1
|
Bottosso M, Sandoval RL, Verret B, Polidorio N, Caron O, Gennari A, Bychkovsky BL, Cahill SH, Achatz MI, Guarneri V, André F, Garber JE. HER2 status and response to neoadjuvant anti-HER2 treatment among patients with breast cancer and Li-Fraumeni syndrome. Eur J Cancer 2024; 211:114307. [PMID: 39260016 DOI: 10.1016/j.ejca.2024.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer among females with Li-Fraumeni syndrome (LFS), but available data on LFS-related BC characteristics are derived from small retrospective cohorts. Prior work has demonstrated a high proportion of HER2-positive BCs, but our understanding of how HER2-positive LFS BCs respond to anti-HER2 treatments is limited. METHODS BCs diagnosed in patients with germline TP53 variants between 2002-2022 were assembled from three institutions. Hormone receptor (HR) and HER2 expression were retrieved from pathology records. Pathologic complete response (pCR) was defined as ypT0/is ypN0. RESULTS A total of 264 BCs were identified among 232 patients with LFS: 211 (79.9 %) were invasive carcinomas, of which 106 were HER2-positive. Among HER2-positive BCs, most tumors co-expressed HRs (72.6 %) and were more frequent among those diagnosed at younger age (p < 0.001). Mastectomy was the preferred surgical approach among women with nonmetastatic cancers (77.8 %) and most received anti-HER2 targeted therapy (74.7 %). Among 38 patients receiving neoadjuvant therapy with available post-treatment pathology reports, 27 (71.1 %) achieved pCR: 18/26 (69.2 %) among HR-positive and 7/10 (70.0 %) HR-negative. The rate of pCR was 84.6 % among patients treated with an anthracycline-free regimen (all received trastuzumab). Among classifiable HER2-negative BCs (n = 77), 31 (40.3 %) were HER2-low and 46 (59.7 %) HER2-zero. CONCLUSIONS Among females with LFS and BC, HER2-positive subtype was associated with younger age at diagnosis and a predominant HR-positivity. Favorable pCR rates were observed among those receiving neoadjuvant HER2-directed therapies, for both HR-positive and negative tumors. These data may inform the counseling and care of patients with LFS.
Collapse
Affiliation(s)
- Michele Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Oncology and Gastroenterology, University of Padua, Italy.
| | - Renata L Sandoval
- Medical Oncology Center, Hospital Sírio-Libanês, Brasília, DF, Brazil
| | - Benjamin Verret
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - Natalia Polidorio
- Breast Surgery Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Caron
- Gustave Roussy, Département de médecine oncologique, F-94805 Villejuif, France
| | - Alessandra Gennari
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy; Medical Oncology, "Maggiore Della Carità" University Hospital, Novara, Italy
| | - Brittany L Bychkovsky
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Sophie H Cahill
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria I Achatz
- Centro de Oncologia, Hospital Sírio-Libanês, Sao Paulo, SP, Brazil
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Italy
| | - Fabrice André
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; PRISM, INSERM, Gustave Roussy, Villejuif, France; Paris Saclay University, Gif Sur-Yvette, France
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| |
Collapse
|
2
|
Hosseini MS. Current insights and future directions of Li-Fraumeni syndrome. Discov Oncol 2024; 15:561. [PMID: 39404911 PMCID: PMC11480288 DOI: 10.1007/s12672-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Li-Fraumeni syndrome is a rare yet serious hereditary cancer predisposition syndrome, marked by a significant early-life increased risk of developing cancer. Primarily caused by germline mutations in the TP53 tumor suppressor gene, Li-Fraumeni syndrome is associated with a wide range of malignancies. Clinical management of Li-Fraumeni syndrome could be challenging, especially the lifelong surveillance and follow-up of patients which requires a multidisciplinary approach. Emerging insights into the molecular and clinical basis of Li-Fraumeni syndrome, coupled with advances in genomic technologies and targeted therapies, offer promise in optimizing risk assessment, early detection, and treatment strategies tailored to the unique clinical and molecular profiles of affected individuals. This review discusses Li-Fraumeni syndrome in more depth, reviewing molecular, genomic, epidemiological, clinical, and therapeutic aspects of this disease.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Cederquist GY, Boe LA, Walsh M, Freedman GM, Maxwell KN, Taunk N, Braunstein LZ. Radiation-Associated Secondary Cancer in Patients With Breast Cancer Harboring TP53 Germline Variants. JAMA Oncol 2024:2823548. [PMID: 39264591 PMCID: PMC11393750 DOI: 10.1001/jamaoncol.2024.3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This cohort study examines the risk of radiation-associated sarcoma in patients with breast cancer harboring germline TP53 variants.
Collapse
Affiliation(s)
- Gustav Y Cederquist
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lillian A Boe
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gary M Freedman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kara N Maxwell
- Division of Hematology/Oncology, Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Neil Taunk
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lior Z Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Fabi A, Cortesi L, Duranti S, Cordisco EL, Di Leone A, Terribile D, Paris I, de Belvis AG, Orlandi A, Marazzi F, Muratore M, Garganese G, Fuso P, Paoletti F, Dell'Aquila R, Minucci A, Scambia G, Franceschini G, Masetti R, Genuardi M. Multigenic panels in breast cancer: Clinical utility and management of patients with pathogenic variants other than BRCA1/2. Crit Rev Oncol Hematol 2024; 201:104431. [PMID: 38977141 DOI: 10.1016/j.critrevonc.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Multigene panels can analyze high and moderate/intermediate penetrance genes that predispose to breast cancer (BC), providing an opportunity to identify at-risk individuals within affected families. However, considering the complexity of different pathogenic variants and correlated clinical manifestations, a multidisciplinary team is needed to effectively manage BC. A classification of pathogenic variants included in multigene panels was presented in this narrative review to evaluate their clinical utility in BC. Clinical management was discussed for each category and focused on BC, including available evidence regarding the multidisciplinary and integrated management of patients with BC. The integration of both genetic testing and counseling is required for customized decisions in therapeutic strategies and preventative initiatives, as well as for a defined multidisciplinary approach, considering the continuous evolution of guidelines and research in the field.
Collapse
Affiliation(s)
- Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, Modena Hospital University, Modena Italy (Cortesi)
| | - Simona Duranti
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Emanuela Lucci Cordisco
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alba Di Leone
- Breast Unit, Department of Woman and Child's Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Daniela Terribile
- Breast Unit, Department of Woman and Child's Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ida Paris
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Giulio de Belvis
- Value Lab, Faculty of Economics, Università Cattolica del Sacro Cuore, Rome, Italy; Critical Pathways and Outcomes Evaluation Unit, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Armando Orlandi
- Unit of Oncology, Comprehensive Cancer Centre, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Marazzi
- UOC Oncological Radiotherapy, Department of Diagnostic Imaging, Radiation Oncology and Haematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Margherita Muratore
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"
| | - Giorgia Garganese
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Section of Obstetrics and Gynecology, Department of Woman and Child Health and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paola Fuso
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Filippo Paoletti
- Critical Pathways and Outcomes Evaluation Unit, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Rossella Dell'Aquila
- Critical Pathways and Outcomes Evaluation Unit, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Angelo Minucci
- Genomics Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Gianluca Franceschini
- Breast Unit, Department of Woman and Child's Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Masetti
- Breast Unit, Department of Woman and Child's Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Maurizio Genuardi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Sandoval RL, Bottosso M, Tianyu L, Polidorio N, Bychkovsky BL, Verret B, Gennari A, Cahill S, Achatz MI, Caron O, Imbert-Bouteille M, Noguès C, Mawell KN, Fortuno C, Spurdle AB, Tayob N, Andre F, Garber JE. TP53-associated early breast cancer: new observations from a large cohort. J Natl Cancer Inst 2024; 116:1246-1254. [PMID: 38569880 PMCID: PMC11308175 DOI: 10.1093/jnci/djae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND A recent large, well-annotated international cohort of patients with Li-Fraumeni syndrome and early-stage breast cancer was examined for shared features. METHODS This multicenter cohort study included women with a germline TP53 pathogenic or likely pathogenic variant and nonmetastatic breast cancer diagnosed between 2002 and 2022. Clinical and genetic data were obtained from institutional registries and clinical charts. Descriptive statistics were used to summarize proportions, and differences were assessed using χ2 or Wilcoxon rank sum tests. Metachronous contralateral breast cancer risk, radiation-induced sarcoma risk, and recurrence-free survival were analyzed using the Kaplan-Meier methodology. RESULTS Among 227 women who met study criteria, the median age of first breast cancer diagnosis was 37 years (range = 21-71), 11.9% presented with bilateral synchronous breast cancer, and 18.1% had ductal carcinoma in situ only. In total, 166 (73.1%) patients underwent mastectomies, including 67 bilateral mastectomies as first breast cancer surgery. Among those patients with retained breast tissue, the contralateral breast cancer rate was 25.3% at 5 years. Among 186 invasive tumors, 72.1% were stages I to II, 48.9% were node negative, and the most common subtypes were hormone receptor-positive/HER2-negative (40.9%) and hormone receptor positive/HER2 positive (34.4%). At a median follow-up of 69.9 months (interquartile range = 32.6-125.9), invasive hormone receptor-positive/HER2-negative disease had the highest recurrence risk among the subtypes (5-year recurrence-free survival = 61.1%, P = .001). Among those who received radiation therapy (n = 79), the 5-year radiation-induced sarcoma rate was 4.8%. CONCLUSION We observed high rates of ductal carcinoma in situ, hormone receptor-positive, and HER2-positive breast cancers, with a worse outcome in the hormone receptor-positive/HER2-negative luminal tumors, despite appropriate treatment. Confirmation of these findings in further studies could have implications for breast cancer care in those with Li-Fraumeni syndrome.
