial mutations in Phosphatidylinositol-4,5-Bisphosphate 3-Kinase and tumor protein 53, being consistent with all three methods, implying its validity from a diverse viewpoint. However, it would warrant further research to select multi-gene signatures to identify phenotypes specifically and be clinically used routinely.
Collapse
|
23
|
Parvani JG, Jackson MW. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles. Endocr Relat Cancer 2017; 24:R81-R97. [PMID: 28148541 PMCID: PMC5471497 DOI: 10.1530/erc-16-0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
Abstract
Over the past decade, RNA interference (RNAi) has been ubiquitously utilized to study biological function in vitro; however, limitations were associated with its utility in vivo More recently, small interfering RNA (siRNA) nanoparticles with improved biocompatibility have gained prevalence as a potential therapeutic option for the treatment of various diseases. The adaptability of siRNA nanoparticles enables the delivery of virtually any siRNA, which is especially advantageous for therapeutic applications in heterogeneous diseases that lack unifying molecular features, such as triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast cancer that is stratified by the lack of estrogen receptor/progesterone receptor expression and HER2 amplification. There are currently no FDA-approved targeted therapies for the treatment of TNBCs, making cytotoxic chemotherapy the only treatment option available to these patients. In this review, we outline the current status of siRNA nanoparticles in clinical trials for cancer treatment and discuss the promising preclinical approaches that have utilized siRNA nanoparticles for TNBC treatment. Next, we address TNBC subtype-specific therapeutic interventions and highlight where and how siRNA nanoparticles fit into these strategies. Lastly, we point out ongoing challenges in the field of siRNA nanoparticle research that, if addressed, would significantly improve the efficacy of siRNA nanoparticles as a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Jenny G Parvani
- Department of Biomedical EngineeringCase Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer CenterCase Western Reserve University, Cleveland, Ohio, USA
| | - Mark W Jackson
- Case Comprehensive Cancer CenterCase Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Abstract
CONTEXT -Molecular diagnostics play a role in the management of many cancers, including breast cancer. OBJECTIVE -To provide an update on molecular testing in current clinical practice, targeted at practicing pathologists who are not breast cancer specialists. DATA SOURCES -This study is a narrative literature review. CONCLUSIONS -In addition to routine hormone (estrogen and progesterone) receptor testing, new and recurrent tumors are tested for HER2 amplification by in situ hybridization or overexpression by immunohistochemistry. Intrinsic subtyping of tumors represents a fundamental advance in our understanding of breast cancer biology, but currently it has an indirect role in patient management. Clinical next-generation sequencing (tumor profiling) is increasingly used to identify potentially actionable mutations in tumor tissue. Multianalyte assays with algorithmic analysis, including MammaPrint, Oncotype DX, and Prosigna, play a larger role in breast cancer than in many other malignancies. Given that a proportion of breast cancers are familial, testing of nontumor tissue for cancer predisposition mutations also plays a role in breast cancer care.
