1
|
Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of cytochrome P450, a family of xenobiotic metabolizing enzymes, in cancer therapy. Antioxid Redox Signal 2022; 38:853-876. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Targeted cancer therapy with minimal off-target consequences has shown promise for some cancer types. Although cytochrome P450 (CYP) consists of 18 families, CYP1-4 families play key role in metabolizing xenobiotics and cancer drugs. This eventually affects the process of carcinogenesis, treatment outcome, and cancer drug resistance. Differential overexpression of CYPs in transformed cells, together with phenotypic alterations in tumors, presents a potential for therapeutic intervention. RECENT ADVANCES Recent advances in molecular tools and information technology have helped utilize CYPs as cancer targets. The precise expression in various tumors, X-ray crystal structures, improved understanding of the structure-activity relationship, and new approaches in the development of prodrugs have supported the ongoing efforts to develop CYPs-based drugs with a better therapeutic index. CRITICAL ISSUES Narrow therapeutic index, off-target effects, drug resistance, and tumor heterogeneity limit the benefits of CYP-based conventional cancer therapies. In this review, we address the CYP1-4 families as druggable targets in cancer. An emphasis is given to the CYP expression, function, and the possible mechanisms that drive expression and activity in normal and transformed tissues. The strategies that inhibit or activate CYPs for therapeutic benefits are also discussed. FUTURE DIRECTIONS Efforts are needed to develop more selective tools that will help comprehend molecular and metabolic alterations in tumor tissues with biological end-points in relation to CYPs. This will eventually translate to developing more specific CYP inhibitors/inducers.
Collapse
Affiliation(s)
- Ragini D Singh
- AIIMS Rajkot, 618032, Biochemistry, Rajkot, Gujarat, India;
| | - Avadhesh Avadhesh
- Institute of Science, Banaras Hindu University, Biochemistry, Varanasi, Uttar Pradesh, India;
| | - Gaurav Sharma
- AIIMS Rajkot, 618032, Physiology, Rajkot, Gujarat, India;
| | | | - Rima B Shah
- AIIMS Rajkot, 618032, Pharmacology, Rajkot, Gujarat, India;
| | - Bela Goyal
- AIIMS Rishikesh, 442339, Biochemistry, Rishikesh, Uttarakhand, India;
| | - Subash Chandra Gupta
- Institute of Science, Banaras Hindu University, Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India, 221005;
| |
Collapse
|
2
|
Joint effect of particulate matter and cigarette smoke on women's sex hormones. BMC Womens Health 2022; 22:3. [PMID: 34996432 PMCID: PMC8742359 DOI: 10.1186/s12905-021-01586-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although relationships between exposure to air pollution and reproductive health are broadly studied, mechanisms behind these phenomena are still unknown. The aim of the study was to assess whether exposure to particulate matter (PM10) and tobacco smoking have an impact on menstrual profiles of 17β-estradiol (E2) and progesterone (P) and the E2/P ratio. METHODS Levels of sex hormones were measured daily in saliva during the entire menstrual cycle among 132 healthy, urban women. Exposure to smoking (active or passive) was assessed by questionnaire, whilst exposure to PM10 with municipal monitoring data. RESULTS During the early luteal phase, profiles of E2 were elevated among women with higher versus lower exposure to PM10 (p = 0.02, post-hoc tests). Among those who were exposed versus unexposed to tobacco smoking, the levels of mean E2 measured during the entire cycle were higher (p = 0.02). The difference in mean E2 levels between the group of joint exposure (i.e. to high PM10 and passive or active smoking) versus the reference group (low PM10, no smoking) was statistically significant at p = 0.03 (18.4 vs. 12.4 pmol/l, respectively). The E2/P ratios were higher among women with higher versus lower exposure to PM10 and this difference was seen only in the early luteal phase (p = 0.01, exploratory post-hoc tests). CONCLUSIONS We found that PM10 and tobacco smoking affect ovarian hormones independently and do not interact with each other. Both exposures appear to have estrogenic effects even though women's susceptibility to these effects differs across the menstrual cycle. We propose that the hormonal mechanisms are involved in observed relationships between air pollution and smoking with women's reproductive health.