Collapse
Affiliation(s)
- Renata L Sandoval
- Medical Oncology Center, Hospital Sírio-Libanês, Brasília, DF, Brazil
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michele Bottosso
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Li Tianyu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Natalia Polidorio
- Breast Surgery Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brittany L Bychkovsky
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin Verret
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Alessandra Gennari
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Sophie Cahill
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Olivier Caron
- Medical Oncology Department, Institut Gustave Roussy, Villejuif, France
| | | | - Catherine Noguès
- Cancer Risk Management Department, Clinical Oncogenetics, Institut Paoli-Calmettes, Marseille, France
- Aix Marseille Université, INSERM, IRD, SESSTIM, Marseille, France
| | - Kara N Mawell
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fabrice Andre
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Petry V, Bonadio RC, Moutinho K, Leite LS, Testa L, Cohn DJBH, Cagnacci AC, Kim VEH, Del Pilar Estevez-Diz M, Fragoso MCBV. Frequency of Radiation Therapy-Induced Malignancies in Patients With Li-Fraumeni Syndrome and Early-Stage Breast Cancer and the Influence of Radiation Therapy Technique. Int J Radiat Oncol Biol Phys 2024; 119:1086-1091. [PMID: 38309330 DOI: 10.1016/j.ijrobp.2024.01.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE Breast cancer (BC) is the most common malignancy in female patients with Li-Fraumeni syndrome (LFS), a condition associated with an increased risk of various malignancies, including radiation therapy (RT)-induced malignancies (RIM) within previously irradiated areas. Our study aimed to assess the incidence of RIM in patients with LFS and early-stage BC treated with adjuvant RT, including the effect of RT dose and technique. METHODS AND MATERIALS We examined patients with a germline pathogenic/likely pathogenic TP53 variant diagnosed with early-stage BC and monitored by a hereditary cancer team at a single cancer center. The study endpoints included RIM frequency, the association of RIM with the dose and type of RT (2-dimensional [2D] RT, 3-dimensional [3D] RT, and intensity modulated RT [IMRT]), and BC recurrence. RESULTS We analyzed 48 patients with a median age of 39 years (range, 21-62). The majority (71%) had the TP53 R337H variant, and 87% were unaware of their LFS diagnosis at the time of BC treatment. Treatment modalities included mastectomy (62%), (neo)adjuvant chemotherapy (66%), and RT (62%), with RT being more common after breast-conserving surgery (87% vs 46% with mastectomy, P = .010). Among the 30 patients treated with RT, 10% developed RIM in the irradiated field, consisting of 3 soft tissue malignancies. RT dose (≤40.8 or >40.8 Gy) did not influence RIM occurrence, but the type of RT did. RIM was observed in 100% of cases with 2D RT (2/2), 50% with IMRT (1/2), and 0% with 3D RT (0/16) (P = .004). CONCLUSIONS Our study underscores a concerning rate of RIM after adjuvant RT, emphasizing the importance of a thorough risk-benefit evaluation before recommending RT, with preference for its avoidance if possible. Although subgroup sizes were limited, the risk of RIM appeared to be influenced by the RT technique, with higher rates observed with 2D RT and IMRT compared with 3D RT. Early TP53 testing is essential to guide the BC treatment plan.
Collapse
Affiliation(s)
- Vanessa Petry
- Instituto do Cancer do Estado de São Paulo, São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil.
| | - Renata Colombo Bonadio
- Instituto do Cancer do Estado de São Paulo, São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | - Karina Moutinho
- Instituto do Cancer do Estado de São Paulo, São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | - Luiz Senna Leite
- Instituto do Cancer do Estado de São Paulo, São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | - Laura Testa
- Instituto do Cancer do Estado de São Paulo, São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | | | | | | | - Maria Del Pilar Estevez-Diz
- Instituto do Cancer do Estado de São Paulo, São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | | |
Collapse
|
7
|
Cortés Valenzuela DC, Vega Medina PA, Palma García FJ, Castillo-Fernandez O. EGFR-mutated lung cancer as a secondary neoplasm in a patient with Li-Fraumeni syndrome: case report. AME Case Rep 2024; 8:76. [PMID: 39091538 PMCID: PMC11292096 DOI: 10.21037/acr-23-206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/07/2024] [Indexed: 08/04/2024]
Abstract
Background Li-Fraumeni syndrome (LFS) is a rare hereditary disorder caused by mutations in the tumor protein p53 (TP53). It causes a predisposition for the development of multiple malignancies, primarily including breast cancers, sarcomas, and central nervous system tumors. There are a few cases reported in the literature of patients with LFS presenting with an epidermal growth factor receptor (EGFR) mutated lung cancer. Still, it has been suggested that there may be an association between the TP53 pathogenic variant and lung cancer with EGFR mutation in somatic cells. Case Description A 47-year-old non-smoker woman with LFS with a history of multiple tumors, including bilateral breast cancer, pecoma, and sarcoma. In one of her computed tomography, a lesion in the lingula of the lung was detected. It was biopsied, which diagnosed lung adenocarcinoma, and genetic studies detected an EGFR exon 19 deletion. She was treated with a left inferior lobectomy, followed by pemetrexed and cisplatin. Conclusions The association between TP53 and lung cancer with EGFR mutation has been suggested in case reports. Studies in lung cancer cell lines have shown a link between TP53 mutation and EGFR overexpression. Nonetheless, as more cases are reported, further research is needed to comprehend the interrelation between these two pathologies and the risk posed by LFS to the emergence of EGFR-mutated lung cancer.
Collapse
Affiliation(s)
| | | | | | - Omar Castillo-Fernandez
- School of Medicine, University of Panama, Panama City, Panama
- Department of Medical Oncology, National Oncologic Institute, Panama City, Panama
| |
Collapse
|
8
|
Ea V, Berthozat C, Dreyfus H, Legrand C, Rousselet E, Peysselon M, Baudet L, Martinez G, Coutton C, Bidart M. BRCA1 Intragenic Duplication Combined with a Likely Pathogenic TP53 Variant in a Patient with Triple-Negative Breast Cancer: Clinical Risk and Management. Int J Mol Sci 2024; 25:6274. [PMID: 38892462 PMCID: PMC11173113 DOI: 10.3390/ijms25116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
For patients with hereditary breast and ovarian cancer, the probability of carrying two pathogenic variants (PVs) in dominant cancer-predisposing genes is rare. Using targeted next-generation sequencing (NGS), we investigated a 49-year-old Caucasian woman who developed a highly aggressive breast tumor. Our analyses identified an intragenic germline heterozygous duplication in BRCA1 with an additional likely PV in the TP53 gene. The BRCA1 variant was confirmed by multiplex ligation probe amplification (MLPA), and genomic breakpoints were characterized at the nucleotide level (c.135-2578_442-1104dup). mRNA extracted from lymphocytes was amplified by RT-PCR and then Sanger sequenced, revealing a tandem duplication r.135_441dup; p.(Gln148Ilefs*20). This duplication results in the synthesis of a truncated and, most likely, nonfunctional protein. Following functional studies, the TP53 exon 5 c.472C > T; p.(Arg158Cys) missense variant was classified as likely pathogenic by the Li-Fraumeni Syndrome (LFS) working group. This type of unexpected association will be increasingly identified in the future, with the switch from targeted BRCA sequencing to hereditary breast and ovarian cancer (HBOC) panel sequencing, raising the question of how these patients should be managed. It is therefore important to record and investigate these rare double-heterozygous genotypes.
Collapse
Affiliation(s)
- Vuthy Ea
- UM Génétique Moléculaire: Maladies Héréditaires et Oncologie, University Hospital Grenoble Alpes, 38000 Grenoble, France;
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble Alpes University, 38000 Grenoble, France; (G.M.); (C.C.)
| | - Claudine Berthozat
- Department of Medical Oncology, Cancer and Blood Diseases, Grenoble Alpes University Hospital, 38000 Grenoble, France;
| | - Hélène Dreyfus
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Clémentine Legrand
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Estelle Rousselet
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Magalie Peysselon
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Laura Baudet
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble Alpes University, 38000 Grenoble, France; (G.M.); (C.C.)
- UM de Génétique Chromosomique, University Hospital Grenoble Alpes, 38000 Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble Alpes University, 38000 Grenoble, France; (G.M.); (C.C.)
- UM de Génétique Chromosomique, University Hospital Grenoble Alpes, 38000 Grenoble, France
| | - Marie Bidart
- UM Génétique Moléculaire: Maladies Héréditaires et Oncologie, University Hospital Grenoble Alpes, 38000 Grenoble, France;
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble Alpes University, 38000 Grenoble, France; (G.M.); (C.C.)
| |
Collapse
|
9
|
Stokkevåg CH, Journy N, Vogelius IR, Howell RM, Hodgson D, Bentzen SM. Radiation Therapy Technology Advances and Mitigation of Subsequent Neoplasms in Childhood Cancer Survivors. Int J Radiat Oncol Biol Phys 2024; 119:681-696. [PMID: 38430101 DOI: 10.1016/j.ijrobp.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Neige Journy
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Ivan R Vogelius
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases and University of Copenhagen, Copenhagen, Denmark
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - David Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
10
|
Kast K, Rhiem K, Larsen M, Wappenschmidt B, Schmutzler R. Phenotype analysis of families with TP53 germline variants at the Center for Familial Breast and Ovarian Cancer, Cologne. Cancer Med 2024; 13:e6920. [PMID: 38230850 PMCID: PMC10905677 DOI: 10.1002/cam4.6920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/07/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024] Open
Abstract
PURPOSE Tumor protein p53 (TP53) pathogenic variant (PV) carriers are identified during genetic testing for hereditary causes of cancer. PVs in TP53 are associated with the Li-Fraumeni syndrome (LFS), and thus, surveillance and preventive measures are important for TP53 PV carriers. However, the penetrance of TP53 PVs can be low if the Chompret criteria are not fulfilled. In this study, we compared the phenotypic characteristics of families that did and did not fulfill the LFS criteria according to Chompret. METHODS The German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) database was used to identify index patients with a likely pathogenic/pathogenic TP53 variant and their family members. The study investigated the type of variant, pedigree, age of onset, number of primary tumors, and histological type of BC. RESULTS TP53 PV were present in the index cases of 35 families, 57% (20/35) of which fulfilled the Chompret criteria. The median age of onset at first BC diagnosis was lower in families that fulfilled the Chompret criteria compared to those who did not. Four of all diseased individuals were minors (4%; 4/105) when malignancy was first diagnosed. Sarcomas and brain tumors occurred in 10% (10/105) and in 7% (7/105) of all diseased persons, respectively. BC was the most frequently occurring first tumor (60%; 62/105) and additional malignancy (45%; 20/44) in this cohort. Subsequent malignancies developed in 31% (20/65) of the individuals who fulfilled the Chompret criteria compared with 15% (6/40) of those who did not. CONCLUSION The tumor spectrum and age of onset found in this study showed that tumors other than BC had low disease penetrance in TP53 PV carriers identified using the GC-HBOC criteria for genetic testing.
