1
|
Bao Z, Cheng J, Zhu J, Ji S, Gu K, Zhao Y, Yu S, Meng Y. Using Weighted Gene Co-Expression Network Analysis to Identify Increased MND1 Expression as a Predictor of Poor Breast Cancer Survival. Int J Gen Med 2022; 15:4959-4974. [PMID: 35601002 PMCID: PMC9117423 DOI: 10.2147/ijgm.s354826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Objective We used bioinformatics analysis to identify potential biomarker genes and their relationship with breast cancer (BC). Materials and Methods We used a weighted gene co-expression network analysis (WGCNA) to create a co-expression network based on the top 25% genes in the GSE24124, GSE33926, and GSE86166 datasets obtained from the Gene Expression Omnibus. We used the DAVID online platform to perform GO and KEGG pathway enrichment analyses and the Cytoscape CytoHubba plug-in to screen the potential genes. Then, we related the genes to prognostic values in BC using the Oncomine, GEPIA, and Kaplan–Meier Plotter databases. Findings were validated by immunohistochemical (IHC) staining in the Human Protein Atlas and the TCGA-BRCA cohort. LinkedOmics identified the interactive expressions of hub genes. We used UALCAN to evaluate the methylation levels of these hub genes. MethSurv and SurvivalMeth were used to assess the multilevel prognostic value. Finally, we assessed hub gene association with immune cell infiltration using TIMER. Results The mRNA levels of MKI67, UBE2C, GTSE1, CCNA2, and MND1 were significantly upregulated in BC, whereas ESR1, THSD4, TFF1, AGR2, and FOXA1 were significantly downregulated. The DNA methylation signature analysis showed a better prognosis in the low-risk group. Further subgroup analyses revealed that MND1 might serve as an independent risk factor for unfavorable BC prognosis. Additionally, MND1 expression levels positively correlate with the immune infiltration statuses of CD4+ T cells, CD8+ T cells, B cells, neutrophils, dendritic cells, and macrophages. Conclusion Our results indicate that the ten hub genes may be involved in BC’s carcinogenesis, development, or metastasis, and MND1 may be a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Zhaokang Bao
- Department of Oncology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - Jiale Cheng
- Department of Oncology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - Jiahao Zhu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - Ke Gu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shiyou Yu
- Department of Oncology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - You Meng
- Department of Oncology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
- Correspondence: You Meng, Department of Oncology Surgery, The affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, 16 West Baita Road, Suzhou, Jiangsu, People’s Republic of China, Email
| |
Collapse
|
2
|
Liu M, Smith R, Liby T, Chiotti K, López CS, Korkola JE. INHBA is a mediator of aggressive tumor behavior in HER2+ basal breast cancer. Breast Cancer Res 2022; 24:18. [PMID: 35248133 PMCID: PMC8898494 DOI: 10.1186/s13058-022-01512-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background Resistance to HER2-targeted therapeutics remains a significant clinical problem in HER2+ breast cancer patients with advanced disease. This may be particularly true for HER2+ patients with basal subtype disease, as recent evidence suggests they receive limited benefit from standard of care HER2-targeted therapies. Identification of drivers of resistance and aggressive disease that can be targeted clinically has the potential to impact patient outcomes. Methods We performed siRNA knockdown screens of genes differentially expressed between lapatinib-responsive and -resistant HER2+ breast cancer cells, which corresponded largely to luminal versus basal subtypes. We then validated hits in 2-d and 3-d cell culture systems. Results Knockdown of one of the genes, INHBA, significantly slowed growth and increased sensitivity to lapatinib in multiple basal HER2+ cell lines in both 2-d and 3-d cultures, but had no effect in luminal HER2+ cells. Loss of INHBA altered metabolism, eliciting a shift from glycolytic to oxidative phosphorylative metabolism, which was also associated with a decrease in tumor invasiveness. Analysis of breast cancer datasets showed that patients with HER2+ breast cancer and high levels of INHBA expression had worse outcomes than patients with low levels of INHBA expression. Conclusions Our data suggest that INHBA is associated with aggressiveness of the basal subtype of HER2+ tumors, resulting in poor response to HER2-targeted therapy and an invasive phenotype. We hypothesize that targeting this pathway could be an effective therapeutic strategy to reduce invasiveness of tumor cells and to improve therapeutic response. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01512-4.
