1
|
Tobaruela-Resola AL, Riezu-Boj JI, Milagro FI, Mogna-Pelaez P, Herrero JI, Elorz M, Benito-Boillos A, Tur JA, Martínez JA, Abete I, Zulet MÁ. Circulating microRNA panels in subjects with metabolic dysfunction-associated steatotic liver disease after following a 2-year dietary intervention. J Endocrinol Invest 2024:10.1007/s40618-024-02499-9. [PMID: 39549213 DOI: 10.1007/s40618-024-02499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) affects one-third of the global population. Despite its high prevalence, there is a lack of minimally non-invasive diagnostic methods to assess this condition. This study explores the potential of circulating microRNAs (miRNAs) as diagnostic biomarkers for MASLD after a 2-year nutritional intervention. METHODS Fifty-five subjects with steatosis (MASLD group) from the Fatty Liver in Obesity (FLiO) study (NCT03183193) were analyzed at baseline and after 6, 12 and 24 months. Participants were classified into two groups: those who still had steatosis after the intervention (unhealthy group) and those in whom steatosis had disappeared (healthy group). Hepatic status was evaluated through magnetic resonance imaging (MRI), ultrasonography, elastography and serum transaminases. Circulating miRNA levels were measured by RT-PCR. RESULTS The dietary intervention was able to modulate the expression of circulating miRNAs after 6, 12, and 24 months. Logistic regression analyses revealed that the most effective panels for diagnosing whether MASLD has disappeared after the nutritional intervention included miR15b-3p, miR126-5p and BMI (AUC 0.68) at 6 months, miR29b-3p, miR122-5p, miR151a-3p and BMI (AUC 0.85) at 12 months and miR21-5p, miR151a-3p and BMI at 24 months (AUC 0.85). CONCLUSIONS Circulating miRNAs were useful in predicting MASLD in subjects with overweight or obesity after following a weight-loss oriented nutritional intervention. These findings highlight the potential role of miRNAs in diagnosing MASLD and underscore the importance of precision nutrition in managing and determining MASLD. CLINICAL TRIAL REGISTRATION Trial registration number: NCT03183193 (www. CLINICALTRIALS gov).
Collapse
Affiliation(s)
- Ana Luz Tobaruela-Resola
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - José Ignacio Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Paola Mogna-Pelaez
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - José I Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029, Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, 07122, Palma, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Precision Nutrition and Cardiovascular Health Program, IMDEA Food, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Ángeles Zulet
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Lombardo M, Aiello G, Fratantonio D, Karav S, Baldelli S. Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition. Nutrients 2024; 16:3097. [PMID: 39339697 PMCID: PMC11435357 DOI: 10.3390/nu16183097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related muscle decline and other chronic diseases, such as sarcopenia. This review aims to provide an overview of the role of EVs in muscle function and to explore how nutritional and physical interventions can optimise their release and function. METHODS A literature review of studies examining the impact of exercise and nutritional interventions on MS-derived EVs was conducted. Major scientific databases, including PubMed, Scopus and Web of Science, were searched using keywords such as 'extracellular vesicles', 'muscle', 'exercise', 'nutrition' and 'sarcopenia'. The selected studies included randomised controlled trials (RCTs), clinical trials and cohort studies. Data from these studies were synthesised to identify key findings related to the release of EVs, their composition and their potential role as therapeutic targets. RESULTS Dietary patterns, specific foods and supplements were found to significantly modulate EV release and composition, affecting muscle health and metabolism. Exercise-induced changes in EV content were observed after both acute and chronic interventions, with a marked impact on miRNAs and proteins related to muscle growth and inflammation. Nutritional interventions, such as the Mediterranean diet and omega-3 fatty acids, have also shown the ability to alter EV profiles, suggesting their potential to improve cardiovascular health and reduce inflammation. CONCLUSIONS EVs are emerging as critical mediators of the beneficial effects of diet and exercise on muscle health. Both exercise and nutritional interventions can modulate the release and content of MS-derived EVs, offering promising avenues for the development of novel therapeutic strategies targeting sarcopenia and other muscle diseases. Future research should focus on large-scale RCT studies with standardised methodologies to better understand the role of EVs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University, S.S. 100 Km 18, 70100 Casamassima, Italy
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
3
|
Díaz CR, Hernández-Huerta MT, Mayoral LPC, Villegas MEA, Zenteno E, Cruz MM, Mayoral EPC, Del Socorro Pina Canseco M, Andrade GM, Castellanos MÁ, Matías Salvador JM, Cruz Parada E, Martínez Barras A, Cruz Fernández JN, Scott-Algara D, Pérez-Campos E. Non-Coding RNAs and Innate Immune Responses in Cancer. Biomedicines 2024; 12:2072. [PMID: 39335585 PMCID: PMC11429077 DOI: 10.3390/biomedicines12092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs), with a focus on cancer, innate immunity, and inflammation. We found that ncRNAs are closely related to innate immunity, epigenetics, chronic inflammation, and cancer and share properties such as inducibility, specificity, memory, and transfer. These similarities and interrelationships suggest that ncRNAs and modulators of trained immunity, together with the control of chronic inflammation, can be combined to develop novel therapeutic approaches for personalized cancer treatment. In conclusion, the close relationship between ncRNAs, the innate immune system, and inflammation highlights their importance in cancer pathways and their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - María Del Socorro Pina Canseco
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Gabriel Mayoral Andrade
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | | | - Eli Cruz Parada
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
| | | | - Jaydi Nora Cruz Fernández
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes and Direction of International Affairs, Institut Pasteur, 75015 Paris, France
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
- Laboratorio de Patología Clínica "Dr. Eduardo Pérez Ortega", Oaxaca 68000, Mexico
| |
Collapse
|
4
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
5
|
Rapps K, Marco A, Pe’er-Nissan H, Kisliouk T, Stemp G, Yadid G, Weller A, Meiri N. Exercise Rescues Obesogenic-Related Genes in the Female Hypothalamic Arcuate Nucleus: A Potential Role of miR-211 Modulation. Int J Mol Sci 2024; 25:7188. [PMID: 39000297 PMCID: PMC11241292 DOI: 10.3390/ijms25137188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a major public health concern that is associated with negative health outcomes. Exercise and dietary restriction are commonly recommended to prevent or combat obesity. This study investigates how voluntary exercise mitigates abnormal gene expression in the hypothalamic arcuate nucleus (ARC) of diet-induced obese (DIO) rats. Using a transcriptomic approach, novel genes in the ARC affected by voluntary wheel running were assessed alongside physiology, pharmacology, and bioinformatics analysis to evaluate the role of miR-211 in reversing obesity. Exercise curbed weight gain and fat mass, and restored ARC gene expression. High-fat diet (HFD) consumption can dysregulate satiety/hunger mechanisms in the ARC. Transcriptional clusters revealed that running altered gene expression patterns, including inflammation and cellular structure genes. To uncover regulatory mechanisms governing gene expression in DIO attenuation, we explored miR-211, which is implicated in systemic inflammation. Exercise ameliorated DIO overexpression of miR-211, demonstrating its pivotal role in regulating inflammation in the ARC. Further, in vivo central administration of miR-211-mimic affected the expression of immunity and cell cycle-related genes. By cross-referencing exercise-affected and miR-211-regulated genes, potential candidates for obesity reduction through exercise were identified. This research suggests that exercise may rescue obesity through gene expression changes mediated partially through miR-211.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; (K.R.); (H.P.-N.); (G.Y.)