Collapse
Affiliation(s)
- K. Kast
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical FacultyUniversity Hospital CologneCologneGermany
| | - K. Rhiem
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical FacultyUniversity Hospital CologneCologneGermany
| | - M. Larsen
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical FacultyUniversity Hospital CologneCologneGermany
| | - B. Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical FacultyUniversity Hospital CologneCologneGermany
| | - R. Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical FacultyUniversity Hospital CologneCologneGermany
| |
Collapse
|
11
|
Lam K, Kamiya-Matsuoka C, Slopis JM, McCutcheon IE, Majd NK. Therapeutic Strategies for Gliomas Associated With Cancer Predisposition Syndromes. JCO Precis Oncol 2024; 8:e2300442. [PMID: 38394467 DOI: 10.1200/po.23.00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE The purpose of this article was to provide an overview of syndromic gliomas. DESIGN The authors conducted a nonsystematic literature review. RESULTS Cancer predisposition syndromes (CPSs) are genetic conditions that increase one's risk for certain types of cancer compared with the general population. Syndromes that can predispose one to developing gliomas include neurofibromatosis, Li-Fraumeni syndrome, Lynch syndrome, and tuberous sclerosis complex. The standard treatment for sporadic glioma may involve resection, radiation therapy, and/or alkylating chemotherapy. However, DNA-damaging approaches, such as radiation and alkylating agents, may increase the risk of secondary malignancies and other complications in patients with CPSs. In some cases, depending on genetic aberrations, targeted therapies or immunotherapeutic approaches may be considered. Data on clinical characteristics, therapeutic strategies, and prognosis of syndromic gliomas remain limited. CONCLUSION In this review, we provide an overview of syndromic gliomas with a focus on management for patients with CPSs and the role of novel treatments that can be considered.
Collapse
Affiliation(s)
- Keng Lam
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | | | - John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer, Houston, TX
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| |
Collapse
|
12
|
Song R, Kong SY, Choi W, Lee EG, Woo J, Han JH, Lee S, Kang HS, Jung SY. Clinical Features of Li-Fraumeni Syndrome in Korea. Cancer Res Treat 2024; 56:334-341. [PMID: 37562436 PMCID: PMC10789946 DOI: 10.4143/crt.2023.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE Li-Fraumeni syndrome (LFS) is a hereditary disorder caused by germline mutation in TP53. Owing to the rarity of LFS, data on its clinical features are limited. This study aimed to evaluate the clinical characteristics and prognosis of Korean patients with LFS. MATERIALS AND METHODS Patients who underwent genetic counseling and confirmed with germline TP53 mutation in the National Cancer Center in Korea between 2011 and 2022 were retrospectively reviewed. Data on family history with pedigree, types of mutation, clinical features, and prognosis were collected. RESULTS Fourteen patients with LFS were included in this study. The median age at diagnosis of the first tumor was 32 years. Missense and nonsense mutations were observed in 13 and one patients, respectively. The repeated mutations were p.Arg273His, p.Ala138Val, and pPro190Leu. The sister with breast cancer harbored the same mutation of p.Ala138Val. Seven patients had multiple primary cancers. Breast cancer was most frequently observed, and other types of tumor included sarcoma, thyroid cancer, pancreatic cancer, brain tumor, adrenocortical carcinoma, ovarian cancer, endometrial cancer, colon cancer, vaginal cancer, skin cancer, and leukemia. The median follow-up period was 51.5 months. Two and four patients showed local recurrence and distant metastasis, respectively. Two patients died of leukemia and pancreatic cancer 3 and 23 months after diagnosis, respectively. CONCLUSION This study provides information on different characteristics of patients with LFS, including types of mutation, types of cancer, and prognostic outcomes. For more appropriate management of these patients, proper genetic screening and multidisciplinary discussion are required.
Collapse
Affiliation(s)
- Ran Song
- Department of Surgery, Center of Breast Cancer, National Cancer Center, Goyang, Korea
| | - Sun-Young Kong
- Department of Laboratory Medicine, National Cancer Center, Goyang, Korea
| | - Wonyoung Choi
- Center of Rare Cancers, National Cancer Center, Goyang, Korea
| | - Eun-Gyeong Lee
- Department of Surgery, Center of Breast Cancer, National Cancer Center, Goyang, Korea
| | - Jaeyeon Woo
- Department of Surgery, Center of Breast Cancer, National Cancer Center, Goyang, Korea
| | - Jai Hong Han
- Department of Surgery, Center of Breast Cancer, National Cancer Center, Goyang, Korea
| | - Seeyoun Lee
- Department of Surgery, Center of Breast Cancer, National Cancer Center, Goyang, Korea
| | - Han-Sung Kang
- Department of Surgery, Center of Breast Cancer, National Cancer Center, Goyang, Korea
| | - So-Youn Jung
- Department of Surgery, Center of Breast Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|
13
|
Kolodziejczak AS, Guerrini-Rousseau L, Planchon JM, Ecker J, Selt F, Mynarek M, Obrecht D, Sill M, Autry RJ, Stutheit-Zhao E, Hirsch S, Amouyal E, Dufour C, Ayrault O, Torrejon J, Waszak SM, Ramaswamy V, Pentikainen V, Demir HA, Clifford SC, Schwalbe EC, Massimi L, Snuderl M, Galbraith K, Karajannis MA, Hill K, Li BK, Walsh M, White CL, Redmond S, Loizos L, Jakob M, Kordes UR, Schmid I, Hauer J, Blattmann C, Filippidou M, Piccolo G, Scheurlen W, Farrag A, Grund K, Sutter C, Pietsch T, Frank S, Schewe DM, Malkin D, Ben-Arush M, Sehested A, Wong TT, Wu KS, Liu YL, Carceller F, Mueller S, Stoller S, Taylor MD, Tabori U, Bouffet E, Kool M, Sahm F, von Deimling A, Korshunov A, von Hoff K, Kratz CP, Sturm D, Jones DTW, Rutkowski S, van Tilburg CM, Witt O, Bougeard G, Pajtler KW, Pfister SM, Bourdeaut F, Milde T. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. Neuro Oncol 2023; 25:2273-2286. [PMID: 37379234 PMCID: PMC10708940 DOI: 10.1093/neuonc/noad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The prognosis for Li-Fraumeni syndrome (LFS) patients with medulloblastoma (MB) is poor. Comprehensive clinical data for this patient group is lacking, challenging the development of novel therapeutic strategies. Here, we present clinical and molecular data on a retrospective cohort of pediatric LFS MB patients. METHODS In this multinational, multicenter retrospective cohort study, LFS patients under 21 years with MB and class 5 or class 4 constitutional TP53 variants were included. TP53 mutation status, methylation subgroup, treatment, progression free- (PFS) and overall survival (OS), recurrence patterns, and incidence of subsequent neoplasms were evaluated. RESULTS The study evaluated 47 LFS individuals diagnosed with MB, mainly classified as DNA methylation subgroup "SHH_3" (86%). The majority (74%) of constitutional TP53 variants represented missense variants. The 2- and 5-year (y-) PFS were 36% and 20%, and 2- and 5y-OS were 53% and 23%, respectively. Patients who received postoperative radiotherapy (RT) (2y-PFS: 44%, 2y-OS: 60%) or chemotherapy before RT (2y-PFS: 32%, 2y-OS: 48%) had significantly better clinical outcome then patients who were not treated with RT (2y-PFS: 0%, 2y-OS: 25%). Patients treated according to protocols including high-intensity chemotherapy and patients who received only maintenance-type chemotherapy showed similar outcomes (2y-PFS: 42% and 35%, 2y-OS: 68% and 53%, respectively). CONCLUSIONS LFS MB patients have a dismal prognosis. In the presented cohort use of RT significantly increased survival rates, whereas chemotherapy intensity did not influence their clinical outcome. Prospective collection of clinical data and development of novel treatments are required to improve the outcome of LFS MB patients.