Collapse
Affiliation(s)
- Moqing Liu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Rebecca Smith
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Tiera Liby
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Kami Chiotti
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Claudia S López
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Multiscale Microscopy Core, Oregon Health & Science University, Portland, OR, USA
| | - James E Korkola
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Sigurdardottir AK, Jonasdottir AS, Asbjarnarson A, Helgudottir HR, Gudjonsson T, Traustadottir GA. Peroxidasin Enhances Basal Phenotype and Inhibits Branching Morphogenesis in Breast Epithelial Progenitor Cell Line D492. J Mammary Gland Biol Neoplasia 2021; 26:321-338. [PMID: 34964086 PMCID: PMC8858314 DOI: 10.1007/s10911-021-09507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The human breast is composed of terminal duct lobular units (TDLUs) that are surrounded by stroma. In the TDLUs, basement membrane separates the stroma from the epithelial compartment, which is divided into an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells. Stem cells and progenitor cells also reside within the epithelium and drive a continuous cycle of gland remodelling that occurs throughout the reproductive period. D492 is an epithelial cell line originally isolated from the stem cell population of the breast and generates both luminal and myoepithelial cells in culture. When D492 cells are embedded into 3D reconstituted basement membrane matrix (3D-rBM) they form branching colonies mimicking the TDLUs of the breast, thereby providing a well-suited in vitro model for studies on branching morphogenesis and breast development. Peroxidasin (PXDN) is a heme-containing peroxidase that crosslinks collagen IV with the formation of sulfilimine bonds. Previous studies indicate that PXDN plays an integral role in basement membrane stabilisation by crosslinking collagen IV and as such contributes to epithelial integrity. Although PXDN has been linked to fibrosis and cancer in some organs there is limited information on its role in development, including in the breast. In this study, we demonstrate expression of PXDN in breast epithelium and stroma and apply the D492 cell line to investigate the role of PXDN in cell differentiation and branching morphogenesis in the human breast. Overexpression of PXDN induced basal phenotype in D492 cells, loss of plasticity and inhibition of epithelial-to-mesenchymal transition as is displayed by complete inhibition of branching morphogenesis in 3D culture. This is supported by results from RNA-sequencing which show significant enrichment in genes involved in epithelial differentiation along with significant negative enrichment of EMT factors. Taken together, we provide evidence for a novel role of PXDN in breast epithelial differentiation and mammary gland development.
Collapse
Affiliation(s)
- Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arna Steinunn Jonasdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arni Asbjarnarson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Hildur Run Helgudottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Haematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
4
|
Zhao D, Fu X, Rohr J, Wang Y, Li M, Zhang X, Qin J, Xu M, Li C, Sun G, Wang Z, Guo S. Poor histologic tumor response after adjuvant therapy in basal-like HER2-positive breast carcinoma. Pathol Res Pract 2021; 228:153677. [PMID: 34775151 DOI: 10.1016/j.prp.2021.153677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
AIMS HER2-positive breast carcinomas are all treated with first-line anti-HER2 therapy. However, immunohistochemical and molecular profiling demonstrates significant heterogeneity among HER2-positive carcinomas. Basal-like HER2-positive breast carcinomas are poorly differentiated from pure HER2-positive breast carcinomas. MATERIALS AND METHODS Seventy-five patients with HER2-positive, ER- and PR-negative breast carcinomas who received anti-HER2 based neoadjuvant therapy were retrospectively analyzed. Thirty-seven cases were classified as basal-like HER2-positive breast carcinoma with any positivity for CK5/6, and thirty-eight cases were classified as pure HER2-positive breast carcinoma with completely negativity for CK5/6. The clinicopathological features and tumor responses after neoadjuvant therapy and outcomes were analyzed. RESULTS Compared to non-basal HER2-positive breast carcinoma, basal-like HER2-positive breast carcinoma showed distinctive histologic features including poor differentiation and syncytial tumor cells with pushing, invasive borders and a significantly higher proportion of apocrine metaplasia. They also demonstrated significantly higher histologic grade; 18/37 (48.6%) of basal-like carcinomas were grade 3, whereas only 5/38 (13.2%) of non-basal carcinomas were grade 3 (p = 0.001), Furthermore, basal-like HER2-positive breast carcinomas were more likely to be positive or completely negative for p53 (p = 0.009), and demonstrated a higher percentage of TP53 mutation (p = 0.17). These tumors were less responsive to anti-HER2 based neoadjuvant therapy, with Miller-Payne grades 1-3 higher than pure HER2-positive breast carcinoma (25/37 [67.6%] vs 16/38 [42.1%]), and the percentage of grade 4-5 was lower (12/37 [32.4%] vs 22/38 [57.9%]; p = 0.027). CONCLUSIONS Basal-like HER2-positive breast carcinoma has distinctive clinicopathological features and less histologic tumor response after neoadjuvant therapy. There is urgent need to recognize basal-like HER2-positive breast carcinoma to be treated precisely.