Collapse
|
3
|
Fiocchetti M, Bastari G, Cipolletti M, Leone S, Acconcia F, Marino M. The Peculiar Estrogenicity of Diethyl Phthalate: Modulation of Estrogen Receptor α Activities in the Proliferation of Breast Cancer Cells. TOXICS 2021; 9:237. [PMID: 34678933 PMCID: PMC8538674 DOI: 10.3390/toxics9100237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
Phthalates comprise a group of synthetic chemicals present in the environment because of their wide use as plasticizers and as additives in products for personal care. Among others, diethyl phthalate (DEP) is largely used in products for infants, children, and adults, in which its exposure has been correlated with an increased risk of breast cancer. The adverse health outcomes deriving from phthalate exposure have been associated with their activity as endocrine disruptors (EDCs) of the steroid and thyroid hormone signaling by affecting developmental and reproductive health, and even carcinogenicity. However, the estrogen disruptor activities of DEP are still controversial, and the mechanism at the root of the estrogenic-disrupting action of DEP remains to be clarified. Here, we evaluated the DEP mechanism of action on the activation status of estrogen receptor α (ERα) by analyzing the receptor's phosphorylation as well as both nuclear and extra-nuclear pathways triggered by the receptor to modulate the proliferation of breast cancer cells. Although DEP does not bind to ERα, our results suggest that this phthalate ester exerts multiple parallel interactions with ERα signaling and emphasize the importance to determine an appropriate battery of in vitro methods that will include specific molecular mechanisms involved in the endocrine disruption.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi, 446, 00146 Rome, Italy; (G.B.); (M.C.); (S.L.); (F.A.)
| | | | | | | | | | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi, 446, 00146 Rome, Italy; (G.B.); (M.C.); (S.L.); (F.A.)
| |
Collapse
|
4
|
Tryggvadottir H, Sandén E, Björner S, Bressan A, Ygland Rödström M, Khazaei S, Edwards DP, Nodin B, Jirström K, Isaksson K, Borgquist S, Jernström H. The Prognostic Impact of Intratumoral Aryl Hydrocarbon Receptor in Primary Breast Cancer Depends on the Type of Endocrine Therapy: A Population-Based Cohort Study. Front Oncol 2021; 11:642768. [PMID: 34094928 PMCID: PMC8174786 DOI: 10.3389/fonc.2021.642768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a master regulator of multiple pathways involved in breast cancer, and influences the estrogen receptor alpha (ER) and aromatase/CYP19A1. The purpose of this study was to elucidate the interplay between intratumoral levels of AhR and aromatase, patient characteristics (including AhR and CYP19A1 genotypes), clinicopathological features, and prognosis in breast cancer patients receiving adjuvant treatments. A prospective cohort of 1116 patients with primary breast cancer in Sweden, included 2002-2012, was followed until June 30th 2019 (median 8.7 years). Tumor-specific AhR (n=920) and aromatase levels (n=816) were evaluated on tissue microarrays using immunohistochemistry. Associations between cytoplasmatic (AhRcyt) and nuclear (AhRnuc) AhR levels, intratumoral aromatase, clinicopathological features, and prognosis in different treatment groups were analyzed. Low AhRcyt levels (n=183) and positive intratumoral aromatase (n=69) were associated with estrogen receptor (ER)- status and more aggressive tumors. Genotypes were not associated with their respective protein levels. The functional AhR Arg554Lys GG genotype was associated with recurrence-free survival in switch-therapy (sequential tamoxifen/aromatase inhibitors (AI) or AI/tamoxifen) treated patients (HRadj 0.42; 95% CI 0.22-0.83). High AhRcyt levels were associated with longer recurrence-free survival during the first 10 years of follow-up among tamoxifen-only treated patients (HRadj 0.40; 95% CI 0.23-0.71) compared to low AhRcyt levels, whereas an almost inverse association was seen in patients with switch-therapy (P interaction=0.023). Intratumoral aromatase had little prognostic impact. These findings warrant confirmation in an independent cohort, preferably in a randomized clinical trial comparing different endocrine regimens. They might also guide the selection of breast cancer patients for clinical trials with selective AhR modulators.