Collapse
Affiliation(s)
- Ian S Hagemann
- From the Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri. Presented at the 2nd Princeton Integrated Pathology Symposium: Breast Pathology; February 8, 2015; Plainsboro, New Jersey
| |
Collapse
|
25
|
Sharma P, López-Tarruella S, García-Saenz JA, Ward C, Connor CS, Gómez HL, Prat A, Moreno F, Jerez-Gilarranz Y, Barnadas A, Picornell AC, del Monte-Millán M, Gonzalez-Rivera M, Massarrah T, Pelaez-Lorenzo B, Palomero MI, González del Val R, Cortes J, Fuentes H, Bretel D, Márquez-Rodas I, Perou CM, Wagner JL, Mammen JV, McGinness MK, Klemp JR, Amin AL, Fabian CJ, Heldstab J, Godwin AK, Jensen RA, Kimler BF, Khan QJ, Martin M. Efficacy of Neoadjuvant Carboplatin plus Docetaxel in Triple-Negative Breast Cancer: Combined Analysis of Two Cohorts. Clin Cancer Res 2017; 23:649-657. [PMID: 27301700 PMCID: PMC5156592 DOI: 10.1158/1078-0432.ccr-16-0162] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Recent studies demonstrate that addition of neoadjuvant (NA) carboplatin to anthracycline/taxane chemotherapy improves pathologic complete response (pCR) in triple-negative breast cancer (TNBC). Effectiveness of anthracycline-free platinum combinations in TNBC is not well known. Here, we report efficacy of NA carboplatin + docetaxel (CbD) in TNBC. EXPERIMENTAL DESIGN The study population includes 190 patients with stage I-III TNBC treated uniformly on two independent prospective cohorts. All patients were prescribed NA chemotherapy regimen of carboplatin (AUC 6) + docetaxel (75 mg/m2) given every 21 days × 6 cycles. pCR (no evidence of invasive tumor in the breast and axilla) and residual cancer burden (RCB) were evaluated. RESULTS Among 190 patients, median tumor size was 35 mm, 52% were lymph node positive, and 16% had germline BRCA1/2 mutation. The overall pCR and RCB 0 + 1 rates were 55% and 68%, respectively. pCRs in patients with BRCA-associated and wild-type TNBC were 59% and 56%, respectively (P = 0.83). On multivariable analysis, stage III disease was the only factor associated with a lower likelihood of achieving a pCR. Twenty-one percent and 7% of patients, respectively, experienced at least one grade 3 or 4 adverse event. CONCLUSIONS The CbD regimen was well tolerated and yielded high pCR rates in both BRCA-associated and wild-type TNBC. These results are comparable with pCR achieved with the addition of carboplatin to anthracycline-taxane chemotherapy. Our study adds to the existing data on the efficacy of platinum agents in TNBC and supports further exploration of the CbD regimen in randomized studies. Clin Cancer Res; 23(3); 649-57. ©2016 AACR.
Collapse
Affiliation(s)
- Priyanka Sharma
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Sara López-Tarruella
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Dr. Esquerdo 46, 28007 Madrid, Spain;
| | | | - Claire Ward
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Carol S. Connor
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Henry L. Gómez
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú ()
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain ()
- Translational Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain ()
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain ()
| | - Fernando Moreno
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain ()
| | - Yolanda Jerez-Gilarranz
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Augusti Barnadas
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona ()
| | - Antoni C. Picornell
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain ()
| | - Maria del Monte-Millán
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Milagros Gonzalez-Rivera
- Laboratory of Translational Oncology. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain ()
| | - Tatiana Massarrah
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Dr. Esquerdo 46, 28007 Madrid, Spain;
| | | | - María Isabel Palomero
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Ricardo González del Val
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Javier Cortes
- Department of Oncology, Ramon y Cajal University Hospital, Madrid, Spain. Vall d’Hebron institute of Oncology (VHIO), Barcelona, Spain. ()
| | - Hugo Fuentes
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú ()
| | - Denisse Bretel
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú ()
| | - Iván Márquez-Rodas
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Charles M. Perou
- LinebergerComprehensiveCancer Center, Departments of Genetics and Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, ()
| | - Jamie L. Wagner
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Joshua V. Mammen
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Marilee K. McGinness
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Jennifer R. Klemp
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Amanda L. Amin
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Carol J. Fabian
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Jaimie Heldstab