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Hilla Pe’er-Nissan
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; (K.R.); (H.P.-N.); (G.Y.)
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Gabrielle Stemp
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
| | - Gal Yadid
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; (K.R.); (H.P.-N.); (G.Y.)
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
- Department of Psychology, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| |
Collapse
|
6
|
Afzal M, Greco F, Quinzi F, Scionti F, Maurotti S, Montalcini T, Mancini A, Buono P, Emerenziani GP. The Effect of Physical Activity/Exercise on miRNA Expression and Function in Non-Communicable Diseases-A Systematic Review. Int J Mol Sci 2024; 25:6813. [PMID: 38999923 PMCID: PMC11240922 DOI: 10.3390/ijms25136813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Exercise may differently affect the expression of key molecular markers, including skeletal muscle and circulating miRNAs, involved in cellular and metabolic pathways' regulation in healthy individuals and in patients suffering from non-communicable diseases (NCDs). Epigenetic factors are emerging as potential therapeutic biomarkers in the prognosis and treatment of NCDs and important epigenetic factors, miRNAs, play a crucial role in cellular pathways. This systematic review aims to underline the potential link between changes in miRNA expression after different types of physical activity/exercise in some populations affected by NCDs. In June 2023, we systematically investigated the following databases: PubMed, MEDLINE, Scopus, and Web of Science, on the basis of our previously established research questions and following the PRISMA guidelines. The risk of bias and quality assessment were, respectively, covered by ROB2 and the Newcastle Ottawa scale. Of the 1047 records extracted from the initial search, only 29 studies were found to be eligible. In these studies, the authors discuss the association between exercise-modulated miRNAs and NCDs. The NCDs included in the review are cancer, cardiovascular diseases (CVDs), chronic obstructive pulmonary disease (COPD), and type 2 diabetes mellitus (T2DM). We evidenced that miR-146, miR-181, miR-133, miR-21, and miRNA-1 are the most reported miRNAs that are modulated by exercise. Their expression is associated with an improvement in health markers and they may be a potential target in terms of the development of future therapeutic tools.
Collapse
Affiliation(s)
- Moomna Afzal
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Greco
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy
| | - Federico Quinzi
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Grecia, 88100 Catanzaro, Italy
| | - Annamaria Mancini
- Department of Medicine, Movement Sciences and Wellbeing, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.r.l, 80131 Naples, Italy
| | - Pasqualina Buono
- Department of Medicine, Movement Sciences and Wellbeing, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.r.l, 80131 Naples, Italy
| | - Gian Pietro Emerenziani
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Ramos-Lopez O. Epigenetic Biomarkers of Metabolic Responses to Lifestyle Interventions. Nutrients 2023; 15:4251. [PMID: 37836535 PMCID: PMC10574040 DOI: 10.3390/nu15194251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Studies have examined the possible utility of epigenetic phenomena (DNA methylation changes, covalent histone modifications, and miRNA expression patterns) in predicting individual responses to different lifestyle programs. Nonetheless, most available evidence is focused on identifying epigenetic marks eventually associated with body composition and adiposity outcomes, whereas their roles in metabolic endings remain less explored. This document comprehensively reviewed the evidence regarding the use of epigenetic signatures as putative biomarkers of metabolic outcomes (glycemic, lipid, blood pressure, and inflammatory/oxidative stress features) in response to different lifestyle interventions in humans. Although more investigation is still necessary in order to translate this knowledge in clinical practice, these scientific insights are contributing to the design of advanced strategies for the precise management of cardiometabolic risk, gaining understanding on metabolic heterogeneity, allowing for the prediction of metabolic outcomes, and facilitating the design of epigenome-based nutritional strategies for a more customized approach for metabolic alterations treatment under the scope of precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
8
|
Veie CHB, Nielsen IMT, Frisk NLS, Dalgaard LT. Extracellular microRNAs in Relation to Weight Loss-A Systematic Review and Meta-Analysis. Noncoding RNA 2023; 9:53. [PMID: 37736899 PMCID: PMC10514795 DOI: 10.3390/ncrna9050053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Obesity is an important risk factor for cardiovascular disease and type 2 diabetes mellitus. Even a modest weight loss of 5-15% improves metabolic health, but circulating markers to indicate weight loss efficiency are lacking. MicroRNAs, small non-coding post-transcriptional regulators of gene expression, are secreted from tissues into the circulation and may be potential biomarkers for metabolic health. However, it is not known which specific microRNA species are reproducibly changed in levels by weight loss. In this study, we performed a systematic review and meta-analysis to investigate the microRNAs associated with weight loss by comparing baseline to follow-up levels following intervention-driven weight loss. This systematic review was performed according to the PRISMA guidelines with searches in PubMed and SCOPUS. The primary search resulted in a total of 697 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 27 full-text articles, which were evaluated for quality and the risk of bias. We performed systematic data extraction, whereafter the relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: miR-26a, miR-126, and miR-223 were overall significantly increased following weight loss, while miR-142 was significantly decreased after weight loss. miR-221, miR-140, miR-122, and miR-146 were not significantly changed by intervention-driven weight loss. These results indicate that few miRNAs are significantly changed during weight loss.