Collapse
Affiliation(s)
- Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Emma Sandén
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Sofie Björner
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Alessandra Bressan
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Maria Ygland Rödström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Somayeh Khazaei
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Dean P. Edwards
- Department of Molecular & Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
- Department of Surgery, Kristianstad Hospital, Kristianstad, Sweden
| | - Signe Borgquist
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
6
|
Aryl Hydrocarbon Receptor Connects Inflammation to Breast Cancer. Int J Mol Sci 2020; 21:ijms21155264. [PMID: 32722276 PMCID: PMC7432832 DOI: 10.3390/ijms21155264] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR), an evolutionary conserved transcription factor, is a pleiotropic signal transductor. Thanks to its promiscuous ligand binding domain, during the evolution of eukaryotic cells its developmental functions were integrated with biosensor functions. Its activation by a multitude of endogenous and exogenous molecules stimulates its participation in several pathways, some of which are linked to inflammation and breast cancer (BC). Over time, the study of this malignancy has led to the identification of several therapeutic targets in cancer cells. An intense area of study is dedicated to BC phenotypes lacking adequate targets. In this context, due to its high constitutive activation in BC, AhR is currently gaining more and more attention. In this review, I have considered its interactions with: 1. the immune system, whose dysregulation is a renowned cancer hallmark; 2. interleukin 6 (IL6) which is a pivotal inflammatory marker and is closely correlated to breast cancer risk; 3. NF-kB, another evolutionary conserved transcription factor, which plays a key role in immunoregulatory functions, inflammatory response and breast carcinogenesis; 4. kynurenine, a tryptophan-derived ligand that activates and bridges AhR to chronic inflammation and breast carcinogenesis. Overall, the data here presented form an interesting framework where AhR is an interesting connector between inflammation and BC.
Collapse
|
7
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. Aryl-Hydrocarbon Receptor as a Potential Target for Anticancer Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Engin AB, Engin A, Gonul II. The effect of adipocyte-macrophage crosstalk in obesity-related breast cancer. J Mol Endocrinol 2019; 62:R201-R222. [PMID: 30620711 DOI: 10.1530/jme-18-0252] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Adipose tissue is the primary source of many pro-inflammatory cytokines in obesity. Macrophage numbers and pro-inflammatory gene expression are positively associated with adipocyte size. Free fatty acid and tumor necrosis factor-α involve in a vicious cycle between adipocytes and macrophages aggravating inflammatory changes. Thereby, M1 macrophages form a characteristic 'crown-like structure (CLS)' around necrotic adipocytes in obese adipose tissue. In obese women, CLSs of breast adipose tissue are responsible for both increase in local aromatase activity and aggressive behavior of breast cancer cells. Interlinked molecular mechanisms between adipocyte-macrophage-breast cancer cells in obesity involve seven consecutive processes: Excessive release of adipocyte- and macrophage-derived inflammatory cytokines, TSC1-TSC2 complex-mTOR crosstalk, insulin resistance, endoplasmic reticulum (ER) stress and excessive oxidative stress generation, uncoupled respiration and hypoxia, SIRT1 controversy, the increased levels of aromatase activity and estrogen production. Considering elevated risks of estrogen receptor (E2R)-positive postmenopausal breast cancer growth in obesity, adipocyte-macrophage crosstalk is important in the aforementioned issues. Increased mTORC1 signaling in obesity ensures the strong activation of oncogenic signaling in E2Rα-positive breast cancer cells. Since insulin and insulin-like growth factors have been identified as tumor promoters, hyperinsulinemia is an independent risk factor for poor prognosis in breast cancer despite peripheral insulin resistance. The unpredictable effects of adipocyte-derived leptin-estrogen-macrophage axis, and sirtuin 1 (SIRT1)-adipose-resident macrophage axis in obese postmenopausal patients with breast cancer are unresolved mechanistic gaps in the molecular links between the tumor growth and adipocytokines.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ipek Isik Gonul
