1
|
Sharip A, Kunz J. Mechanosignaling via Integrins: Pivotal Players in Liver Fibrosis Progression and Therapy. Cells 2025; 14:266. [PMID: 39996739 PMCID: PMC11854242 DOI: 10.3390/cells14040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis, a consequence of chronic liver injury, represents a major global health burden and is the leading cause of liver failure, morbidity, and mortality. The pathological hallmark of this condition is excessive extracellular matrix deposition, driven primarily by integrin-mediated mechanotransduction. Integrins, transmembrane heterodimeric proteins that serve as primary ECM receptors, orchestrate complex mechanosignaling networks that regulate the activation, differentiation, and proliferation of hepatic stellate cells and other ECM-secreting myofibroblasts. These mechanical signals create self-reinforcing feedback loops that perpetuate the fibrotic response. Recent advances have provided insight into the roles of specific integrin subtypes in liver fibrosis and revealed their regulation of key downstream effectors-including transforming growth factor beta, focal adhesion kinase, RhoA/Rho-associated, coiled-coil containing protein kinase, and the mechanosensitive Hippo pathway. Understanding these mechanotransduction networks has opened new therapeutic possibilities through pharmacological manipulation of integrin-dependent signaling.
Collapse
Affiliation(s)
- Aigul Sharip
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan;
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Astana 020000, Kazakhstan
| | - Jeannette Kunz
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan;
| |
Collapse
|
2
|
Bhushan S, Sohal A, Kowdley KV. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis Therapy Landscape. Am J Gastroenterol 2025; 120:151-158. [PMID: 39480026 DOI: 10.14309/ajg.0000000000003174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are rare, and chronic cholestatic diseases that can progress to liver failure. The goals of treatment are to halt the progression of liver disease to cirrhosis and/or liver failure, and alleviate symptoms associated with these diseases. Ursodeoxycholic acid has historically been the first-line treatment of PBC, with obeticholic acid and fibrates used as second-line or adjunctive therapies. However, the treatment landscape is rapidly expanding. Recently, 2 new second-line agents gained US Food and Drug Administration approval for the treatment of PBC, and several other therapies remain under investigation with promising results. Although significant progress has been made in the development of therapies for PBC, there are no current approved treatments of PSC other than liver transplantation although several emerging therapies have shown encouraging results. This review outlines the current and upcoming treatments of PBC and PSC.
Collapse
Affiliation(s)
| | - Aalam Sohal
- Liver Institute Northwest, Seattle, Washington, USA
| | - Kris V Kowdley
- Liver Institute Northwest, Seattle, Washington, USA
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
3
|
Maldonado H, Dreger M, Bedgood LD, Kyriakou T, Wolanska KI, Rigby ME, Marotta VE, Webster JM, Wang J, Rusilowicz-Jones EV, Marshall JF, Coulson JM, Macpherson IR, Hurlstone A, Morgan MR. A trafficking regulatory subnetwork governs α Vβ 6 integrin-HER2 cross-talk to control breast cancer invasion and drug resistance. SCIENCE ADVANCES 2024; 10:eadk9944. [PMID: 39630893 PMCID: PMC11616693 DOI: 10.1126/sciadv.adk9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