Collapse
Affiliation(s)
| | | | | | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark (N.L.S.F.)
| |
Collapse
|
9
|
De Summa S, Traversa D, Daniele A, Palumbo O, Carella M, Stallone R, Tufaro A, Oliverio A, Bruno E, Digennaro M, Danza K, Pasanisi P, Tommasi S. miRNA deregulation and relationship with metabolic parameters after Mediterranean dietary intervention in BRCA-mutated women. Front Oncol 2023; 13:1147190. [PMID: 37081976 PMCID: PMC10110888 DOI: 10.3389/fonc.2023.1147190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundBreast cancer onset is determined by a genetics-environment interaction. BRCA1/2 gene alterations are often genetically shared in familial context, but also food intake and hormonal assessment seem to influence the lifetime risk of developing this neoplasia. We previously showed the relationship between a six-months Mediterranean dietary intervention and insulin, glucose and estradiol levels in BRCA1/2 carrier subjects. The aim of the present study was to evidence the eventual influence of this dietary intervention on the relationship between circulating miRNA expression and metabolic parameters in presence of BRCA1/2 loss of function variants.MethodsPlasma samples of BRCA-women have been collected at the baseline and at the end of the dietary intervention. Moreover, subjects have been randomized in two groups: dietary intervention and placebo. miRNA profiling and subsequent ddPCR validation have been performed in all the subjects at both time points.ResultsddPCR analysis confirmed that five (miR-185-5p, miR-498, miR-3910, miR-4423 and miR-4445) of seven miRNAs, deregulated in the training cohort, were significantly up-regulated in subjects after dietary intervention compared with the baseline measurement. Interestingly, when we focused on variation of miRNA levels in the two timepoints, it could be observed that miR-4423, miR-4445 and miR-3910 expressions are positively correlated with variation in vitaminD level; whilst miR-185-5p difference in expression is related to HDL cholesterol variation.ConclusionsWe highlighted the synergistic effect of a healthy lifestyle and epigenetic regulation in BC through the modulation of specific miRNAs. Different miRNAs have been reported involved in the tumor onset acting as tumor suppressors by targeting tumor-associated genes that are often downregulated.
Collapse
Affiliation(s)
- Simona De Summa
- Pharmacological and Molecular Diagnostics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Debora Traversa
- Pharmacological and Molecular Diagnostics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Antonella Daniele
- Clinical Pathology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Raffaella Stallone
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Tufaro
- Biobank, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Andreina Oliverio
- Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Eleonora Bruno
- Department of Experimental Oncology IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Digennaro
- Heredo-Familiar Cancer Clinic, IRCCS, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Katia Danza
- Clinical Pathology Unit, “S. S. Annunziata” Hospital, Taranto, Italy
| | - Patrizia Pasanisi
- Department of Experimental Oncology IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Stefania Tommasi
- Pharmacological and Molecular Diagnostics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
- *Correspondence: Stefania Tommasi,
| |
Collapse
|
10
|
Siqueira IR, Batabyal RA, Freishtat R, Cechinel LR. Potential involvement of circulating extracellular vesicles and particles on exercise effects in malignancies. Front Endocrinol (Lausanne) 2023; 14:1121390. [PMID: 36936170 PMCID: PMC10020195 DOI: 10.3389/fendo.2023.1121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Physical activity and exercise have been widely related to prevention, treatment, and control for several non-communicable diseases. In this context, there are innumerous pre-clinical and clinical evidence indicating the potential role of exercise, beyond cancer prevention and survival, improved quality of life, including on psychological components, bone health and cachexia, from cancer survivors is described as well. This mini-review raises the potential role of circulating extracellular and particles vesicles (EVPs) cargo, as exerkines, conducting several positive effects on adjacent and/or distant tissues such as tumor, immune, bone and muscle cells. We highlighted new perspectives about microRNAs into EVPs changes induced by exercise and its benefits on malignancies, since microRNAs can be implicated with intricated physiopathological processes. Potential microRNAs into EVPs were pointed out here as players spreading beneficial effects of exercise, such as miR-150-5p, miR-124, miR-486, and miRNA-320a, which have previous findings on involvement with clinical outcomes and as well as tumor microenvironment, regulating intercellular communication and tumor growth. For example, high-intensity interval aerobic exercise program seems to increase miR-150 contents in circulating EVPs obtained from women with normal weight or overweight. In accordance circulating EVPs miR-150-5p content is correlated with prognosis colorectal cancer, and ectopic expression of miR-150 may reduce cell proliferation, invasion and metastasis. Beyond the involvement of bioactive miRNAs into circulating EVPs and their pathways related to clinical and preclinical findings, this mini review intends to support further studies on EVPs cargo and exercise effects in oncology.