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Cohen L, Jefferies A. Comprehensive Lifestyle Change: Harnessing Synergy to Improve Cancer Outcomes. J Natl Cancer Inst Monogr 2019; 2017:4617821. [PMID: 29140487 DOI: 10.1093/jncimonographs/lgx006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lorenzo Cohen
- The University of Texas MD Anderson Cancer Center, Houston, TX; Vital Matters, LLC, Houston, TX
| | - Alison Jefferies
- The University of Texas MD Anderson Cancer Center, Houston, TX; Vital Matters, LLC, Houston, TX
| |
Collapse
|
10
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. [Aryl-hydrocarbon receptor as a potential target for anticancer therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:397-415. [PMID: 30378556 DOI: 10.18097/pbmc20186405397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aryl-hydrocarbon receptor (Aryl Hydrocarbon Receptor, AHR) is a ligand-dependent transcription factor, whose functions are related to xenobiotic detoxification, response to inflammation, and maintenance of tissue homeostasis. Recent investigations suggest that AHR also plays an important role in the processes of carcinogenesis. Increased expression of AHR is observed in several types of tumors and tumor cell lines. In addition, it turned out that the composition of pharmaceutical drugs used in oncotherapy includes some ligands AHR. These facts allow us to consider an aryl-hydrocarbon receptor as a potential target for anticancer therapy, especially for the treatment of severe cancers whose treatment options are very limited or do not exist at all. In this review the examples of AHR ligands' effect on tumor cell cultures and on model mice lines with AHR-dependent response are discussed.
Collapse
Affiliation(s)
- J E Vorontsova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - R O Cherezov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - B A Kuzin
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - O B Simonova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Takagi K, Miki Y, Ishida T, Sasano H, Suzuki T. The interplay of endocrine therapy, steroid pathways and therapeutic resistance: Importance of androgen in breast carcinoma. Mol Cell Endocrinol 2018; 466:31-37. [PMID: 28918115 DOI: 10.1016/j.mce.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022]
Abstract
A great majority of breast carcinomas expresses estrogen receptor (ER) and estrogens have crucial roles in the progress of breast carcinomas. Endocrine therapy targeting ER and/or intratumoral estrogen production significantly improved clinical outcomes of the patients with ER-positive breast carcinomas. However, resistance to endocrine therapy is often observed and significant number of patients will recur after the treatment. In addition, treatment for the patients with triple-negative breast carcinomas (negative for all ER, progesterone receptor (PR) and HER2) are limited to cytotoxic chemotherapy and novel therapeutic targets need to be identified. In breast carcinoma tissues, not only ER but androgen receptor (AR) is frequently expressed, suggesting pivotal roles of androgens in the progress of breast carcinomas. Growing interest on androgen action as possible therapeutic target has been taken, but androgen action seems quite complicated in breast carcinomas and inconsistent findings has been also proposed. In this review, we will summarize recent studies regarding intratumoral androgen production and its regulation as well as distinct subset of breast carcinomas characterized by activated AR signaling and recent clinical trial targeting AR in the patients with either ER-positive and ER-negative breast carcinomas.