HER2 and αVβ6 integrin are independent predictors of breast cancer survival and metastasis. We identify an αVβ6/HER2 cross-talk mechanism driving invasion, which is dysregulated in drug-resistant HER2+ breast cancer cells. Proteomic analyses reveal ligand-bound αVβ6 recruits HER2 and a trafficking subnetwork, comprising guanosine triphosphatases RAB5 and RAB7A and the Rab regulator guanine nucleotide dissociation inhibitor 2 (GDI2). The RAB5/RAB7A/GDI2 functional module mediates direct cross-talk between αVβ6 and HER2, affecting receptor trafficking and signaling. Acute exposure to trastuzumab increases recruitment of the subnetwork to αVβ6, but trastuzumab resistance decouples GDI2 recruitment. GDI2, RAB5, and RAB7A cooperate to regulate migration and transforming growth factor-β activation to promote invasion. However, these mechanisms are dysregulated in trastuzumab-resistant cells. In patients, RAB5A, RAB7A, and GDI2 expression correlates with patient survival and αVβ6 expression predicts relapse following trastuzumab treatment. Thus, the RAB5/RAB7A/GDI2 subnetwork regulates αVβ6-HER2 cross-talk to drive breast cancer invasion but is subverted in trastuzumab-resistant cells to drive αVβ6-independent and HER2-independent tumor progression.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Marcel Dreger
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lara D. Bedgood
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Theano Kyriakou
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Katarzyna I. Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Megan E. Rigby
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Valeria E. Marotta
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Justine M. Webster
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Jun Wang
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Emma V. Rusilowicz-Jones
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Judy M. Coulson
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Iain R. Macpherson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Adam Hurlstone
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mark R. Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|
4
|
Mu Y, Liu J, Wu Q, Wang B, Hu T, Li Y, Yan X, Ma L, Tan Z. A dual αvβ1/αvβ6 integrin inhibitor Bexotegrast (PLN-74809) ameliorates organ injury and fibrogenesis in fibrotic kidney disease. Eur J Pharmacol 2024; 983:176983. [PMID: 39243926 DOI: 10.1016/j.ejphar.2024.176983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
Chronic kidney disease (CKD) is a global public health problem, involving about 10% of the global population. Unfortunately, there are currently no effective drugs. Kidney fibrosis is the main pathology of CKD, where integrins play crucial roles in renal fibrogenesis. Recently, Bexotegrast (PLN-74809) as a dual integrin αvβ1/αvβ6 inhibitor could reduce the degree of lung fibrosis in patients with idiopathic pulmonary fibrosis. However, the role of PLN-74809 remains unclear in fibrotic kidney disease. Here, we have revealed that PLN-74809 administration dose-dependently delayed the progression of renal fibrosis in both adenine diet- and unilateral ureteral obstruction (UUO)-induced mice. Mechanistically, PLN-74809 targeted integrin αvβ1/αvβ6 to inhibit FAK/Src/Akt/β-catenin cascade in fibrotic kidneys. In summary, our results for the first time highlighted the αvβ1/αvβ6 inhibitor PLN-74809 exerted potential therapeutic against kidney fibrosis.
Collapse
Affiliation(s)
- Yingsong Mu
- Department of Nephrology, Affiliated Hospital of ZunYi Medical University, ZunYi, 563003, China
| | - Jing Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qimei Wu
- Department of Nephrology, Affiliated Hospital of ZunYi Medical University, ZunYi, 563003, China
| | - Bo Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - TingTing Hu
- Department of Nephrology, Affiliated Hospital of ZunYi Medical University, ZunYi, 563003, China
| | - Yiman Li
- Department of Nephrology, Affiliated Hospital of ZunYi Medical University, ZunYi, 563003, China
| | - Xiaoyong Yan
- Department of Nephrology, Affiliated Hospital of ZunYi Medical University, ZunYi, 563003, China.
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhouke Tan
- Department of Nephrology, Affiliated Hospital of ZunYi Medical University, ZunYi, 563003, China; Organ Transplant Center, Affiliated Hospital of ZunYi Medical University, ZunYi, 563000, China; Guizhou Province Key Laboratory of Cell Engineering, Affiliated Hospital of ZunYi Medical University, ZunYi, 563003, China.