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Andrew K. Godwin
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Roy A. Jensen
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Bruce F. Kimler
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Qamar J. Khan
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Westwood, KS, USA
| | - Miguel Martin
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Dr. Esquerdo 46, 28007 Madrid, Spain;
| |
Collapse
|
26
|
Asleh-Aburaya K, Sheffield BS, Kos Z, Won JR, Wang XQ, Gao D, Wolber R, Gilks CB, Bernard PS, Chia SKL, Nielsen TO. Basal biomarkers nestin and INPP4b identify intrinsic subtypes accurately in breast cancers that are weakly positive for oestrogen receptor. Histopathology 2016; 70:185-194. [DOI: 10.1111/his.13038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Karama Asleh-Aburaya
- Department of Pathology and Laboratory Medicine; Genetic Pathology Evaluation Centre; University of British Columbia; Vancouver BC Canada
| | - Brandon S Sheffield
- Department of Pathology and Laboratory Medicine; Genetic Pathology Evaluation Centre; University of British Columbia; Vancouver BC Canada
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine; University of Ottawa and The Ottawa Hospital; Ottawa ON Canada
| | - Jennifer R Won
- Department of Pathology and Laboratory Medicine; Genetic Pathology Evaluation Centre; University of British Columbia; Vancouver BC Canada
- Department of Pathology and Laboratory Medicine; Canadian Immunohistochemistry Quality Control (CIQC); University of British Columbia; Vancouver BC Canada
| | - Xiu Q Wang
- Department of Pathology and Laboratory Medicine; Genetic Pathology Evaluation Centre; University of British Columbia; Vancouver BC Canada
| | - Dongxia Gao
- Department of Pathology and Laboratory Medicine; Genetic Pathology Evaluation Centre; University of British Columbia; Vancouver BC Canada
| | - Robert Wolber
- Department of Pathology and Laboratory Medicine; Lions Gate Hospital; North Vancouver BC Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine; Genetic Pathology Evaluation Centre; University of British Columbia; Vancouver BC Canada
- Department of Pathology and Laboratory Medicine; Canadian Immunohistochemistry Quality Control (CIQC); University of British Columbia; Vancouver BC Canada
| | - Philip S Bernard
- Department of Pathology; University of Utah/Health Sciences; Salt Lake City UT USA
| | - Stephen K L Chia
- Department of Medical Oncology; British Columbia Cancer Agency; Vancouver BC Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine; Genetic Pathology Evaluation Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
27
|
Sharma P. Biology and Management of Patients With Triple-Negative Breast Cancer. Oncologist 2016; 21:1050-62. [PMID: 27401886 PMCID: PMC5016071 DOI: 10.1634/theoncologist.2016-0067] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED : Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is associated with poor long-term outcomes compared with other breast cancer subtypes. Because of the lack of approved targeted therapy, at present chemotherapy remains the mainstay of treatment for early and advanced disease. TNBC is enriched for germline BRCA mutation, providing a foundation for the use of this as a biomarker to identify patients suitable for treatment with DNA-damaging agents. Inherited and acquired defects in homologous recombination DNA repair, a phenotype termed "BRCAness," may be present in a large proportion of TNBC cases, making it an attractive selection and response biomarker for DNA-damaging therapy. Triple-negative breast cancer is a diverse entity for which additional subclassifications are needed. Increasing understanding of biologic heterogeneity of TNBC has provided insight into identifying potentially effective systemic therapies, including cytotoxic and targeted agents. Numerous experimental approaches are under way, and several encouraging drug classes, such as immune checkpoint inhibitors, poly(ADP-ribose) polymerase inhibitors, platinum agents, phosphatidylinositol-3-kinase pathway inhibitors, and androgen receptor inhibitors, are being investigated in TNBC. Molecular biomarker-based patient selection in early-phase trials has the potential to accelerate development of effective therapies for this aggressive breast cancer subtype. TNBC is a complex disease, and it is likely that several different targeted approaches will be needed to make meaningful strides in improving the outcomes. IMPLICATIONS FOR PRACTICE Triple-negative breast cancer (TNBC) is an aggressive subtype that is associated with poor outcomes. This article reviews clinical features and discusses the molecular diversity of this unique subtype. Current treatment paradigms, the role of germline testing, and platinum agents in TNBC are reviewed. Results and observations from pertinent clinical trials with potential implications for patient management are summarized. This article also discusses the clinical development and ongoing clinical trials of novel promising therapeutic agents in TNBC.