Collapse
Affiliation(s)
- Danhui Zhao
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Xin Fu
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Joseph Rohr
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, 68105, NE, USA
| | - Yingmei Wang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Mingyang Li
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Xiuming Zhang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Junhui Qin
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Mengwei Xu
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Chao Li
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Guorui Sun
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Zhe Wang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China.
| | - Shuangping Guo
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China.
| |
Collapse
|
5
|
Unusual S-100 and SOX10 immunoreactivity in a case of basal-HER2 metaplastic carcinoma of the breast: A potential diagnostic pitfall. HUMAN PATHOLOGY: CASE REPORTS 2020. [DOI: 10.1016/j.ehpc.2020.200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
An J, Yoo Y, Kim HG, Woo J, Lee KE, Kwon H, Lim W, Sung SH, Paik NS, Moon BI. Human Epidermal Growth Factor Receptor 2-Subtype Invasive Ductal Carcinoma Recurring as Basal-Human Epidermal Growth Factor Receptor 2-Subtype Squamous Cell Carcinoma. J Breast Cancer 2019; 22:484-490. [PMID: 31598347 PMCID: PMC6769391 DOI: 10.4048/jbc.2019.22.e31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 06/14/2019] [Indexed: 12/04/2022] Open
Abstract
Squamous cell carcinoma of the breast and its subtype, basal-human epidermal growth factor receptor 2 (HER2) phenotype, are very rare. Herein, we report a patient who developed recurrence of squamous cell carcinoma of the breast with basal-HER2 subtype 6 years after the initial diagnosis of invasive ductal carcinoma of the HER2 subtype. To the best of our knowledge, recurrence of invasive ductal carcinoma in the form of metaplastic squamous cell carcinoma of basal-HER2 subtype has not been reported previously. We present a pathological perspective of our experience.
Collapse
Affiliation(s)
- Jeongshin An
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Youngeun Yoo
- Department of Pathology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyun Goo Kim
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Joohyun Woo
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kyoung Eun Lee
- Department of Hematology-Oncology, Ewha Woman's University School of Medicine, Seoul, Korea
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Sun Hee Sung
- Department of Pathology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Nam Sun Paik
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Co-expression network analysis identified candidate biomarkers in association with progression and prognosis of breast cancer. J Cancer Res Clin Oncol 2019; 145:2383-2396. [PMID: 31280346 DOI: 10.1007/s00432-019-02974-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/04/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Breast cancer is one of the most common malignancies among females, and its prognosis is affected by a complex network of gene interactions. Weighted gene co-expression network analysis was used to construct free-scale gene co-expression networks and to identify potential biomarkers for breast cancer progression. METHODS The gene expression profiles of GSE42568 were downloaded from the Gene Expression Omnibus database. RNA-sequencing data and clinical information of breast cancer from TCGA were used for validation. RESULTS A total of ten modules were established by the average linkage hierarchical clustering. We identified 58 network hub genes in the significant module (R2 = 0.44) and 6 hub genes (AGO2, CDC20, CDCA5, MCM10, MYBL2, and TTK), which were significantly correlated with prognosis. Receiver-operating characteristic curve validated that the mRNA levels of these six genes exhibited excellent diagnostic efficiency in the test data set of GSE42568. RNA-sequencing data from TCGA showed that the expression levels of these six genes were higher in triple-negative tumors. One-way ANOVA suggested that these six genes were upregulated at more advanced stages. The results of independent sample t test indicated that MCM10 and TTK were associated with tumor size, and that AGO2, CDC20, CDCA5, MCM10, and MYBL2 were overexpressed in lymph-node positive breast cancer. CONCLUSIONS AGO2, CDC20, CDCA5, MCM10, MYBL2, and TTK were identified as candidate biomarkers for further basic and clinical research on breast cancer based on co-expression analysis.