| |
Collapse
|
5
|
Fang Y, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep 2024; 9:3116-3133. [PMID: 39534198 PMCID: PMC11551060 DOI: 10.1016/j.ekir.2024.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) is a prevalent microvascular complication that occurs often in individuals with diabetes. It significantly raises the mortality rate of affected patients. Therefore, there is an urgent need to identify therapeutic targets for controlling and preventing the occurrence and development of DN. Bile acids (BAs) are now recognized as intricate metabolic integrators and signaling molecules. The activation of BAs has great promise as a therapeutic approach for preventing DN, renal damage caused by obesity, and nephrosclerosis. The nuclear receptors (NRs), farnesoid X receptor (FXR), pregnane X receptor (PXR), vitamin D receptor (VDR); and the G protein-coupled BA receptor, Takeda G-protein-coupled receptor 5 (TGR5) have important functions in controlling lipid, glucose, and energy metabolism, inflammation, as well as drug metabolism and detoxification. Over the past 10 years, there has been advancement in comprehending the biology and processes of BA receptors in the kidney, as well as in the creation of targeted BA receptor agonists. In this review, we discuss the role of BA receptors, FXR, PXR, VDR, and TGR5 in DN and their role in renal physiology, as well as the development and application of agonists that activate BA receptors for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Wilson ZS, Raya-Sandino A, Miranda J, Fan S, Brazil JC, Quiros M, Garcia-Hernandez V, Liu Q, Kim CH, Hankenson KD, Nusrat A, Parkos CA. Critical role of thrombospondin-1 in promoting intestinal mucosal wound repair. JCI Insight 2024; 9:e180608. [PMID: 39078701 PMCID: PMC11385097 DOI: 10.1172/jci.insight.180608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor, CD47, attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remain poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelium-specific loss of TSP1 (VillinCre/+ Thbs1fl/fl or Thbs1ΔIEC mice). We report that exposure to exogenous TSP1 enhanced migration of intestinal epithelial cells in a CD47- and TGF-β1-dependent manner and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics through suppression of RhoA activity, activation of Rho family small GTPase (Rac1), and changes in filamentous-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGF-β1, coordinate integrin-containing cell-matrix adhesion dynamics, and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingyang Liu
- Department of Pathology
- Mary H. Weiser Food Allergy Center, and
| | - Chang H. Kim
- Department of Pathology
- Mary H. Weiser Food Allergy Center, and
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
7
|
Bellani S, Molyneaux PL, Maher TM, Spagnolo P. Potential of αvβ6 and αvβ1 integrin inhibition for treatment of idiopathic pulmonary fibrosis. Expert Opin Ther Targets 2024; 28:575-585. [PMID: 38949181 DOI: 10.1080/14728222.2024.2375375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease of unknown cause with a dismal prognosis. Nintedanib and Pirfenidone are approved worldwide for the treatment of IPF, but they only slow the rate of functional decline and disease progression. Therefore, there is an urgent need for more efficacious and better tolerated drugs. AREAS COVERED αvβ6 and αvβ1 are two integrins overexpressed in fibrotic tissue, which play a critical role in the development of lung fibrosis. They act by converting transforming growth factor (TGF)-β, one of the most important profibrotic cytokine, in its active form. Here, we summarize and critically discuss the potential of a dual αvβ6/αvβ1 integrin inhibitor for the treatment of IPF. EXPERT OPINION Bexotegrast, a dual αvβ6/αvβ1 integrin inhibitor, has the potential to slow or even halt disease progression in IPF. Indeed, the strong pre-clinical rationale and promising early phase clinical trial data have raised expectations.
Collapse
Affiliation(s)
- Serena Bellani
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College, London, UK
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospitals, London, UK
| | - Toby M Maher
- Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Guo W, Liu H, Yan Y, Wu D, Yao H, Lin K, Li X. Targeting the TGF-β signaling pathway: an updated patent review (2021-present). Expert Opin Ther Pat 2024; 34:99-126. [PMID: 38648107 DOI: 10.1080/13543776.2024.2346325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION The TGF-β signaling pathway is a complex network that plays a crucial role in regulating essential biological functions and is implicated in the onset and progression of multiple diseases. This review highlights the recent advancements in developing inhibitors targeting the TGF-β signaling pathway and their potential therapeutic applications in various diseases. AREA COVERED The review discusses patents on active molecules related to the TGF-β signaling pathway, focusing on three strategies: TGF-β activity inhibition, blocking TGF-β receptor binding, and disruption of the signaling pathway using small molecule inhibitors. Combination therapies and the development of fusion proteins targeting multiple pathways are also explored. The literature search was conducted using the Cortellis Drug Discovery Intelligence database, covering patents from 2021 onwards. EXPERT OPINION The development of drugs targeting the TGF-β signaling pathway has made significant progress in recent years. However, addressing challenges such as specificity, systemic toxicity, and patient selection is crucial for their successful clinical application. Targeting the TGF-β signaling pathway holds promise as a promising approach for the treatment of various diseases.