Collapse
Affiliation(s)
- Anna S Kolodziejczak
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team “Genomics and Oncogenesis of pediatric Brain Tumors,” Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Julien Masliah Planchon
- Department of Diagnostic and Theranostic Medicine, Somatic Genetics Unit, Institut Curie, Paris-Science Lettres University, Paris, France
| | - Jonas Ecker
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Selt
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Mynarek
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Sill
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Robert J Autry
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Eric Stutheit-Zhao
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Steffen Hirsch
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Elsa Amouyal
- SIREDO Pediatric Oncology Center, Institut Curie, Paris-Science Lettres University, Paris, France
| | - Christelle Dufour
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team “Genomics and Oncogenesis of pediatric Brain Tumors,” Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Jacob Torrejon
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vijay Ramaswamy
- Division of Neurosurgery, Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Virve Pentikainen
- Division of Hematology-Oncology and Stem Cell Transplantation, Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Haci Ahmet Demir
- Department of Pediatric Hematology-Oncology, Private Memorial Ankara Hospital, Ankara, Turkey
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Ed C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
- Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Luca Massimi
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University Medical School, Rome, Italy
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York City, NY, USA
| | - Kristyn Galbraith
- Department of Pathology, New York University Langone Health, New York City, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Katherine Hill
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Bryan K Li
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mike Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Christine L White
- Victorian Clinical Genetics Services, Parkville, Australia
- Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Shelagh Redmond
- Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Loizou Loizos
- Pediatric Oncology/Hematology/Immunology at the Medical School of the University of Nicosia, Nicosia, Cyprus
| | - Marcus Jakob
- Department of Paediatric Haematology, Oncology and Stem-Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Uwe R Kordes
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irene Schmid
- Paediatric Haematology and Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Julia Hauer
- Pediatric Haematology and Oncology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Claudia Blattmann
- Paediatric Haematology, Oncology and Immunology, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Maria Filippidou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Gianluca Piccolo
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Wolfram Scheurlen
- Paediatric Haematology and Oncology, Cnopfsche Paediatric Clinic, Nurnberg, Germany
| | - Ahmed Farrag
- Department of Paediatric Haematology, Oncology and Stem-Cell Transplantation, Paediatric Clinic, University Hospital Aachen, Aachen, Germany
- Department of Pediatric Oncology, South Egypt Cancer Institute, Assiut University, Egypt
| | - Kerstin Grund
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, Basel University Hospital, Basel, Switzerland
| | - Denis M Schewe
- Department of Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Myriam Ben-Arush
- Pediatric Hematology Oncology, Rambam Medical Center, Haifa, Israel
| | - Astrid Sehested
- Department of Paediatrics and Adolescent Medicine, Juliane Marie Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fernando Carceller
- Paediatric and Adolescent Oncology Drug Development Team, Children and Young People’s Unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Sutton, United Kingdom
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, USA
| | - Schuyler Stoller
- Department of Neurology, University of California, San Francisco, USA
| | - Michael D Taylor
- Division of Neurosurgery, Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Division of Haematology/ Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcel Kool
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Felix Sahm
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, and CCU Neuropathology, German Cancer Institute (DKF), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, and CCU Neuropathology, German Cancer Institute (DKF), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, and CCU Neuropathology, German Cancer Institute (DKF), Heidelberg, Germany
| | - Katja von Hoff
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dominik Sturm
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan Rutkowski
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelis M van Tilburg
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gaëlle Bougeard
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, F-76000 Rouen, France
| | - Kristian W Pajtler
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Franck Bourdeaut
- SIREDO Pediatric Oncology Center, Institut Curie, Paris-Science Lettres University, Paris, France
| | - Till Milde
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Atajanova T, Rahman MM, Konieczkowski DJ, Morris ZS. Radiation-associated secondary malignancies: a novel opportunity for applying immunotherapies. Cancer Immunol Immunother 2023; 72:3445-3452. [PMID: 37658906 PMCID: PMC10992240 DOI: 10.1007/s00262-023-03532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Radiation is commonly used as a treatment intended to cure or palliate cancer patients. Despite remarkable advances in the precision of radiotherapy delivery, even the most advanced forms inevitably expose some healthy tissues surrounding the target site to radiation. On rare occasions, this results in the development of radiation-associated secondary malignancies (RASM). RASM are typically high-grade and carry a poorer prognosis than their non-radiated counterparts. RASM are characterized by a high mutation burden, increased T cell infiltration, and a microenvironment that bears unique inflammatory signatures of prior radiation, including increased expression of various cytokines (e.g., TGF-β, TNF-α, IL4, and IL10). Interestingly, these cytokines have been shown to up-regulate the expression of PD-1 and/or PD-L1-an immune checkpoint receptor/ligand pair that is commonly targeted by immune checkpoint blocking immunotherapies. Here, we review the current understanding of the tumor-immune interactions in RASM, highlight the distinct clinical and molecular characteristics of RASM that may render them immunologically "hot," and propose a rationale for the formal testing of immune checkpoint blockade as a treatment approach for patients with RASM.
Collapse
Affiliation(s)
- Tavus Atajanova
- Biochemistry and Biophysics Program, Amherst College, Amherst, MA, 01002, USA
- Department of Sociology, Amherst College, Amherst, MA, 01002, USA
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Md Mahfuzur Rahman
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - David J Konieczkowski
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, 53726, USA.
| |
Collapse
|
15
|
Roberts AC, Lunt LG, Coogan AC, Madrigrano A. The Role of Radiation Therapy in Locally Advanced Breast Cancer in a Patient With Li-Fraumeni Syndrome. Am Surg 2023; 89:4958-4960. [PMID: 36420590 DOI: 10.1177/00031348221135780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Li-Fraumeni syndrome (LFS) is associated with many different cancers, including early onset breast cancer. Due to an increased risk of radiation-induced malignancy, radiation therapy is often avoided in this patient population. This case study evaluates a 38-year-old female with a history of juvenile granulosa cell tumor of the ovary and malignant phyllodes tumor of right breast, who subsequently developed bilateral invasive ductal carcinoma and was treated with bilateral mastectomies. Studies show that in a high-risk patient, post-mastectomy radiation therapy (PMRT) should not be ruled out due to a history of LFS, as the benefit of PMRT may outweigh the risk of a radiation-induced malignancy.
Collapse
Affiliation(s)
| | - Lilia G Lunt
- Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
16
|
Sánchez-Heras AB, Ramon y Cajal T, Pineda M, Aguirre E, Graña B, Chirivella I, Balmaña J, Brunet J. SEOM clinical guideline on heritable TP53-related cancer syndrome (2022). Clin Transl Oncol 2023; 25:2627-2633. [PMID: 37133731 PMCID: PMC10425559 DOI: 10.1007/s12094-023-03202-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Li-Fraumeni syndrome is caused by heterozygous germline pathogenic variants in the TP53 gene. It involves a high risk of a variety of malignant tumors in childhood and adulthood, the main ones being premenopausal breast cancer, soft tissue sarcomas and osteosarcomas, central nervous system tumors, and adrenocortical carcinomas. The variability of the associated clinical manifestations, which do not always fit the classic criteria of Li-Fraumeni syndrome, has led the concept of SLF to extend to a more overarching cancer predisposition syndrome, termed hereditable TP53-related cancer syndrome (hTP53rc). However, prospective studies are needed to assess genotype-phenotype characteristics, as well as to evaluate and validate risk-adjusted recommendations. This guideline aims to establish the basis for interpreting pathogenic variants in the TP53 gene and provide recommendations for effective screening and prevention of associated cancers in carrier individuals.
Collapse
Affiliation(s)
| | | | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
| | - Elena Aguirre
- Medical Oncology Department, Hospital Quironsalud, Zaragoza, Spain
| | - Begoña Graña
- Medical Oncology Department, University Hospital A Coruña, 15006 A Coruña, Spain
| | - Isabel Chirivella
- Medical Oncology Department, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Judit Balmaña
- Medical Oncology Department, Hospital Vall d’Hebron, and Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
- Medical Oncology Department, Catalan Institute of Oncology, University Hospital Josep Trueta, University of Girona, Girona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona Biomedical Research Instiute (IDIBGI), Girona, Spain
| | - the SEOM Hereditary Cancer Working Group and AEGH Hereditary Cancer Committee
- Medical Oncology Department, Hospital General Universitario de Elche, Elche, Alicante, Spain
- Medical Oncology Service, Hospital Sant Pau, Barcelona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
- Medical Oncology Department, Hospital Quironsalud, Zaragoza, Spain
- Medical Oncology Department, University Hospital A Coruña, 15006 A Coruña, Spain
- Medical Oncology Department, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
- Medical Oncology Department, Hospital Vall d’Hebron, and Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, University Hospital Josep Trueta, University of Girona, Girona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona Biomedical Research Instiute (IDIBGI), Girona, Spain
| |
Collapse
|
17
|
Iwasaki M, So C, Jinta T. Identification of a TP53 Mutation in a Patient With Li-Fraumeni Syndrome and Not Meeting the Revised Chompret Criteria: A Case Report. Cureus 2023; 15:e40025. [PMID: 37425585 PMCID: PMC10323706 DOI: 10.7759/cureus.40025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Li-Fraumeni syndrome (LFS) is a rare familial disorder caused by germline TP53 mutations. Despite the establishment of the revised Chompret criteria to guide genetic testing for TP53, identifying LFS in patients who do not satisfy these criteria remains a challenge. Herein, we present the case of a 50-year-old woman with a history of breast, lung, colorectal, and tongue cancers who did not satisfy the revised Chompret criteria. However, genetic testing ultimately revealed a TP53 mutation, leading to the diagnosis of LFS. Although her family history did not satisfy the classic LFS criteria, she had a TP53 core tumor before the age of 46 years. This case highlights the importance of considering LFS in patients with a history of multiple cancers and suggests that genetic testing should be considered even in patients who do not satisfy the revised Chompret criteria.
Collapse
Affiliation(s)
- Monika Iwasaki
- Department of Pulmonary Medicine, Thoracic Center, St. Luke's International Hospital, Tokyo, JPN
| | - Clara So
- Department of Pulmonary Medicine, Thoracic Center, St. Luke's International Hospital, Tokyo, JPN
| | - Torahiko Jinta
- Department of Pulmonary Medicine, Thoracic Center, St. Luke's International Hospital, Tokyo, JPN
| |
Collapse
|
18
|
Schick S, Manghelli J, Ludwig KK. The Role of the Surgeon in the Germline Testing of the Newly Diagnosed Breast Cancer Patient. Curr Oncol 2023; 30:4677-4687. [PMID: 37232811 DOI: 10.3390/curroncol30050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/27/2023] Open
Abstract
For patients with newly diagnosed breast cancer, information regarding hereditary predisposition can influence treatment decisions. From a surgical standpoint, patients with known germline mutations may alter decisions of local therapy to reduce the risk of second breast primaries. This information may also be considered in the choice of adjuvant therapies or eligibility for clinical trials. In recent years, the criteria for the consideration of germline testing in patients with breast cancer has expanded. Additionally, studies have shown a similar prevalence of pathogenic mutations in those patients outside of these traditional criteria, prompting calls for genetic testing for all patients with a history of breast cancer. While data confirms the benefit of counseling by certified genetics professionals, the capacity of genetic counselors may no longer meet the needs of these growing numbers of patients. National societies assert that counseling and testing can be performed by providers with training and experience in genetics. Breast surgeons are well positioned to offer this service, as they receive formal genetics training during their fellowship, manage these patients daily in their practices, and are often the first providers to see patients after their cancer diagnosis.