Collapse
Affiliation(s)
- Ionara Rodrigues Siqueira
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Ionara Rodrigues Siqueira,
| | - Rachael A. Batabyal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Division of Emergency Medicine, Children’s National Hospital, Washington, DC, United States
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Robert Freishtat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
| | - Laura Reck Cechinel
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
| |
Collapse
|
11
|
Orlandella FM, De Stefano AE, Braile M, Luciano N, Mancini A, Franzese M, Buono P, Salvatore G. Unveiling the miRNAs responsive to physical activity/exercise training in cancer: A systematic review. Crit Rev Oncol Hematol 2022; 180:103844. [DOI: 10.1016/j.critrevonc.2022.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
12
|
Telles GD, Conceição MS, Vechin FC, Libardi CA, Mori MADS, Derchain S, Ugrinowitsch C. Exercise-Induced Circulating microRNAs: Potential Key Factors in the Control of Breast Cancer. Front Physiol 2022; 13:800094. [PMID: 35784874 PMCID: PMC9244175 DOI: 10.3389/fphys.2022.800094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Losses in skeletal muscle mass, strength, and metabolic function are harmful in the pathophysiology of serious diseases, including breast cancer. Physical exercise training is an effective non-pharmacological strategy to improve health and quality of life in patients with breast cancer, mainly through positive effects on skeletal muscle mass, strength, and metabolic function. Emerging evidence has also highlighted the potential of exercise-induced crosstalk between skeletal muscle and cancer cells as one of the mechanisms controlling breast cancer progression. This intercellular communication seems to be mediated by a group of skeletal muscle molecules released in the bloodstream known as myokines. Among the myokines, exercise-induced circulating microRNAs (c-miRNAs) are deemed to mediate the antitumoral effects produced by exercise training through the control of key cellular processes, such as proliferation, metabolism, and signal transduction. However, there are still many open questions regarding the molecular basis of the exercise-induced effects on c-miRNA on human breast cancer cells. Here, we present evidence regarding the effect of exercise training on c-miRNA expression in breast cancer, along with the current gaps in the literature and future perspectives.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Miguel Soares Conceição
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Marcelo Alves da Silva Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), Campinas, Brazil
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
- *Correspondence: Carlos Ugrinowitsch,
| |
Collapse
|
13
|
Papadopetraki A, Maridaki M, Zagouri F, Dimopoulos MA, Koutsilieris M, Philippou A. Physical Exercise Restrains Cancer Progression through Muscle-Derived Factors. Cancers (Basel) 2022; 14:cancers14081892. [PMID: 35454797 PMCID: PMC9024747 DOI: 10.3390/cancers14081892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The benefits of physical exercise against cancer onset and progression, as well as the adverse effects of physical inactivity have changed the way that we utilize exercise for cancer patients. Nevertheless, although guidelines of various scientific societies and organizations propose exercise as a complementary intervention during cancer therapies, the exact cellular and molecular mechanisms by which exercise acts against cancer have not yet been elucidated. In the present review, we analyze the factors which either are secreted from skeletal muscle or are regulated by exercise and can restrain cancer evolution. We also describe the exercise-induced factors that counteract severe side effects of cancer treatment, as well as the ways that muscle-derived factors are delivered to the target cells. Abstract A growing body of in vitro and in vivo studies suggests that physical activity offers important benefits against cancer, in terms of both prevention and treatment. However, the exact mechanisms implicated in the anticancer effects of exercise remain to be further elucidated. Muscle-secreted factors in response to contraction have been proposed to mediate the physical exercise-induced beneficial effects and be responsible for the inter-tissue communications. Specifically, myokines and microRNAs (miRNAs) constitute the most studied components of the skeletal muscle secretome that appear to affect the malignancy, either directly by possessing antioncogenic properties, or indirectly by mobilizing the antitumor immune responses. Moreover, some of these factors are capable of mitigating serious, disease-associated adverse effects that deteriorate patients’ quality of life and prognosis. The present review summarizes the myokines and miRNAs that may have potent anticancer properties and the expression of which is induced by physical exercise, while the mechanisms of secretion and intercellular transportation of these factors are also discussed.
Collapse
Affiliation(s)
- Argyro Papadopetraki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece;
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (F.Z.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (F.Z.); (M.-A.D.)
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
- Correspondence: ; Tel./Fax: +30-210-7462690
| |
Collapse
|
14
|
Cava E, Marzullo P, Farinelli D, Gennari A, Saggia C, Riso S, Prodam F. Breast Cancer Diet "BCD": A Review of Healthy Dietary Patterns to Prevent Breast Cancer Recurrence and Reduce Mortality. Nutrients 2022; 14:nu14030476. [PMID: 35276833 PMCID: PMC8839871 DOI: 10.3390/nu14030476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Breast cancer (BC) represents the most common cancer in women, while overweight and obesity are the second preventable cause of cancer. Weight gain and fat accumulation are common after BC diagnosis; moreover, weight gain during the treatment decreases the survival rate and increases the risk of recurrence in breast cancer survivors (BCS). To reduce the risk of second primary cancer or BC recurrence, and all-cause mortality in BCS, multiple interventions have been investigated to obtain reduction in weight, BMI and/or waist circumference. The aim of this narrative review is to analyze evidence on BCS for their risk of recurrence or mortality related to increased weight or fat deposition, and the effects of interventions with healthy dietary patterns to achieve a proper weight and to reduce fat-related risk. The primary focus was on dietary patterns instead of single nutrients and supplements, as the purpose was to investigate on secondary prevention in women free from disease at the end of their cancer treatment. In addition, BC relation with insulin resistance, dietary carbohydrate, and glycemic index/glycemic load is discussed. In conclusion, obesity and overweight, low rates of physical activity, and hormone receptor-status are associated with poorer BC-treatment outcomes. To date, there is a lack of evidence to suggest which dietary pattern is the best approach for weight management in BCS. In the future, multimodal lifestyle interventions with dietary, physical activity and psychological support after BC diagnosis should be studied with the aim of reducing the risk of BC recurrence or mortality.
Collapse
Affiliation(s)
- Edda Cava
- Unit of Dietetic and Clinical Nutrition, University Hospital “Maggiore della Carità”, Corso Mazzini 18, 28100 Novara, Italy; (D.F.); (S.R.)
- Correspondence: ; Tel.: +39-0321-373-3275 (ext. 2108)
| | - Paolo Marzullo
- SCDU Endocrinology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (F.P.)
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy
| | - Deborah Farinelli
- Unit of Dietetic and Clinical Nutrition, University Hospital “Maggiore della Carità”, Corso Mazzini 18, 28100 Novara, Italy; (D.F.); (S.R.)
| | - Alessandra Gennari
- Division of Oncology, University Hospital “Maggiore della Carità”, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (A.G.); (C.S.)
| | - Chiara Saggia
- Division of Oncology, University Hospital “Maggiore della Carità”, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (A.G.); (C.S.)
| | - Sergio Riso
- Unit of Dietetic and Clinical Nutrition, University Hospital “Maggiore della Carità”, Corso Mazzini 18, 28100 Novara, Italy; (D.F.); (S.R.)
| | - Flavia Prodam
- SCDU Endocrinology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (F.P.)