Collapse
Affiliation(s)
- Wenhao Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanwen Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong Yan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Di Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hequan Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuanyi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Mattson NM, Chan AKN, Miyashita K, Mukhaleva E, Chang WH, Yang L, Ma N, Wang Y, Pokharel SP, Li M, Liu Q, Xu X, Chen R, Singh P, Zhang L, Elsayed Z, Chen B, Keen D, Pirrotte P, Rosen ST, Chen J, LaBarge MA, Shively JE, Vaidehi N, Rockne RC, Feng M, Chen CW. A novel class of inhibitors that disrupts the stability of integrin heterodimers identified by CRISPR-tiling-instructed genetic screens. Nat Struct Mol Biol 2024; 31:465-475. [PMID: 38316881 PMCID: PMC10948361 DOI: 10.1038/s41594-024-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
The plasma membrane is enriched for receptors and signaling proteins that are accessible from the extracellular space for pharmacological intervention. Here we conducted a series of CRISPR screens using human cell surface proteome and integrin family libraries in multiple cancer models. Our results identified ITGAV (integrin αV) and its heterodimer partner ITGB5 (integrin β5) as the essential integrin α/β pair for cancer cell expansion. High-density CRISPR gene tiling further pinpointed the integral pocket within the β-propeller domain of ITGAV for integrin αVβ5 dimerization. Combined with in silico compound docking, we developed a CRISPR-Tiling-Instructed Computer-Aided (CRISPR-TICA) pipeline for drug discovery and identified Cpd_AV2 as a lead inhibitor targeting the β-propeller central pocket of ITGAV. Cpd_AV2 treatment led to rapid uncoupling of integrin αVβ5 and cellular apoptosis, providing a unique class of therapeutic action that eliminates the integrin signaling via heterodimer dissociation. We also foresee the CRISPR-TICA approach to be an accessible method for future drug discovery studies.
Collapse
Affiliation(s)
- Nicole M Mattson
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Anthony K N Chan
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kazuya Miyashita
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Wen-Han Chang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingyu Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaobao Xu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Priyanka Singh
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zeinab Elsayed
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bryan Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Denise Keen
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Steven T Rosen
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mark A LaBarge
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John E Shively
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mingye Feng
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
10
|
Barcellos-Hoff MH, Gulley JL. Molecular Pathways and Mechanisms of TGFβ in Cancer Therapy. Clin Cancer Res 2023; 29:2025-2033. [PMID: 36598437 PMCID: PMC10238558 DOI: 10.1158/1078-0432.ccr-21-3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Even though the number of agents that inhibit TGFβ being tested in patients with cancer has grown substantially, clinical benefit from TGFβ inhibition has not yet been achieved. The myriad mechanisms in which TGFβ is protumorigenic may be a key obstacle to its effective deployment; cancer cells frequently employ TGFβ-regulated programs that engender plasticity, enable a permissive tumor microenvironment, and profoundly suppress immune recognition, which is the target of most current early-phase trials of TGFβ inhibitors. Here we discuss the implications of a less well-recognized aspect of TGFβ biology regulating DNA repair that mediates responses to radiation and chemotherapy. In cancers that are TGFβ signaling competent, TGFβ promotes effective DNA repair and suppresses error-prone repair, thus conferring resistance to genotoxic therapies and limiting tumor control. Cancers in which TGFβ signaling is intrinsically compromised are more responsive to standard genotoxic therapy. Recognition that TGFβ is a key moderator of both DNA repair and immunosuppression might be used to synergize combinations of genotoxic therapy and immunotherapy to benefit patients with cancer.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Gibson SV, Tomas Bort E, Rodríguez-Fernández L, Allen MD, Gomm JJ, Goulding I, Auf dem Keller U, Agnoletto A, Brisken C, Peck B, Cameron AJ, Marshall JF, Jones JL, Carter EP, Grose RP. TGFβ-mediated MMP13 secretion drives myoepithelial cell dependent breast cancer progression. NPJ Breast Cancer 2023; 9:9. [PMID: 36864079 PMCID: PMC9981685 DOI: 10.1038/s41523-023-00513-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer. Virtually all women with DCIS are treated, despite evidence suggesting up to half would remain with stable, non-threatening, disease. Overtreatment thus presents a pressing issue in DCIS management. To understand the role of the normally tumour suppressive myoepithelial cell in disease progression we present a 3D in vitro model incorporating both luminal and myoepithelial cells in physiomimetic conditions. We demonstrate that DCIS-associated myoepithelial cells promote striking myoepithelial-led invasion of luminal cells, mediated by the collagenase MMP13 through a non-canonical TGFβ - EP300 pathway. In vivo, MMP13 expression is associated with stromal invasion in a murine model of DCIS progression and is elevated in myoepithelial cells of clinical high-grade DCIS cases. Our data identify a key role for myoepithelial-derived MMP13 in facilitating DCIS progression and point the way towards a robust marker for risk stratification in DCIS patients.