Collapse
Affiliation(s)
- Stephanie Schick
- Department of Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua Manghelli
- Department of Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Kandice K Ludwig
- Department of Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Blondeaux E, Arecco L, Punie K, Graffeo R, Toss A, De Angelis C, Trevisan L, Buzzatti G, Linn SC, Dubsky P, Cruellas M, Partridge AH, Balmaña J, Paluch-Shimon S, Lambertini M. Germline TP53 pathogenic variants and breast cancer: A narrative review. Cancer Treat Rev 2023; 114:102522. [PMID: 36739824 DOI: 10.1016/j.ctrv.2023.102522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/02/2023]
Abstract
Approximately 10% of breast cancers are associated with the inheritance of a pathogenic variant (PV) in one of the breast cancer susceptibility genes. Multiple breast cancer predisposing genes, including TP53, are responsible for the increased breast cancer risk. Tumor protein-53 (TP53) germline PVs are associated with Li-Fraumeni syndrome, a rare autosomal dominant inherited cancer predisposition syndrome associated with early-onset pediatric and multiple primary cancers such as soft tissue and bone sarcomas, breast cancer, brain tumors, adrenocortical carcinomas and leukemias. Women harboring a TP53 PV carry a lifetime risk of developing breast cancer of 80-90%. The aim of the present narrative review is to provide a comprehensive overview of the criteria for offering TP53 testing, prevalence of TP53 carriers among patients with breast cancer, and what is known about its prognostic and therapeutic implications. A summary of the current indications of secondary cancer surveillance and survivorship issues are also provided. Finally, the spectrum of TP53 alteration and testing is discussed. The optimal strategies for the treatment of breast cancer in patients harboring TP53 PVs poses certain challenges. Current guidelines favor the option of performing mastectomy rather than lumpectomy to avoid adjuvant radiotherapy and subsequent risk of radiation-induced second primary malignancies, with careful consideration of radiation when indicated post-mastectomy. Some studies suggest that patients with breast cancer and germline TP53 PV might have worse survival outcomes compared to patients with breast cancer and wild type germline TP53 status. Annual breast magnetic resonance imaging (MRI) and whole-body MRI are recommended as secondary prevention.
Collapse
Affiliation(s)
- Eva Blondeaux
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Rossella Graffeo
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Angela Toss
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Lucia Trevisan
- Hereditary Cancer Unit, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Buzzatti
- Hereditary Cancer Unit, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sabine C Linn
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter Dubsky
- Breast Centre, Hirslanden Klinik St Anna, Luzern, Switzerland
| | - Mara Cruellas
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ann H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judith Balmaña
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Shani Paluch-Shimon
- Breast Cancer Unit, Sharett Institute of Oncology, Hadassah Medical Center & Faculty of Medicine, Hebrew University, 91120 Jerusalem, Israel
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
20
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
21
|
Gupta R, Lin M, Freedman GM, Sundlof DW, Fadlon CS. Proton beam therapy causing pericarditis – a rare case of radiation induced cardiotoxicity. CARDIO-ONCOLOGY 2022; 8:9. [PMID: 35436973 PMCID: PMC9014645 DOI: 10.1186/s40959-022-00135-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 01/03/2023]
Abstract
AbstractAcute pericarditis is caused by the inflammation of the pericardium which can result in an effusion around the heart. Proton beam therapy causing radiation-induced pericarditis is not a well-known cause of pericarditis. We present a case of a patient with Li-Fraumeni Syndrome who developed acute onset pericarditis, presumed to be secondary to proton beam therapy.
Collapse
|
22
|
Goel V, Sharma D, Sharma A, Mallick S. A systematic review exploring the role of modern radiation for the treatment of Hereditary or Familial Breast Cancer. Radiother Oncol 2022; 176:59-67. [PMID: 36184999 DOI: 10.1016/j.radonc.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
The diagnosis of hereditary or familial breast cancers influences the locoregional approach to breast cancer, with most patients undergoing mastectomy to avoid or minimize the use of adjuvant radiation therapy. We evaluated the current literature about known high- and moderate-penetrance genes and studied their impact on local control, toxicities, and contralateral breast cancers after adjuvant radiation therapy. The aim is to encourage the safe use of adjuvant radiation therapy when indicated in concordance with the updated guidelines.
Collapse
Affiliation(s)
- Varshu Goel
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Dayanand Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Aman Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Supriya Mallick
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
23
|
Patil P, Pencheva BB, Patil VM, Fangusaro J. Nervous system (NS) Tumors in Cancer Predisposition Syndromes. Neurotherapeutics 2022; 19:1752-1771. [PMID: 36056180 PMCID: PMC9723057 DOI: 10.1007/s13311-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progression, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7-10% of all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identification of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. The treatment paradigm of specific NS tumors may also vary based on the patient's cancer predisposition syndrome and may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaffected and affected patients. Genetic counselors are uniquely trained master's level healthcare providers with a focus on the identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, defined as "the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease" plays a vital role in the adaptation to a genetic diagnosis and the overall management of these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include classic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other cancer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recommended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic counseling in these patients and their families.
Collapse
Affiliation(s)
- Prabhumallikarjun Patil
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Bojana Borislavova Pencheva
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Vinayak Mahesh Patil
- Intensive Care Unit Medical Officer, District Hospital Vijayapura, Karnataka, India
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Birk H, Kandregula S, Cuevas-Ocampo A, Wang CJ, Kosty J, Notarianni C. Pediatric pituitary adenoma and medulloblastoma in the setting of p53 mutation: case report and review of the literature. Childs Nerv Syst 2022; 38:1783-1789. [PMID: 35254474 DOI: 10.1007/s00381-022-05478-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
Li-Fraumeni syndrome is a cancer predisposition condition associated with various tumor types. We present the case of a 6-year-old boy who initially presented with a pituitary adenoma that was successfully treated with surgery. It ultimately recurred, requiring further surgical intervention followed by proton beam therapy. He later developed a medulloblastoma, and genetic testing revealed TP53 germline mutation. The patient underwent gross total resection of this medulloblastoma, followed by proton-based craniospinal irradiation and adjuvant chemotherapy. He remained disease-free 12 months after radiation and 7 months after chemotherapy. Current literature does not report pituitary adenoma as the initial central nervous manifestation in Li-Fraumeni syndrome. Early genetic testing should be considered in pediatric patients who present with such rare tumor types to help identify cancer predisposing conditions. Furthermore, as evidenced by our case, the management of multiple brain tumors in the pediatric population poses challenges. A multidisciplinary approach involving neurosurgery, pediatric oncology, pathology, and radiation oncology remains crucial to optimize patient outcomes.
Collapse
Affiliation(s)
- H Birk
- Department of Neurosurgery, Louisiana State University Health Shreveport School of Medicine, 1501 Kings Highway, 3-408C, Shreveport, LA, 71105, USA.
| | - S Kandregula
- Department of Neurosurgery, Louisiana State University Health Shreveport School of Medicine, 1501 Kings Highway, 3-408C, Shreveport, LA, 71105, USA
| | - A Cuevas-Ocampo
- Department of Pathology, Louisiana State University Health Shreveport School of Medicine, Shreveport, LA, USA
| | - C Jake Wang
- Department of Radiation Oncology, Willis-Knighton Health System, Shreveport, LA, USA
| | - J Kosty
- Department of Neurosurgery, Louisiana State University Health Shreveport School of Medicine, 1501 Kings Highway, 3-408C, Shreveport, LA, 71105, USA
| | - C Notarianni
- Department of Neurosurgery, Louisiana State University Health Shreveport School of Medicine, 1501 Kings Highway, 3-408C, Shreveport, LA, 71105, USA
| |
Collapse
|
25
|
Wenger D, Kurumety S, Aydi ZB. A case report: invasive ductal carcinoma in mosaic Li-Fraumeni syndrome. J Surg Case Rep 2022; 2022:rjac408. [PMID: 36168441 PMCID: PMC9509207 DOI: 10.1093/jscr/rjac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) is a rare autosomal dominant condition caused by pathogenic variants in the TP53 tumor suppressor gene and characterized by a high lifetime risk of various cancers with a very early age of onset. We are presenting a 41-year-old woman with right invasive ductal cancer and no family history of cancers, diagnosed with mosaic LFS confirmed with blood and skin punch biopsy samples. She was treated with neoadjuvant chemotherapy, mastectomy and sentinel node biopsy with completion axillary dissection. Adjuvant radiation was not recommended due to increased risk of secondary cancers. She also elected to undergo risk reducing contralateral mastectomy. Further research is warranted to determine the appropriate clinical management and surveillance strategies in patients with mosaic LFS as whether individuals with mosaic LFS have differing cancer risks in comparison to classic germline LFS is unknown.
Collapse
Affiliation(s)
- Danielle Wenger
- University of Arizona College of Medicine – Phoenix , Phoenix, AZ 85006 , USA
| | - Sasha Kurumety
- Department of Radiology, Houston Methodist Hospital , Houston, TX 77030 , USA
| | - Zeynep B Aydi
- Department of Surgery, University of Arizona College of Medicine – Phoenix , Phoenix, AZ 85006 , USA
- Department of Surgical Oncology, Banner MD Anderson Cancer Center , Phoenix, AZ 85006 , USA
| |
Collapse
|
26
|
Li–Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers (Basel) 2022; 14:cancers14153664. [PMID: 35954327 PMCID: PMC9367397 DOI: 10.3390/cancers14153664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Li–Fraumeni Syndrome (LFS) is a rare tumor predisposition syndrome in which the tumor suppressor TP53 gene is mutated in the germ cell population. LFS patients develop a broad spectrum of cancers in their lifetime. The risk to develop these tumors is not decreased by any type of treatment and if the analysis of the TP53 mutational status in the family members was not possible, tumors are often diagnosed in already advanced stages. This review aims to report the evidence for novel mechanisms of tumor onset related to germline TP53 mutations and possible treatments. Abstract Li–Fraumeni syndrome (LFS) is a rare familial tumor predisposition syndrome with autosomal dominant inheritance, involving germline mutations of the TP53 tumor suppressor gene. The most frequent tumors that arise in patients under the age of 45 are osteosarcomas, soft-tissue sarcomas, breast tumors in young women, leukemias/lymphomas, brain tumors, and tumors of the adrenal cortex. To date, no other gene mutations have been associated with LFS. The diagnosis is usually confirmed by genetic testing for the identification of TP53 mutations; therefore, these mutations are considered the biomarkers associated with the tumor spectrum of LFS. Here, we aim to review novel molecular mechanisms involved in the oncogenic functions of mutant p53 in LFS and to discuss recent new diagnostic and therapeutic approaches exploiting TP53 mutations as biomarkers and druggable targets.