Collapse
|
28
|
Baker LA, Holliday H, Swarbrick A. ID4 controls luminal lineage commitment in normal mammary epithelium and inhibits BRCA1 function in basal-like breast cancer. Endocr Relat Cancer 2016; 23:R381-92. [PMID: 27412917 DOI: 10.1530/erc-16-0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
Inhibitor of differentiation (ID) proteins are key regulators of development and tumorigenesis. One member of this family, ID4, controls lineage commitment during mammary gland development by acting upstream of key developmental pathways. Recent evidence suggests an emerging role for ID4 as a lineage-dependent proto-oncogene that is overexpressed and amplified in a subset of basal-like breast cancers (BLBCs), conferring poor prognosis. Several lines of evidence suggest ID4 may suppress BRCA1 function in BLBC and in doing so, define a subset of BLBC patients who may respond to therapies traditionally used in BRCA1-mutant cancers. This review highlights recent advances in our understanding of the requirement for ID4 in mammary lineage commitment and the role for ID4 in BLBC. We address current shortfalls in this field and identify important areas of future research.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Identification of BRCA1 Deficiency Using Multi-Analyte Estimation of BRCA1 and Its Repressors in FFPE Tumor Samples from Patients with Triple Negative Breast Cancer. PLoS One 2016; 11:e0153113. [PMID: 27077368 PMCID: PMC4831669 DOI: 10.1371/journal.pone.0153113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Apart from germ-line BRCA1-mutated breast cancers, a significant proportion of women with sporadic triple negative breast cancer (TNBC) sub-type are known to harbour varying levels of BRCA1-dysfuction. There is currently no established diagnostic method to identify these patients. METHODS The analysis was performed on 183 primary breast cancer tumor specimens from our longitudinal case-series archived as formalin-fixed-paraffin-embedded (FFPE) blocks comprising 71 TNBCs and 112 Hormone receptor positive HER2 negative (HR+HER2-) tumors. Transcript levels of BRCA1 and two of its repressors ID4 and microRNA182 were determined by TaqMan quantitative PCR. BRCA1 protein was detected immunohistochemically with the MS110 antibody. RESULTS The representation of BRCA1 and its repressor ID4 as a ratio led to improved separation of TNBCs from HR+HER2- compared to either measure by itself. We then dichotomised the continuous distribution of each of the three measurements (Protein, MIRNA and transcript:repressor ratio) into categories of deficient (0) and adequate (1). A composite BRCA1 Deficiency Score (BDS) was computed by the addition of the score for all three measures. Samples deficient on 2 or more measures were deemed to be BRCA1 deficient; and 40% of all TNBCs met this criterion. CONCLUSION We propose here a simple multi-level assay of BRCA1 deficiency using the BRCA1:ID4 ratio as a critical parameter that can be performed on FFPE samples in clinical laboratories by the estimation of only 3 bio-markers. The ease of testing will hopefully encourage adoption and clinical validation.