- Department of Health Sciences, SCDU Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
15
|
Hong BS. Regulation of the Effect of Physical Activity Through MicroRNAs in Breast Cancer. Int J Sports Med 2021; 43:455-465. [PMID: 34872116 DOI: 10.1055/a-1678-7147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity and exercise can induce beneficial molecular and biological regulations that have been associated with an incidence of various diseases, including breast cancer. Recent studies demonstrated that the potential links between physical activity-induced circulating microRNAs (miRNAs) and cancer risk and progression. Here, we investigated whether altered miRNAs by exercise could influence breast cancer progression. After primary searching in PubMed and reviewing the full-text papers, candidate miRNAs altered by exercise in breast cancer were identified. Analysis of expression profiles and clinical outcomes of altered miRNAs using The Cancer Genome Atlas datasets showed altered miRNAs expressions were significantly associated with the patient's prognosis, whereas prognostic values of each miRNA varied in different stages and subtypes. In addition, altered miRNAs profiles regulated various target genes and key signaling pathways in tumorigenesis, including pathways in cancer and the PI3K-Akt signaling pathway; however, miRNAs regulated the expression of target genes differently according to tumor stages and subtypes. These results indicate that circulating miRNAs are promising noninvasive stable biomarkers for early detection, diagnosis, prognosis, and monitoring the response to clinical therapies of breast cancer. Moreover, stages and subtype-stratified approaches for breast cancer progression would be needed to evaluate the prognostic value of miRNAs for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bok Sil Hong
- Cheju Halla University, Life Science Research Center, Department of Nursing, Jeju, Korea (the Republic of)
| |
Collapse
|
16
|
Tommasi C, Pellegrino B, Boggiani D, Sikokis A, Michiara M, Uliana V, Bortesi B, Bonatti F, Mozzoni P, Pinelli S, Squadrilli A, Viani MV, Cassi D, Maglietta G, Meleti M, Musolino A. Biological Role and Clinical Implications of microRNAs in BRCA Mutation Carriers. Front Oncol 2021; 11:700853. [PMID: 34552867 PMCID: PMC8450578 DOI: 10.3389/fonc.2021.700853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
Women with pathogenic germline mutations in BRCA1 and BRCA2 genes have an increased risk to develop breast and ovarian cancer. There is, however, a high interpersonal variability in the modality and timing of tumor onset in those subjects, thus suggesting a potential role of other individual’s genetic, epigenetic, and environmental risk factors in modulating the penetrance of BRCA mutations. MicroRNAs (miRNAs) are small noncoding RNAs that can modulate the expression of several genes involved in cancer initiation and progression. MiRNAs are dysregulated at all stages of breast cancer and although they are accessible and evaluable, a standardized method for miRNA assessment is needed to ensure comparable data analysis and accuracy of results. The aim of this review was to highlight the role of miRNAs as potential biological markers for BRCA mutation carriers. In particular, biological and clinical implications of a link between lifestyle and nutritional modifiable factors, miRNA expression and germline BRCA1 and BRCA2 mutations are discussed with the knowledge of the best available scientific evidence.
Collapse
Affiliation(s)
- Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Daniela Boggiani
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Angelica Sikokis
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Maria Michiara
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Beatrice Bortesi
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| | - Francesco Bonatti
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Anna Squadrilli
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy
| | - Maria Vittoria Viani
- Dental School, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diana Cassi
- Unit of Dentistry and Oral-Maxillo-Facial Surgery, Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Maglietta
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy.,Research and Innovation Unit, University Hospital of Parma, Parma, Italy
| | - Marco Meleti
- Dental School, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy.,GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), Parma, Italy
| |
Collapse
|
17
|
Zhao C, Hu W, Xu Y, Wang D, Wang Y, Lv W, Xiong M, Yi Y, Wang H, Zhang Q, Wu Y. Current Landscape: The Mechanism and Therapeutic Impact of Obesity for Breast Cancer. Front Oncol 2021; 11:704893. [PMID: 34350120 PMCID: PMC8326839 DOI: 10.3389/fonc.2021.704893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Obesity is defined as a chronic disease induced by an imbalance of energy homeostasis. Obesity is a widespread health problem with increasing prevalence worldwide. Breast cancer (BC) has already been the most common cancer and one of the leading causes of cancer death in women worldwide. Nowadays, the impact of the rising prevalence of obesity has been recognized as a nonnegligible issue for BC development, outcome, and management. Adipokines, insulin and insulin-like growth factor, sex hormone and the chronic inflammation state play critical roles in the vicious crosstalk between obesity and BC. Furthermore, obesity can affect the efficacy and side effects of multiple therapies such as surgery, radiotherapy, chemotherapy, endocrine therapy, immunotherapy and weight management of BC. In this review, we focus on the current landscape of the mechanisms of obesity in fueling BC and the impact of obesity on diverse therapeutic interventions. An in-depth exploration of the underlying mechanisms linking obesity and BC will improve the efficiency of the existing treatments and even provide novel treatment strategies for BC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiping Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Sheean P, Matthews L, Visotcky A, Banerjee A, Moosreiner A, Kelley K, Chitambar CR, Papanek PE, Stolley M. Every Day Counts: a randomized pilot lifestyle intervention for women with metastatic breast cancer. Breast Cancer Res Treat 2021; 187:729-741. [PMID: 33742324 DOI: 10.1007/s10549-021-06163-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To explore the feasibility, adherence, safety and potential efficacy of Every Day Counts; a randomized pilot trial designed for women with metastatic breast cancer (MBC) framed by the American Cancer Society nutrition and physical activity (PA) guidelines METHODS: Women with clinically stable MBC were recruited to complete an interview, dual energy X-ray absorptiometry imaging and phlebotomy at baseline and post-intervention. Multidimensional quality of life, symptom burden, lifestyle behaviors (nutrition and PA) and biomarkers of prognosis were procured and quantified. Women were randomized to the immediate intervention or a waitlist control arm. The 12-week intervention included a curriculum binder, lifestyle coaching (in-person and telephone-based sessions) and intervention support (activity monitor, text messaging, cooking classes.) Women in the waitlist control were provided monthly text messaging. RESULTS Forty women were recruited within 9 months (feasibility). Women in the immediate intervention attended 86% of all 12 weekly coaching sessions (adherence) and showed significant improvements in general QOL (p = 0.001), and QOL related to breast cancer (p = 0.001), endocrine symptoms (p = 0.002) and fatigue (p = 0.037), whereas the waitlist control did not (all p values ≥ 0.05) (efficacy). PA significantly increased for women in the intervention compared to control (p < 0.0001), while dietary changes were less evident across groups due to high baseline adherence. No significant changes in biomarkers or lean mass were noted, yet visceral adipose tissue declined (p = 0.001). No intervention-related injuries were reported (safety). Qualitative feedback strongly supports the desire for a longer intervention with additional support. CONCLUSIONS Lifestyle interventions are of interest, safe and potentially beneficial for women with MBC. A larger trial is warranted.