Collapse
|
27
|
Carneiro VCG, Gifoni ACLVC, Mauro Rossi B, Andrade CEMDC, Lima FTD, Galvão HDCR, Casali da Rocha JC, Silva Barreto LSD, Ashton‐Prolla P, Guindalini RSC, Farias TPD, Andrade WP, Fernandes PHDS, Ribeiro R, Lopes A, Tsunoda AT, Azevedo BRB, Marins CAM, Oliveira Uchôa DNDA, Dos Santos EAS, Fernández Coimbra FJ, Dias Filho FA, Lopes FCDO, Fernandes FG, Ritt GF, Laporte GA, Guimaraes GC, Feitosa e Castro Neto H, dos Santos JC, de Carvalho Vilela JB, Meinhardt Junior JG, Cunha JRD, Medeiros Milhomem L, da Silva LM, Maciel LDF, Ramalho NM, Leite Nunes R, Guido de Araújo R, de Assunção Ehrhardt R, Delgado Bocanegra RE, Silva Junior TC, Oliveira VRD, Silva Surimã W, de Melo Melquiades M, Ribeiro HSDC, Oliveira AF. Cancer risk‐reducing surgery: Brazilian society of surgical oncology guideline part 1 (gynecology and breast). J Surg Oncol 2022; 126:10-19. [DOI: 10.1002/jso.26812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Vandré Cabral Gomes Carneiro
- Department of Surgey, Gynecology, Oncology Instituto de Medicina Integral Professor Fernando Figueira Recife Brazil
- Department of Pelvic Surgery, Hereditary Cancer Program Hospital de Câncer de Pernambuco Recife Brazil
- Department of Oncogenetic, Oncology Oncologia D'or Rio de Janeiro Brazil
| | | | - Benedito Mauro Rossi
- Department of Oncogenetic, Surgical Oncology Hospital Sírio Libanês São Paulo Brazil
| | | | - Fernanda Teresa de Lima
- Department of Oncogenetic Hospital Israelita Albert Einstein São Paulo Brazil
- Department of Oncogenetic UNIFESP‐EPM São Paulo Brazil
| | | | | | | | | | | | | | - Wesley Pereira Andrade
- Department of Surgery Hospital Beneficência Portuguesa São Paulo Brazil
- Department of Surgery Hospital Oswaldo Cruz São Paulo Brazil
- Department of Surgery Hospital Santa Catarina São Paulo Brazil
| | | | - Reitan Ribeiro
- Department of Surgical Oncology Hospital Erasto Gaertner Curitiba Brazil
| | - Andre Lopes
- Department of Surgical Oncology São Camilo Oncologia São Paulo Brazil
| | - Audrey Tieko Tsunoda
- Department of Surgical Oncology Hospital Erasto Gaertner Curitiba Brazil
- Department of Surgery Pontifícia Universidade Católica do Paraná Curitiba Brazil
| | - Bruno Roberto Braga Azevedo
- Department of Surgical Oncology Oncoclínicas Curitiba Brazil
- Department of Surgery Pilar Hospital Curitiba Brazil
| | - Carlos Augusto Martinez Marins
- Department of Head and Neck, Oncological Surgery INCA Rio de Janeiro Brazil
- Department of Surgery Hospital Federal dos Servidores do Estado Rio de Janeiro Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jorge Guardiola Meinhardt Junior
- Department of Surgery Santa Casa de Misericórdia de Porto Alegre Porto Alegre Brazil
- Department of Surgery Hospital Santa Rita Porto Alegre Brazil
| | | | | | - Luciana Mata da Silva
- Department of Pelvic Surgery, Hereditary Cancer Program Hospital de Câncer de Pernambuco Recife Brazil
| | | | - Nathalia Moreira Ramalho
- Department of Surgey, Gynecology, Oncology Instituto de Medicina Integral Professor Fernando Figueira Recife Brazil
- Department of Oncogenetic, Oncology Oncologia D'or Rio de Janeiro Brazil
| | - Rafael Leite Nunes
- Department of Surgery GNDI Notredame Intermédica—Hospital Salvalus São Paulo Brazil
| | - Rodrigo Guido de Araújo
- Department of Pelvic Surgery, Hereditary Cancer Program Hospital de Câncer de Pernambuco Recife Brazil
| | | | | | | | | | | | | | - Heber Salvador de Castro Ribeiro
- Department of Oncogenetic, Abdominal Surgery A. C. Camargo Cancer Center São Paulo Brazil
- SBCO 2021‐2023 BBSO presidente Rio de Janeiro Brazil
| | - Alexandre Ferreira Oliveira
- Department of Surgery Universidade Federal de Juiz de Fora Juiz de Fora Brazil
- SBCO 2019‐2021 BBSO presidente Rio de Janeiro Brazil
| |
Collapse
|
28
|
Kokkali S, Moreno JD, Klijanienko J, Theocharis S. Clinical and Molecular Insights of Radiation-Induced Breast Sarcomas: Is There Hope on the Horizon for Effective Treatment of This Aggressive Disease? Int J Mol Sci 2022; 23:ijms23084125. [PMID: 35456944 PMCID: PMC9029574 DOI: 10.3390/ijms23084125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced breast sarcomas (RIBS) are rare entities representing <1% of all primary breast malignancies, limiting most reports to small retrospective case series. They constitute a heterogeneous group of neoplasms, with high-grade angiosarcoma being the most common subtype. Other sarcoma histotypes, such as undifferentiated pleomorphic sarcoma and leiomyosarcoma, can also be identified. Radiation-induced breast angiosarcoma (RIBA) has an incidence of approximately 0.1% after breast-conserving therapy and arises mainly from the dermis of the irradiated breast. MYC gene amplification is highly indicative of secondary breast angiosarcomas. Their clinical presentation often mimics benign port-radiation lesions, leading to a delay in diagnosis and a lost window of opportunity for cure. Surgery with negative margins is the mainstay of treatment of localized RIBS. In the case of angiosarcoma, technical difficulties, including multifocality, infiltrative margins, and difficulty in assessing tumor margins, render surgical treatment quite challenging. A limited number of studies showed that adjuvant radiation therapy reduces local recurrences; therefore, it is proposed by many groups for large, high-grade tumors. Chemotherapy has been evaluated retrospectively in a small subset of patients, with some evidence supporting its use in angiosarcoma patients. Approximately half of patients with RIBA will show local recurrence. In the advanced setting, different therapeutic options are discussed in the review, including chemotherapy, antiangiogenic therapy, and immunotherapy, whereas the need for further research on molecular therapeutic targets is pointed out.
Collapse
Affiliation(s)
- Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
- Oncology Unit, 2nd Department of Medicine, Medical School, National and Kapodistrian University of Athens, Hippocratio General Hospital of Athens, V. Sofias 114, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-6932326547
| | - Jose Duran Moreno
- Hellenic Group of Sarcoma and Rare Cancers, G. Theologou 5, 11471 Athens, Greece;
| | - Jerzy Klijanienko
- Department of Pathology, Institut Curie, 26 Rue d’Ulm, CEDEX 05, 75248 Paris, France;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| |
Collapse
|
29
|
Sivayoganathan T, Kuruvilla S, Cecchini MJ, Baranova K. A Case of Li-Fraumeni Associated Thymoma. Cureus 2022; 14:e24602. [PMID: 35664418 PMCID: PMC9148616 DOI: 10.7759/cureus.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
Thymomas are among the most common cancers of the anterior mediastinum. They rarely occur in patients with Li-Fraumeni syndrome (LFS), a hereditary syndrome that predisposes individuals to cancer and is characterized by mutations in the tumor suppressor encoding gene TP53. Here we describe a case of primary thymoma in a woman diagnosed with LFS. We cover the initial presentation and diagnosis, radiological findings, histopathological examination, and management of thymoma. In addition, we review p53 physiology and LFS pathophysiology to explore how TP53 expression might differ between the majority of thymomas and in thymomas associated with LFS. This altered pathophysiology may affect management and prognosis due to emerging evidence of increased resistance to conventional treatment, which suggests a need for close monitoring and consideration of novel treatment strategies such as programmed death-ligand 1 (PD-L1) inhibitors.
Collapse
Affiliation(s)
| | | | - Matthew J Cecchini
- Pathology and Laboratory Medicine, London Regional Cancer Program, London, CAN
| | - Katherina Baranova
- Pathology and Laboratory Medicine, London Regional Cancer Program, London, CAN
| |
Collapse
|
30
|
Rhiem K, Auber B, Briest S, Dikow N, Ditsch N, Dragicevic N, Grill S, Hahnen E, Horvath J, Jaeger B, Kast K, Kiechle M, Leinert E, Morlot S, Püsken M, Schäfer D, Schott S, Schroeder C, Siebers-Renelt U, Solbach C, Weber-Lassalle N, Witzel I, Zeder-Göß C, Schmutzler RK. Consensus Recommendations of the German Consortium for Hereditary Breast and Ovarian Cancer. Breast Care (Basel) 2022; 17:199-207. [PMID: 35702495 PMCID: PMC9149395 DOI: 10.1159/000516376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND The German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) has established a multigene panel (TruRisk®) for the analysis of risk genes for familial breast and ovarian cancer. SUMMARY An interdisciplinary team of experts from the GC-HBOC has evaluated the available data on risk modification in the presence of pathogenic mutations in these genes based on a structured literature search and through a formal consensus process. KEY MESSAGES The goal of this work is to better assess individual disease risk and, on this basis, to derive clinical recommendations for patient counseling and care at the centers of the GC-HBOC from the initial consultation prior to genetic testing to the use of individual risk-adapted preventive/therapeutic measures.