Collapse
|
8
|
Tang J, Yang Q, Cui Q, Zhang D, Kong D, Liao X, Ren J, Gong Y, Wu G. Weighted gene correlation network analysis identifies RSAD2, HERC5, and CCL8 as prognostic candidates for breast cancer. J Cell Physiol 2019; 235:394-407. [PMID: 31225658 DOI: 10.1002/jcp.28980] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
Abstract
As the most commonly diagnosed malignant tumor in female population, the prognosis of breast cancer is affected by complex gene interaction networks. In this research weighted gene co-expression network analysis (WGCNA) would be utilized to build a gene co-expression network to identify potential biomarkers for prediction the prognosis of patients with breast cancer. We downloaded GSE25065 from Gene Expression Omnibus database as the test set. GSE25055 and GSE42568 were utilized to validate findings in the research. Seven modules were established in the GSE25065 by utilizing average link hierarchical clustering. Three hub genes, RSAD2, HERC5, and CCL8 were screened out from the significant module (R 2 = 0.44), which were considerably interrelated to worse prognosis. Within test dataset GSE25065, RSAD2, and CCL8 were correlated with tumor stage, grade, and lymph node metastases, whereas HERC5 was correlated with lymph node metastases and tumor grade. In the validation dataset GSE25055 and RSAD2 expression was correlated with tumor grade, stage, and size, whereas HERC5 was related to tumor stage and tumor grade, and CCL8 was associated with tumor size and tumor grade. Multivariable survival analysis demonstrated that RSAD2, HERC5, and CCL8 were independent risk factors. In conclusion, the WGCNA analysis conducted in this study screened out novel prognostic biomarkers of breast cancer. Meanwhile, further in vivo and in vitro studies are required to make the clear molecular mechanisms.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Yu L, Zhao L, Jia Z, Bi J, Wei Q, Song X, Jiang L, Lin S, Wei M. MFG-E8 overexpression is associated with poor prognosis in breast cancer patients. Pathol Res Pract 2018; 215:490-498. [PMID: 30612778 DOI: 10.1016/j.prp.2018.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND MFG-E8(Milk fat globule-EGF factor 8), a secreted glycoprotein, plays an exceptional role in various diseases. MFG-E8 overexpression is found in a variety of cancers. However, it remains unclear whether MFG-E8 overexpression is associated with the clinicopathological characteristics and prognosis of human breast cancer. MATERIALS AND METHODS In this study, we detected the expression and localization of MFG-E8 protein in breast cancer and cancer-adjacent tissues using immunohistochemical staining, Western blot analysis and immunofluorescence. We analyzed the association between MFG-E8 expression and clinical characteristics and outcomes of breast cancer patients with different HR and HER2 statuses. RESULTS Our results confirmed that MFG-E8 expression increased significantly in breast cancer compared with cancer-adjacent tissues by immunohistochemical staining (P < 0.001). Similarly, the Western blot results further confirmed the increased expression of MFG-E8 in breast cancer compared with cancer-adjacent tissues (P = 0.001). Immunofluorescence staining showed that MFG-E8 was mainly localized in the cytoplasm and membrane of tumor cells, consistent with the immunohistochemical staining results. The high expression levels of MFG-E8 showed a greater association with lymph node metastasis, TNM stage and histological grade (P < 0.001). Moreover, high MFG-E8 expression was related to a shortened overall survival (OS) (P < 0.001) and disease-free survival (DFS) (P < 0.001). Bioinformatics analysis with a Kaplan-Meier plotter also demonstrated a strong association of MFG-E8 mRNA overexpression with a short OS and DFS compared with low MFG-E8 expression (P = 0.040, P = 0.005). CONCLUSIONS Our findings indicate that MFG-E8 may be a potential marker for poor prognosis and survival in breast cancer.
Collapse
Affiliation(s)
- Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Zhen Jia
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Shu Lin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| |
Collapse
|