Collapse
Affiliation(s)
- Patricia Sheean
- Loyola University Chicago, 2160 South First Avenue, Building 115, Room 344, Maywood, IL, 60153, USA.
| | - Lauren Matthews
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Alexis Visotcky
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, 8701 Watertown Plank Rd., Wauwatosa, WI, 53226, USA
| | - Anjishnu Banerjee
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, 8701 Watertown Plank Rd., Wauwatosa, WI, 53226, USA
| | - Andrea Moosreiner
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | | | - Christopher R Chitambar
- Medical College of Wisconsin and Froedtert Clincial Cancer Center, 9200 W. Wisconsin Ave, Milwaukee, WI, 53226, USA
| | - Paula E Papanek
- Department of Physical Therapy, Marquette University, 604 N. 16th St., Milwaukee, WI, 53233, USA
| | - Melinda Stolley
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
19
|
Circulating miRNAs as early indicators of diet and physical activity response in women with metastatic breast cancer. Future Sci OA 2021; 7:FSO694. [PMID: 33815828 PMCID: PMC8015665 DOI: 10.2144/fsoa-2020-0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatments for metastatic breast cancer (MBC) improve survival but often impose prolonged symptom burden. We performed molecular characterization of 84 miRNAs in the circulating serum of women with MBC to explore possible early indicators of intervention response. Expression levels of miR-10a-5p and miR-211-5p were downregulated in nonresponders, but upregulated in responders (miR-10a-5p: 0.40-fold and eightfold; miR 211-5p: 0.47-fold and fourfold). miR-205-5p expression was upregulated in both nonresponders and responders, but to a greater extent in responders (1.8-fold and sixfold). Additionally, levels of miR-10a-5p were negatively correlated with expression levels of IL-6 (r = -0.412). Exploration of these pathways may reveal mechanisms of action in lifestyle interventions aimed at improving quality of life and impacting disease progression for women with MBC. As treatment for women with metastatic breast cancer improves survival rates, interventions are needed that relieve symptom burden. We examined the serum of women with metastatic breast cancer who participated in a lifestyle intervention that improved diet and increased physical activity. Three miRNAs were discovered that may serve as early indicators of the ability of lifestyle interventions to improve quality of life and impact disease progression. Three miRNAs may predict how women with metastatic breast cancer respond to lifestyle interventions.
Collapse
|
20
|
Falzone L, Grimaldi M, Celentano E, Augustin LSA, Libra M. Identification of Modulated MicroRNAs Associated with Breast Cancer, Diet, and Physical Activity. Cancers (Basel) 2020; 12:cancers12092555. [PMID: 32911851 PMCID: PMC7564431 DOI: 10.3390/cancers12092555] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Healthy diet and physical activity are able to induce beneficial molecular modifications that have been associated with a lower risk of breast cancer (BC) incidence and a better prognosis for BC patients. Although the beneficial effects of healthy lifestyle have been described, the beneficial epigenetic modifications induced by dietary and exercise intervention in BC patients have not been elucidated yet. On these bases, the aim of the present study was to computationally identify microRNAs (miRNAs) strictly associated with BC progression and with dietary and exercise interventions. Through several computational approaches, a set of miRNAs modulated by diet and exercise and useful as diagnostic and prognostic biomarkers for BC was identified. The results obtained represent the starting point for further validation analyses performed on BC patients undergoing lifestyle interventions to propose the miRNAs here identified as novel biomarkers for BC management. Abstract Background: Several studies have shown that healthy lifestyles prevent the risk of breast cancer (BC) and are associated with better prognosis. It was hypothesized that lifestyle strategies induce microRNA (miRNA) modulation that, in turn, may lead to important epigenetic modifications. The identification of miRNAs associated with BC, diet, and physical activity may give further insights into the role played by lifestyle interventions and their efficacy for BC patients. To predict which miRNAs may be modulated by diet and physical activity in BC patients, the analyses of different miRNA expression datasets were performed. Methods: The GEO DataSets database was used to select miRNA expression datasets related to BC patients, dietary interventions, and physical exercise. Further bioinformatic approaches were used to establish the value of selected miRNAs in BC development and prognosis. Results: The analysis of datasets allowed the selection of modulated miRNAs associated with BC development, diet, and physical exercise. Seven miRNAs were also associated with the overall survival of BC patients. Conclusions: The identified miRNAs may play a role in the development of BC and may have a prognostic value in patients treated with integrative interventions including diet and physical activity. Validation of such modulated miRNAs on BC patients undergoing lifestyle strategies will be mandatory.
Collapse
Affiliation(s)
- Luca Falzone
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| | - Maria Grimaldi
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Egidio Celentano
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Livia S. A. Augustin
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| |
Collapse
|
21
|
de Mendonça M, Rocha KC, de Sousa É, Pereira BMV, Oyama LM, Rodrigues AC. Aerobic exercise training regulates serum extracellular vesicle miRNAs linked to obesity to promote their beneficial effects in mice. Am J Physiol Endocrinol Metab 2020; 319:E579-E591. [PMID: 32744099 DOI: 10.1152/ajpendo.00172.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is a growing body of evidence that extracellular vesicles (EVs) and their cargo of RNA, DNA, and protein are released in the circulation with exercise and might mediate interorgan communication. C57BL6/J male mice were subjected to diet-induced obesity and aerobic training on a treadmill for 8 wk. The effect of aerobic training was evaluated in the liver, muscle, kidney, and white/brown adipose tissue. To provide new mechanistic insight, we profiled miRNA from serum EVs of obese and obese trained mice. We demonstrate that aerobic training changes the circulating EV miRNA profile of obese mice, including decreases in miR-122, miR-192, and miR-22 levels. Circulating miRNA levels were associated with miRNA levels in mouse liver white adipose tissue (WAT). In WAT, aerobically trained obese mice showed reduced adipocyte hypertrophy and increased the number of smaller adipocytes and the expression of Cebpa, Pparg, Fabp4 (adipogenesis markers), and ATP-citrate lyase enzyme activity. Importantly, miR-22 levels negatively correlated with the expression of adipogenesis and insulin sensitivity markers. In the liver, aerobic training reverted obesity-induced steatohepatitis, and steatosis score and Pparg expression were negatively correlated with miR-122 levels. The prometabolic effects of aerobic exercise in obesity possibly involve EV miRNAs, which might be involved in communication between liver and WAT. Our data provide significant evidence demonstrating that aerobic training exercise-induced EVs mediate the effect of exercise on adipose tissue metabolism.