Collapse
Affiliation(s)
- Kerstin Rhiem
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology, Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Susanne Briest
- Department of Obstetrics and Gynaecology, University Hospital of Leipzig, Leipzig, Germany
| | - Nicola Dikow
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital of Augsburg, Augsburg, Germany
| | - Neda Dragicevic
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sabine Grill
- Department of Gynecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology, Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Judit Horvath
- Institute for Human Genetics, University Hospital Münster, Münster, Germany
| | - Bernadette Jaeger
- Department of Gynaecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Kast
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology, Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Elena Leinert
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Susanne Morlot
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Michael Püsken
- Department of Radiology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Dieter Schäfer
- Institute for Human Genetics, University of Frankfurt, Frankfurt, Germany
| | - Sarah Schott
- Department of Obstetrics and Gynaecology, University of Heidelberg, Heidelberg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | | | - Christine Solbach
- Department of Gynecology and Obstetrics, University Hospital Frankfurt, Frankfurt, Germany
| | - Nana Weber-Lassalle
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology, Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Isabell Witzel
- Department of Obstetrics and Gynaecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Zeder-Göß
- Department of Gynecology and Obstetrics, University Hospital of Augsburg, Augsburg, Germany
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology, Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
31
|
Sassi H, Meddeb R, Cherif MA, Nasr C, Riahi A, Hannachi S, Belguith N, M'rad R. Li-Fraumeni syndrome in Tunisian carriers with different and rare tumor phenotype: genotype-phenotype correlation. BMC Med Genomics 2022; 15:44. [PMID: 35246108 PMCID: PMC8895785 DOI: 10.1186/s12920-022-01189-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is a rare autosomal hereditary predisposition to multiples cancers, mainly affecting young individuals. It is characterized by a broad tumor spectrum. To our best knowledge, only one Tunisian study with a confirmed LFS was published. METHODS Our study focused on the clinical, histopathological and genetic results of two patients with rare tumor phenotype and tried to establish genotype-phenotype correlation. The clinical diagnosis was based on Chompret-Bonaiti criteria relative to LFS. Molecular study was assessed using Sanger sequencing of the hotspot germline variants of TP53 gene. RESULTS We report 2 Tunisian families fulfilling the clinical criteria of Chompret-Bonaiti. The tumor phenotype was bilateral breast cancer (BC) in 27-year-old woman and multiple tumors for the second proband, with an onset age of 14, 35 and 36 yo for osteosarcoma, BC and esophageal cancer respectively. Each of them had a rare histological type of breast cancer associated with LFS, phyllode tumor and intralobular carcinoma. Both patients had cancer family history. The molecular study showed deleterious heterozygous germline TP53 variants in each index case: The first had a well-known hotspot missense variation c.742C>T p.(R248W) with a rare histological association, explaining genotype phenotype correlation. The second case had a nonsense variation c.159G>A p.(W53*), rare worldwide, extending the phenotype spectrum in LFS. Immunohistochemistry study in tumor samples confirmed the lack of p53 protein expression. CONCLUSIONS Conclusively, germline TP53 testing is primordial in patients with a family history suggestive of LFS for clinical practice avoiding genotoxic treatments and adapting the surveillance. National database in LFS listing clinical and mutational data is important to set, particularly for variants rarely reported worldwide. Experience from different countries must be integrated to harmonize global protocols for cancer surveillance in LFS.
Collapse
Affiliation(s)
- Hela Sassi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, University Tunis El Manar, 1006, Tunis, Tunisia.
| | - Rym Meddeb
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, University Tunis El Manar, 1006, Tunis, Tunisia. .,Laboratory of Human Genetics LR99ES10, Faculty of Medicine of Tunis, University Tunis El Manar, 1006, Tunis, Tunisia.
| | - Mohamed Aziz Cherif
- Department of Radiation Oncology, Salah Azaiez Institute, University Tunis El Manar, 1006, Tunis, Tunisia
| | - Chiraz Nasr
- Department of Radiation Oncology, Salah Azaiez Institute, University Tunis El Manar, 1006, Tunis, Tunisia
| | - Aouatef Riahi
- Institute of Applied Biological Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Samia Hannachi
- Laboratory of Pathology Anatomy and Cytology, Tunis, Tunisia
| | - Neila Belguith
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, University Tunis El Manar, 1006, Tunis, Tunisia
| | - Ridha M'rad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, University Tunis El Manar, 1006, Tunis, Tunisia.,Laboratory of Human Genetics LR99ES10, Faculty of Medicine of Tunis, University Tunis El Manar, 1006, Tunis, Tunisia
| |
Collapse
|
32
|
Sandru F, Dumitrascu MC, Petca A, Carsote M, Petca RC, Ghemigian A. Melanoma in patients with Li-Fraumeni syndrome (Review). Exp Ther Med 2021; 23:75. [PMID: 34934446 DOI: 10.3892/etm.2021.10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) is a cancer-prone, autosomal dominant syndrome caused by underlying germline gene mutations of TP53, a tumor-suppressor gene encoding the p53 protein with a major role in apoptosis, DNA repair and cell cycle regulation. Cumulative cancer incidence for LFS patients by the age of 70 years is 80-100%, mostly involving adrenocortical carcinoma, brain tumors, bone and soft tissue sarcomas, leukemia and female breast cancer from the age of 20 years. Dominant negative TP53 variant is correlated with an increased tumorigenesis risk in LFS. Sporadic TP53 mutations are related to almost half of global cancers since p53 in addition to p73 protein represent essential players in anticancer cellular protection. Epidemiological aspects concerning skin cancers, especially malignant melanoma (MM), in LFS are less clear. A low level of statistical evidence demonstrates LFS cases with pediatric MM, multiple MM, spitzoid MM, atypical presentations, mucosal and uveal MM. Retrospective cohorts indicate a higher cumulative risk than the general population by the age of 70 years for MM and basal cell carcinoma. Non-syndromic and syndromic TP53 mutations are a major pathway of metastasis, including MM. In LHS, an important level of awareness involves skin cancers despite not being a part of the typical malignancy-containing picture. Additional data are crucially needed. However, at least one dermatologic control is a step in the multidisciplinary panel of surveillance of these patients; but in cases with benign and pre-malign pigmentations, serial dermatoscopy and full body photography are recommended for early melanoma detection in order to improve the prognosis and to reduce the overall malignancy burden.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Elias' Emergency Hospital, 011461 Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'Elias' Emergency Hospital, 022461 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Endocrinology, 'C. I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Urology, 'Prof. Dr. Theodor Burghele' Clinical Hospital, 061344 Bucharest, Romania
| | - Adina Ghemigian
- Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Endocrinology, 'C. I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
33
|
Avoidance or adaptation of radiotherapy in patients with cancer with Li-Fraumeni and heritable TP53-related cancer syndromes. Lancet Oncol 2021; 22:e562-e574. [PMID: 34856153 DOI: 10.1016/s1470-2045(21)00425-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
The management of patients with cancer and Li-Fraumeni or heritable TP53-related cancer syndromes is complex because of their increased risk of developing second malignant neoplasms after genotoxic stresses such as systemic treatments or radiotherapy (radiosusceptibility). Clinical decision making also integrates the risks of normal tissue toxicity and sequelae (radiosensitivity) and tumour response to radiotherapy (radioresistance and radiocurability). Radiotherapy should be avoided in patients with cancer and Li-Fraumeni or heritable TP53 cancer-related syndromes, but overall prognosis might be poor without radiotherapy: radioresistance in these patients seems similar to or worse than that of the general population. Radiosensitivity in germline TP53 variant carriers seems similar to that in the general population. The risk of second malignant neoplasms according to germline TP53 variant and the patient's overall oncological prognosis should be assessed during specialised multidisciplinary staff meetings. Radiotherapy should be avoided whenever other similarly curative treatment options are available. In other cases, it should be adapted to minimise the risk of second malignant neoplasms in patients who still require radiotherapy despite its genotoxicity, in view of its potential benefit. Adaptations might be achieved through the reduction of irradiated volumes using proton therapy, non-ionising diagnostic procedures, image guidance, and minimal stray radiation. Non-ionising imaging should become more systematic. Radiotherapy approaches that might result in a lower probability of misrepaired DNA damage (eg, particle therapy biology and tumour targeting) are an area of investigation.
Collapse
|
34
|
Wang DQ, Zhang JY, Li J, Ying JM, Wang X, Fan Y, Wang SL. Case Report: An Internal Mammary Rhabdomyosarcoma After Mastectomy and Systemic and Radiation Therapy in a Patient With Breast Cancer. Front Oncol 2021; 11:751758. [PMID: 34765557 PMCID: PMC8576335 DOI: 10.3389/fonc.2021.751758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 01/11/2023] Open
Abstract
Post-radiation soft tissue sarcomas (PRSTSs) are rare secondary malignancies. In this report, we describe the clinical presentation of a 52-year-old woman who underwent postmastectomy radiation therapy (PMRT) for left-sided breast cancer 2.7 years ago and presented with a left internal mammary mass and left interpectoral nodule on computed tomography. On further evaluation, she was diagnosed with internal mammary rhabdomyosarcoma and interpectoral nodal breast cancer relapse, and was treated with chemotherapy, followed by surgery and endocrine therapy. She developed left pleural metastases and is currently receiving targeted therapy. Internal mammary rhabdomyosarcomas are rare among PRSTSs and pose a diagnostic challenge for patients with breast cancer. Histological evaluation is important for the differential diagnosis of breast cancer relapses with secondary malignancies. The management of post-radiation thoracic rhabdomyosarcomas is challenging, and the prognosis is poor.
Collapse
Affiliation(s)
- Dan-Qiong Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yi Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Ming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Lian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Rippinger N, Fischer C, Sinn HP, Dikow N, Sutter C, Rhiem K, Grill S, Cremer FW, Nguyen HP, Ditsch N, Kast K, Hettmer S, Kratz CP, Schott S. Breast cancer characteristics and surgery among women with Li-Fraumeni syndrome in Germany-A retrospective cohort study. Cancer Med 2021; 10:7747-7758. [PMID: 34569185 PMCID: PMC8559485 DOI: 10.1002/cam4.4300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
Background Women with Li‐Fraumeni syndrome (LFS) have elevated breast cancer (BC) risk. Optimal BC treatment strategies in this population are yet unknown. Methods BC subtypes and treatment were retrospectively investigated between December 2016 and January 2019 in a multicentre study. BC risks were evaluated according to the type of surgery. Results Thirty‐five women of our study population (35/44; 79.5%) had developed 36 breast lesions at first diagnosis at a mean age of 34 years. Those breast lesions comprised 32 invasive BCs (89%), three ductal carcinoma in situ alone (8%) and one malignant phyllodes tumour (3%). BCs were mainly high‐grade (18/32), of no special type (NST; 31/32), HER2‐enriched (11/32) or luminal‐B‐(like)‐type (10/32). Affected women (n = 35) received breast‐conserving surgery (BCS, n = 17) or a mastectomy (ME, n = 18) including seven women with simultaneous contralateral prophylactic mastectomy (CPM) at first diagnosis. Nineteen women suffered 20 breast or locoregional axillary lesions at second diagnosis with mean age of 36. Median time between first and second diagnosis was 57 months; median time to contra‐ and ipsilateral recurrence depended on surgical strategies (BCS: 46 vs. unilateral ME: 93 vs. bilateral ME > 140 months). Women with a primary treatment of solitaire therapeutic ME suffered from contralateral BC earlier compared to those with therapeutic ME and CPM (median: 93 vs. >140 months). Conclusion Aggressive BC subtypes occur among women with LFS. Surgical treatment, i.e. ME and CPM, may prolong time to a second BC diagnosis. Conclusion on long‐term survival benefit is pending. Individual competing tumour risks and long‐term outcomes need to be taken into consideration.