Collapse
|
30
|
Holm K, Staaf J, Lauss M, Aine M, Lindgren D, Bendahl PO, Vallon-Christersson J, Barkardottir RB, Höglund M, Borg Å, Jönsson G, Ringnér M. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells. Breast Cancer Res 2016; 18:27. [PMID: 26923702 PMCID: PMC4770527 DOI: 10.1186/s13058-016-0685-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized. Methods Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669 human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and chromatin states. Results We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple additional amplifications and the most complex genomes, and one epitype displayed a methylation profile similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern, constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels. The second pattern correlated with gene expression levels and was associated with methylation in luminal tumors and genes with active promoters in normal epithelial cells. Conclusions Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0685-5) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Abstract
Gene-expression profiling has had a considerable impact on our understanding of breast cancer biology. During the last 15 years, 5 intrinsic molecular subtypes of breast cancer (Luminal A, Luminal B, HER2-enriched, Basal-like and Claudin-low) have been identified and intensively studied. In this review, we will focus on the current and future clinical implications of the intrinsic molecular subtypes beyond the current pathological-based classification endorsed by the 2013 St. Gallen Consensus Recommendations. Within hormone receptor-positive and HER2-negative early breast cancer, the Luminal A and B subtypes predict 10-year outcome regardless of systemic treatment administered as well as residual risk of distant recurrence after 5 years of endocrine therapy. Within clinically HER2-positive disease, the 4 main intrinsic subtypes can be identified and dominate the biological and clinical phenotype. From a clinical perspective, patients with HER2+/HER2-enriched disease seem to benefit the most from neoadjuvant trastuzumab, or dual HER2 blockade with trastuzumab/lapatinib, in combination with chemotherapy, and patients with HER2+/Luminal A disease seem to have a relative better outcome compared to the other subtypes. Finally, within triple-negative breast cancer (TNBC), the Basal-like disease predominates (70-80%) and, from a biological perspective, should be considered a cancer-type by itself. Importantly, the distinction between Basal-like versus non-Basal-like within TNBC might predict survival following (neo)adjvuvant multi-agent chemotherapy, bevacizumab benefit in the neoadjuvant setting (CALGB40603), and docetaxel vs. carboplatin benefit in first-line metastatic disease (TNT study). Overall, this data suggests that intrinsic molecular profiling provides clinically relevant information beyond current pathology-based classifications.
Collapse
|
32
|
Massink MPG, Kooi IE, van Mil SE, Jordanova ES, Ameziane N, Dorsman JC, van Beek DM, van der Voorn JP, Sie D, Ylstra B, van Deurzen CHM, Martens JW, Smid M, Sieuwerts AM, de Weerd V, Foekens JA, van den Ouweland AMW, van Dyk E, Nederlof PM, Waisfisz Q, Meijers-Heijboer H. Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes. Mol Oncol 2015; 9:877-88. [PMID: 25616998 PMCID: PMC5528776 DOI: 10.1016/j.molonc.2014.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/20/2014] [Accepted: 12/27/2014] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. METHODS For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n = 27) were compared with basal-like familial BRCAX (non-BRCA1/2/CHEK2*1100delC) tumors (n = 14) in a familial cohort of 120 breast carcinomas. RESULTS Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identified varying amounts of tumor infiltrating lymphocytes (TILs) as a major cause for this heterogeneity. Indeed, selecting tumors with relative low amounts of TILs, resulted in the identification of three known but also five previously unrecognized BRCA1-associated copy number aberrations. Moreover, these aberrations occurred with high frequencies in the BRCA1-mutated tumor samples. Using these regions it was possible to discriminate BRCA1-mutated from BRCAX breast carcinomas, and they were validated in two independent cohorts. To further substantiate our findings, we used flow cytometry to isolate cancer cells from formalin-fixed, paraffin-embedded, BRCA1-mutated triple negative breast carcinomas with estimated TIL percentages of 40% and higher. Genomic profiles of sorted and unsorted fractions were compared by shallow whole genome sequencing and confirm our findings. CONCLUSION This study shows that genomic profiling of in particular basal-like, and thus BRCA1-mutated, breast carcinomas is severely affected by the presence of high numbers of TILs. Previous reports on genomic profiling of BRCA1-mutated breast carcinomas have largely neglected this. Therefore, our findings have direct consequences on the interpretation of published genomic data. Also, these findings could prove valuable in light of currently used genomic tools for assessing BRCA1-involvement in breast cancer patients and pathogenicity assessment of BRCA1 variants of unknown significance. The BRCA1-associated genomic aberrations identified in this study provide possible leads to a better understanding of BRCA1-associated oncogenesis.
Collapse
Affiliation(s)
- Maarten P G Massink
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Saskia E van Mil
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Ekaterina S Jordanova
- Department of Obstetrics and Gynaecology, Center for Gynaecologic Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Daphne M van Beek
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Daoud Sie
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Carolien H M van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - John W Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ewald van Dyk
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Petra M Nederlof
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|