Collapse
Affiliation(s)
- Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Licznerska B, Szaefer H, Wierzchowski M, Mikstacka R, Papierska K, Baer-Dubowska W. Evaluation of the effect of the new methoxy-stilbenes on expression of receptors and enzymes involved in estrogen synthesis in cancer breast cells. Mol Cell Biochem 2017; 444:53-62. [PMID: 29189985 PMCID: PMC6002448 DOI: 10.1007/s11010-017-3230-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022]
Abstract
Our previous study showed that the new synthetic methoxy-stilbenes, 3,4,2'-trimethoxy-trans-stilbene (3MS), 3,4,2',4'-tetramethoxy-trans-stilbene (4MS), and 3,4,2',4',6'-pentamethoxy-trans-stilbene (5MS), modulate the constitutive expression of enzymes and receptors involved in estrogen metabolism in breast immortalized epithelial MCF10 cells. In this study, we evaluated the effect of 3MS, 4MS, and 5MS in comparison to resveratrol activity in MCF7 estrogen-dependent and MDA-MB-231 estrogen-independent breast cancer cell lines. 3MS similarly to resveratrol reduced the expression of estrogen receptor α in MCF7 cells. However, in these cells, 5MS reduced the most CYP19, the gene encoding aromatase, at mRNA transcript level. In contrast, in the MDA-MB-231 cells, the most efficient inhibitor of CYP19 expression was 3MS, reducing the level of its protein by ~ 25%. This stilbene also inhibited the aromatase activity in a recombinant protein system with IC50 value ~ 85 µM. Treatment with the methoxy-stilbenes reduced the level of estradiol in culture medium. The most significant reduction was exerted by 3MS. None of the tested stilbenes including resveratrol changed significantly the expression of AhR, although CYP1A1 protein level was slightly reduced in MDA-MB-231 cells, while CYP1B1 expression was increased in these cells as a result of treatment with 3MS, but only at the transcript level. Overall, these results show weak or moderate effect of the new methoxy-stilbenes on the expression of key proteins involved in estrogens metabolism in cancer breast cells. However, the reduced CYP19 expression and activity upon 3MS treatment in metastatic MDA-MB-231 cells require the further studies.
Collapse
Affiliation(s)
- Barbara Licznerska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznań, Poland
| | - Renata Mikstacka
- Department of Inorganic and Analytical Chemistry, Collegium Medicum, Bydgoszcz Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Papierska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
13
|
Miki Y, Hata S, Ono K, Suzuki T, Ito K, Kumamoto H, Sasano H. Roles of Aryl Hydrocarbon Receptor in Aromatase-Dependent Cell Proliferation in Human Osteoblasts. Int J Mol Sci 2017; 18:ijms18102159. [PMID: 29039776 PMCID: PMC5666840 DOI: 10.3390/ijms18102159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and its expression is influenced by environmental compounds, such as 3-methylcholanthrene (3-MC) and β-naphthoflavone (β-NF). AhR and its downstream genes, such as CYP1A1, are considered to play a pivotal role in xenobiotic responses. AhR signaling has also been proposed to mediate osteogenesis in experimental animals, but its details have remained unclear. Therefore, in this study, we examined the possible roles of AhR in human bone. Immunohistochemical analysis revealed that AhR was detected in both osteoblasts and osteoclasts. We then screened AhR-target genes using a microarray analysis in human osteoblastic hFOB cells. Results of microarray and subsequent PCR analysis did reveal that estrogen metabolizing and synthesizing enzymes, such as CYP1B1 and aromatase, were increased by 3-MC in hFOB and osteosarcoma cell line, MG-63. The subsequent antibody cytokine analysis also demonstrated that interleukin-1β and -6 expression was increased by 3-MC and β-NF in hFOB cells and these interleukins were well known to induce aromatase. We then examined the cell proliferation rate of hFOB and MG-63 cells co-treated with 3-MC and testosterone as an aromatase substrate. The status of cell proliferation in both hFOB and MG-63 cells was stimulated by 3-MC and testosterone treatment, which was also inhibited by an estrogen blocker, aromatase inhibitor, or AhR antagonist. These findings indicated that AhR could regulate estrogen synthesis and metabolism in bone tissues through cytokine/aromatase signaling.
Collapse
Affiliation(s)
- Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Miyagi 980-8575, Japan.
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
- Department of Oral Pathology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan.
| | - Shuko Hata
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Katsuhiko Ono
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Kiyoshi Ito
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Miyagi 980-8575, Japan.
| | - Hiroyuki Kumamoto
- Department of Oral Pathology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan.
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|