Collapse
Affiliation(s)
- Mariana de Mendonça
- Departamento de Farmacologia, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brasil
| | - Karina C Rocha
- Departamento de Farmacologia, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brasil
| | - Érica de Sousa
- Departamento de Farmacologia, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brasil
| | - Beatriz M V Pereira
- Departamento de Farmacologia, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brasil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Alice C Rodrigues
- Departamento de Farmacologia, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brasil
| |
Collapse
|
22
|
Shay DA, Welly RJ, Givan SA, Bivens N, Kanaley J, Marshall BL, Lubahn DB, Rosenfeld CS, Vieira-Potter VJ. Changes in nucleus accumbens gene expression accompany sex-specific suppression of spontaneous physical activity in aromatase knockout mice. Horm Behav 2020; 121:104719. [PMID: 32081742 PMCID: PMC7387966 DOI: 10.1016/j.yhbeh.2020.104719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/29/2022]
Abstract
Aromatase catalyzes conversion of testosterone to estradiol and is expressed in a variety of tissues, including the brain. Suppression of aromatase adversely affects metabolism and physical activity behavior, but mechanisms remain uncertain. The hypothesis tested herein was that whole body aromatase deletion would cause gene expression changes in the nucleus accumbens (NAc), a brain regulating motivated behaviors such as physical activity, which is suppressed with loss of estradiol. Metabolic and behavioral assessments were performed in male and female wild-type (WT) and aromatase knockout (ArKO) mice. NAc-specific differentially expressed genes (DEGs) were identified with RNAseq, and associations between the measured phenotypic traits were determined. Female ArKO mice had greater percent body fat, reduced spontaneous physical activity (SPA), consumed less energy, and had lower relative resting energy expenditure (REE) than WT females. Such differences were not observed in ArKO males. However, in both sexes, a top DEG was Pts, a gene encoding an enzyme necessary for catecholamine (e.g., dopamine) biosynthesis. In comparing male and female WT mice, top DEGs were related to sexual development/fertility, immune regulation, obesity, dopamine signaling, and circadian regulation. SPA correlated strongly with Per3, a gene regulating circadian function, thermoregulation, and metabolism (r = -0.64, P = .002), which also correlated with adiposity (r = 0.54, P = .01). In conclusion, aromatase ablation leads to gene expression changes in NAc, which may in turn result in reduced SPA and related metabolic abnormalities. These findings may have significance to post-menopausal women and those treated with an aromatase inhibitor.
Collapse
Affiliation(s)
- Dusti A Shay
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, MO, USA
| | - Rebecca J Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, MO, USA
| | - Scott A Givan
- Informatics Research Core Facility, University of Missouri, Columbia 65211, MO, USA
| | - Nathan Bivens
- DNA Core Facility, University of Missouri, Columbia 65211, MO, USA
| | - Jill Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, MO, USA
| | - Brittney L Marshall
- Bond Life Sciences Center, University of Missouri, Columbia 65211, MO, USA; Biomedical Sciences, University of Missouri, Columbia 65211, MO, USA
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Department of Child Health, University of Missouri, Columbia, MO 65211, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia 65211, MO, USA; Biomedical Sciences, University of Missouri, Columbia 65211, MO, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia 65211, MO, USA; MU Informatics Institute, University of Missouri, Columbia 65211, MO, USA
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, MO, USA.
| |
Collapse
|
23
|
Lorente-Cebrián S, Herrera K, I. Milagro F, Sánchez J, de la Garza AL, Castro H. miRNAs and Novel Food Compounds Related to the Browning Process. Int J Mol Sci 2019; 20:E5998. [PMID: 31795191 PMCID: PMC6928892 DOI: 10.3390/ijms20235998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Obesity prevalence is rapidly increasing worldwide. With the discovery of brown adipose tissue (BAT) in adult humans, BAT activation has emerged as a potential strategy for increasing energy expenditure. Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recognized to be present in certain kinds of white adipose tissue (WAT) depots. It has been suggested that WAT can undergo the process of browning in response to stimuli that induce and enhance the expression of thermogenesis: a metabolic feature typically associated with BAT. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in a variety of tissues, including WAT and BAT. Likewise, it was shown that several food compounds could influence miRNAs associated with browning, thus, potentially contributing to the management of excessive adipose tissue accumulation (obesity) through specific nutritional and dietetic approaches. Therefore, this has created significant excitement towards the development of a promising dietary strategy to promote browning/beiging in WAT to potentially contribute to combat the growing epidemic of obesity. For this reason, we summarize the current knowledge about miRNAs and food compounds that could be applied in promoting adipose browning, as well as the cellular mechanisms involved.
Collapse
Affiliation(s)
- Silvia Lorente-Cebrián
- Department of Nutrition, Food Science and Physiology/Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (S.L.-C.)
- Navarra Institute for Health Research, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Katya Herrera
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (S.L.-C.)