Collapse
Affiliation(s)
- Nathalie Rippinger
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Fischer
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Peter Sinn
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Kerstin Rhiem
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Sabine Grill
- Department of Gynecology and Centre for Hereditary Breast and Ovarian Cancer, Comprehensive Cancer Center (CCC TUM), University Hospital Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | | | - Huu P Nguyen
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany.,Department of Human Genetics, University of Bochum, Bochum, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, Ludwig-Maximilians University (LMU), University Hospital of Munich, Munich, Germany.,Department of Gynecology and Obstretrics, University Hospital Augsburg, Augsburg, Germany
| | - Karin Kast
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany.,Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,National Center for Tumour Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Simone Hettmer
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Haematology and Oncology Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian P Kratz
- Paediatric Haematology and Oncology and Rare Disease Program, Hannover Medical School, Hannover, Germany
| | - Sarah Schott
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Streitbürger A, Nottrott M, Guder W, Podleska L, Dudda M, Hardes J. [Strategic approach to pathological fractures]. Unfallchirurg 2021; 124:687-694. [PMID: 34398277 DOI: 10.1007/s00113-021-01068-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Pathological tumor-associated fractures are overall rare. They can occur in every age group and every bone. Although tumor-related fractures only form a small proportion of bone fractures, the early recognition of the cause of the fracture and treatment according to oncological guidelines are of enormous importance for affected patients. False treatment is frequently associated with far-reaching negative consequences with respect to the course of the disease. The great challenge is not the expeditious surgical treatment but much more the adequate diagnostics and the incorporation of local fracture treatment into an interdisciplinary overall oncological concept.
Collapse
Affiliation(s)
- Arne Streitbürger
- Klinik für Tumororthopädie, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| | - Markus Nottrott
- Klinik für Tumororthopädie, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| | - Wiebke Guder
- Klinik für Tumororthopädie, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| | - Lars Podleska
- Klinik für Tumororthopädie, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| | - Marcel Dudda
- Klinik für Unfall‑, Hand-, und Wiederherstellungschirurgie, Universitätsmedizin Essen, Essen, Deutschland
| | - Jendrik Hardes
- Klinik für Tumororthopädie, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| |
Collapse
|
37
|
Castiaux J, Vandernoot I, Dallemagne J, Bruneau M, Delaunoy M, Peyrassol X, Heimann P, De Wilde V, Wolfromm A. Case Report of an Unusual Tumor in an Adult With a TP53 Germline Mutation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:e645-e648. [PMID: 34049842 DOI: 10.1016/j.clml.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Julie Castiaux
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | - Isabelle Vandernoot
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Dallemagne
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Bruneau
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Mélanie Delaunoy
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Xavier Peyrassol
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Heimann
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Virginie De Wilde
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Alice Wolfromm
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
38
|
Fukushima H, Suzuki R, Yamaki Y, Hosaka S, Inaba M, Morii W, Noguchi E, Takada H. Cancer predisposition genes in Japanese children with rhabdomyosarcoma. J Hum Genet 2021; 67:35-41. [PMID: 34257391 DOI: 10.1038/s10038-021-00961-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 11/09/2022]
Abstract
Rhabdomyosarcoma (RMS) is one of the most common soft tissue sarcomas in children. Germline mutations in cancer-predisposition genes have been detected in approximately 10% of pediatric cancers. However, the genetic background of RMS is still unclear, especially in Asian children. DNA was extracted from the peripheral blood of children with RMS and cancer-associated genes analyzed using targeted re-sequencing. Twenty patients participated in this study. There were three deaths due to RMS. One patient developed a second neoplasm. Nine patients had long-term co-morbidities. Six pathogenic variants were found in five patients: one nonsense variant of DICER1, one exon deletion of TP53, and three missense variants of BUB1B, LIG4, and MEN1. Two of the five patients had a family history of cancer. Two patients with missense variants of LIG4 had long-term co-morbidities of drug-induced cardiomyopathy. The missense variants of LIG4, essential for DNA double-strand break repair, were detected in two unrelated patients. While this is the first report of the germline genetic analysis of Japanese children with RMS with detailed clinical information, the frequency of the variant was almost equivalent to that of previous reports from western countries. Unbiased exon sequencing may be useful to clarify the pathogenesis of RMS in children and in predicting the clinical course of these patients.
Collapse
Affiliation(s)
- Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan. .,Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Ryoko Suzuki
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan.,Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuni Yamaki
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Masako Inaba
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Wataru Morii
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan.,Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
El-Nachef L, Al-Choboq J, Restier-Verlet J, Granzotto A, Berthel E, Sonzogni L, Ferlazzo ML, Bouchet A, Leblond P, Combemale P, Pinson S, Bourguignon M, Foray N. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int J Mol Sci 2021; 22:7158. [PMID: 34281212 PMCID: PMC8267933 DOI: 10.3390/ijms22137158] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term "radiosensitivity" was used by the pioneers at the beginning of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell death, a confusion emerged in the literature from the 1930s, as "radiosensitivity" was indifferently used to describe the toxic, cancerous, or aging effect of IR. In parallel, the predisposition to radiation-induced adverse tissue reactions (radiosensitivity), notably observed after radiotherapy appears to be caused by different mechanisms than those linked to predisposition to radiation-induced cancer (radiosusceptibility). This review aims to document these differences in order to better estimate the different radiation-induced risks. It reveals that there are very few syndromes associated with the loss of biological functions involved directly in DNA damage recognition and repair as their role is absolutely necessary for cell viability. By contrast, some cytoplasmic proteins whose functions are independent of genome surveillance may also act as phosphorylation substrates of the ATM protein to regulate the molecular response to IR. The role of the ATM protein may help classify the genetic syndromes associated with radiosensitivity and/or radiosusceptibility.
Collapse
Affiliation(s)
- Laura El-Nachef
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Joelle Al-Choboq
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Juliette Restier-Verlet
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Adeline Granzotto
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Elise Berthel
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
- Neolys Diagnostics, 67960 Entzheim, France
| | - Laurène Sonzogni
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Mélanie L. Ferlazzo
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Audrey Bouchet
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Pierre Leblond
- Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (P.L.); (P.C.)
| | - Patrick Combemale
- Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (P.L.); (P.C.)
| | - Stéphane Pinson
- Hospices Civils de Lyon, Quai des Célestins, 69002 Lyon, France;
| | - Michel Bourguignon
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
- Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| |
Collapse
|
40
|
Kerrigan K, Chan J, Vagher J, Kohlmann W, Naumer A, Anson J, Low S, Schiffman J, Maese L. Lung Cancer in Li-Fraumeni Syndrome. JCO Precis Oncol 2021; 5:PO.20.00468. [PMID: 34250390 PMCID: PMC8232233 DOI: 10.1200/po.20.00468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kathleen Kerrigan
- Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Jessica Chan
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| | - Jennie Vagher
- Department of Genetic Counseling, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Wendy Kohlmann
- Department of Genetic Counseling, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Anne Naumer
- Department of Genetic Counseling, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Jo Anson
- Department of Genetic Counseling, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Sara Low
- Department of Genetic Counseling, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Joshua Schiffman
- Department of Pediatrics, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Luke Maese
- Department of Pediatrics, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| |
Collapse
|
41
|
Alyami H, Yoo TK, Cheun JH, Lee HB, Jung SM, Ryu JM, Bae SJ, Jeong J, Yoon CI, Ahn J, Paik PS, Cho MK, Park WC. Clinical Features of Breast Cancer in South Korean Patients with Germline TP53 Gene Mutations. J Breast Cancer 2021; 24:175-182. [PMID: 33818021 PMCID: PMC8090805 DOI: 10.4048/jbc.2021.24.e16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 02/16/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose Li-Fraumeni syndrome (LFS) is a rare autosomal cancer syndrome caused by a germline mutation in the TP53 gene. Breast cancer in LFS patients is of various subtypes; however, limited data are available on the clinicopathological features of these subtypes and their appropriate treatments. This study aimed to review the clinical features and treatments for breast cancer in South Korean patients with germline TP53 mutations. Methods Data on the clinicopathological features and treatment of all breast cancer patients with LFS were collected retrospectively from the available database of 4 tertiary hospitals in the Republic of Korea. Results Twenty-one breast cancer cases in 12 unrelated women with confirmed germline TP53 mutations were included in the study. The median age at diagnosis was 33.5 years. The histopathological diagnosis included invasive ductal carcinoma (n = 16), ductal carcinoma in situ (n = 3), and malignant phyllodes tumor (n = 2). While 42% and 31% of the cases were positive for estrogen and progesterone receptors, respectively, 52.6% were human epidermal growth factor receptor 2 (HER2) positive, and 21% were triple-negative. The treatments included mastectomy (52%) and breast-conserving surgery (38%). Five patients underwent radiotherapy (RT). The median follow-up period was 87.5 (8–222) months. There were 3 ipsilateral and 4 contralateral breast recurrences during the follow-up, and 8 patients developed new primary cancers. In the post-RT subgroup, there were 2 ipsilateral and 2 contralateral breast recurrences in 1 patient, and 4 patients had a new primary cancer. Conclusion As reported in other countries, breast cancer in LFS patients in South Korea had an early onset and were predominantly but not exclusively positive for HER2. A multidisciplinary approach with adherence to the treatment guidelines, considering mastectomy, and avoiding RT is encouraged to prevent RT-associated sequelae in LFS patients.
Collapse
Affiliation(s)
- Hassan Alyami
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Surgery, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | - Tae Kyung Yoo
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Ho Cheun
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Han Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sung Mi Jung
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jai Min Ryu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Ik Yoon
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Juneyoung Ahn
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pill Sun Paik
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Kyung Cho
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|