- Navarra Institute for Health Research, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07020 Palma, Spain
| | - Ana Laura de la Garza
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| | - Heriberto Castro
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| |
Collapse
|
24
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Nguyen TT, Thanh VV, Quang TL, Minh LB, Pham VH, Ngoc VTN, Kushekhar K, Chu-Dinh T. The Effects of Adipocytes on the Regulation of Breast Cancer in the Tumor Microenvironment: An Update. Cells 2019; 8:E857. [PMID: 31398937 PMCID: PMC6721665 DOI: 10.3390/cells8080857] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Obesity is a global pandemic and it is well evident that obesity is associated with the development of many disorders including many cancer types. Breast cancer is one of that associated with a high mortality rate. Adipocytes, a major cellular component in adipose tissue, are dysfunctional during obesity and also known to promote breast cancer development both in vitro and in vivo. Dysfunctional adipocytes can release metabolic substrates, adipokines, and cytokines, which promote proliferation, progression, invasion, and migration of breast cancer cells. The secretion of adipocytes can alter gene expression profile, induce inflammation and hypoxia, as well as inhibit apoptosis. It is known that excessive free fatty acids, cholesterol, triglycerides, hormones, leptin, interleukins, and chemokines upregulate breast cancer development. Interestingly, adiponectin is the only adipokine that has anti-tumor properties. Moreover, adipocytes are also related to chemotherapeutic resistance, resulting in the poorer outcome of treatment and advanced stages in breast cancer. Evaluation of the adipocyte secretion levels in the circulation can be useful for prognosis and evaluation of the effectiveness of cancer therapy in the patients. Therefore, understanding about functions of adipocytes as well as obesity in breast cancer may reveal novel targets that support the development of new anti-tumor therapy. In this systemic review, we summarize and update the effects of secreted factors by adipocytes on the regulation of breast cancer in the tumor microenvironment.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
- Former address: Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0349 Oslo, Norway.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang-Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Tran-Thuy Nguyen
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Center, E Hospital, Hanoi 100000, Vietnam
- School of Medicine and Pharmacy, Vietnam National University, Hanoi 100000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
25
|
|
26
|
Ek A, Delisle Nyström C, Chirita-Emandi A, Tur JA, Nordin K, Bouzas C, Argelich E, Martínez JA, Frost G, Garcia-Perez I, Saez M, Paul C, Löf M, Nowicka P. A randomized controlled trial for overweight and obesity in preschoolers: the More and Less Europe study - an intervention within the STOP project. BMC Public Health 2019; 19:945. [PMID: 31307412 PMCID: PMC6631737 DOI: 10.1186/s12889-019-7161-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Background Childhood overweight and obesity is a serious public health issue with an increase being observed in preschool-aged children. Treating childhood obesity is difficult and few countries use standardized treatments. Therefore, there is a need to find effective approaches that are feasible for both health care providers and families. Thus, the overall aim of this study is to assess the acceptance and effectiveness of a parent support program (the More and Less, ML) for the management of overweight and obesity followed by a mobile health (mHealth) program (the MINISTOP application) in a socially diverse population of families. Methods/design A two-arm, parallel design randomized controlled trial in 300 2-to 6-year-old children with overweight and obesity from Romania, Spain and Sweden (n = 100 from each). Following baseline assessments children are randomized into the intervention or control group in a 1:1 ratio. The intervention, the ML program, consists of 10-weekly group sessions which focus on evidence-based parenting practices, followed by the previously validated MINISTOP application for 6-months to support healthy eating and physical activity behaviors. The primary outcome is change in body mass index (BMI) z-score after 9-months and secondary outcomes include: waist circumference, eating behavior (Child Eating Behavior Questionnaire), parenting behavior (Comprehensive Feeding Practices Questionnaire), physical activity (ActiGraph wGT3x-BT), dietary patterns (based on metabolic markers from urine and 24 h dietary recalls), epigenetic and gut hormones (fasting blood samples), and the overall acceptance of the overweight and obesity management in young children (semi-structured interviews). Outcomes are measured at baseline and after: 10-weeks (only BMI z-score, waist circumference), 9-months (all outcomes), 15- and 21-months (all outcomes except physical activity, dietary patterns, epigenetics and gut hormones) post-baseline. Discussion This study will evaluate a parent support program for weight management in young children in three European countries. To boost the effect of the ML program the families will be supported by an app for 6-months. If the program is found to be effective, it has the potential to be implemented into routine care to reduce overweight and obesity in young children and the app could prove to be a viable option for sustained effects of the care provided. Trial registration ClinicalTrials.gov NCT03800823; 11 Jan 2019.
Collapse
Affiliation(s)
- Anna Ek
- Division of Pediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | | - Adela Chirita-Emandi
- Genetics Department, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.,"Louis Turcanu" Clinical Emergency Hospital for Children, Timisoara, Romania
| | - Josep A Tur
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain.,CIBER of Physiology of Obesity and Nutrition (CIBEROBN), Instituto Carlos III, Madrid, Spain
| | - Karin Nordin
- Division of Pediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Bouzas
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain.,CIBER of Physiology of Obesity and Nutrition (CIBEROBN), Instituto Carlos III, Madrid, Spain
| | - Emma Argelich
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain.,CIBER of Physiology of Obesity and Nutrition (CIBEROBN), Instituto Carlos III, Madrid, Spain
| | - J Alfredo Martínez
- CIBER of Physiology of Obesity and Nutrition (CIBEROBN), Instituto Carlos III, Madrid, Spain.,Department of Nutrition, Food Science, and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IMDEA Food Precision Nutrition, Madrid, Spain
| | - Gary Frost
- Section for Nutrition Research, Department of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - Isabel Garcia-Perez
- Division of Systems and Digestive Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London, UK
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Campus de Montilivi, Girona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto Carlos III, Madrid, Spain
| | - Corina Paul
- Pediatrics Department, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.,2nd Pediatrics Clinic, Clinical Emergency County Hospital Timisoara, Timisoara, Romania
| | - Marie Löf
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Paulina Nowicka
- Division of Pediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Food Studies, Nutrition, and Dietetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
28
|
Bian A, Wang Y, Liu J, Wang X, Liu D, Jiang J, Ding L, Hui X. Circular RNA Complement Factor H (CFH) Promotes Glioma Progression by Sponging miR-149 and Regulating AKT1. Med Sci Monit 2018; 24:5704-5712. [PMID: 30111766 PMCID: PMC6108270 DOI: 10.12659/msm.910180] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are widely expressed in mammals and can regulate the development and progression of human tumors. has_circ_0015758 (circ-CFH) is an exon circRNA transcript from the GRCh37/hg19 fragment of chromosome 1 and is homologous to the protein-coding gene complement factor H (CFH). Currently, the function of circ-CFH in glioma remains unclear. Material/Methods In our study, circ-CFH, miR-149, and Akt1 mRNA expression levels were analyzed by qRT-PCR assays. To investigate the function of circ-CFH in cell proliferation, circ-CFH knockdown models were established by using circ-CFH siRNAs. Cell proliferation abilities were measured by CCK-8 and colony formation assays and in vivo experiments. In addition, the interaction between circ-CFH and miR-149 was assessed by luciferase reporter assays. Results Circ-CFH expression was significantly upregulated in glioma tissue and was correlated with tumor grade. Circ-CFH expression levels were also markedly higher in U251 and U373 glioma cell lines. Circ-CFH knockdown inhibited cell proliferation and colony formation abilities. Luciferase assays indicated that circ-CFH functions as a miR-149 sponge and inhibits its function in U251 and U373 cells. Subsequently, AKT1 was identified as a direct target of the circ-CFH/miR-149 axis. Conclusions Circ-CFH promotes glioma progression by sponging miR-149 and regulating the AKT1 signaling pathway. The circ-CFH/miR-149/AKT1 regulation axis may be a potential target for glioma therapy.
Collapse
Affiliation(s)
- Aimiao Bian
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Yanping Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Ji Liu
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaodong Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Dai Liu
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Jian Jiang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Lianshu Ding
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaobo Hui
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| |
Collapse
|