Collapse
Affiliation(s)
- Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Lucía Rodríguez-Fernández
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jennifer J Gomm
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iain Goulding
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Andrea Agnoletto
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole polytechnique fédérale de Lausanne (EPFL), SV2.832 Station 19, 1015, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole polytechnique fédérale de Lausanne (EPFL), SV2.832 Station 19, 1015, Lausanne, Switzerland
| | - Barrie Peck
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Angus J Cameron
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
12
|
Nho RS, Ballinger MN, Rojas MM, Ghadiali SN, Horowitz JC. Biomechanical Force and Cellular Stiffness in Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:750-761. [PMID: 35183510 PMCID: PMC9088200 DOI: 10.1016/j.ajpath.2022.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023]
Abstract
Lung fibrosis is characterized by the continuous accumulation of extracellular matrix (ECM) proteins produced by apoptosis-resistant (myo)fibroblasts. Lung epithelial injury promotes the recruitment and activation of fibroblasts, which are necessary for tissue repair and restoration of homeostasis. However, under pathologic conditions, a vicious cycle generated by profibrotic growth factors/cytokines, multicellular interactions, and matrix-associated signaling propagates the wound repair response and promotes lung fibrosis characterized not only by increased quantities of ECM proteins but also by changes in the biomechanical properties of the matrix. Importantly, changes in the biochemical and biomechanical properties of the matrix itself can serve to perpetuate fibroblast activity and propagate fibrosis, even in the absence of the initial stimulus of injury. The development of novel experimental models and methods increasingly facilitates our ability to interrogate fibrotic processes at the cellular and molecular levels. The goal of this review is to discuss the impact of ECM conditions in the development of lung fibrosis and to introduce new approaches to more accurately model the in vivo fibrotic microenvironment. This article highlights the pathologic roles of ECM in terms of mechanical force and the cellular interactions while reviewing in vitro and ex vivo models of lung fibrosis. The improved understanding of the fundamental mechanisms that contribute to lung fibrosis holds promise for identification of new therapeutic targets and improved outcomes.
Collapse
Affiliation(s)
- Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Megan N Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Mauricio M Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
13
|
Platelet-Derived PDGFB Promotes Recruitment of Cancer-Associated Fibroblasts, Deposition of Extracellular Matrix and Tgfβ Signaling in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14081947. [PMID: 35454853 PMCID: PMC9024906 DOI: 10.3390/cancers14081947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Platelets constitute a major reservoir of platelet-derived growth factor B (PDGFB) and are continuously activated in the tumor microenvironment, exposing tumors to the plethora of growth factors contained in platelet granules. To address the specific role of platelet-derived PDGFB in the tumor microenvironment, we have created a mouse model with conditional knockout of PDGFB in platelets (pl-PDGFB KO). Lack of PDGFB in platelets resulted in 10-fold lower PDGFB concentration in the tumor microenvironment, fewer cancer-associated fibroblasts and reduced deposition of the extracellular matrix (ECM) molecules fibronectin and collagen I in the orthotopic RIP1-Tag2 model for pancreatic neuroendocrine cancer. Myosin light chain phosphorylation, promoting cell contraction and, consequently, the mechano-induced release of active transforming growth factor (TGF) β from extracellular compartments, was reduced in tumors from pl-PDGFB KO mice. In agreement, TGFβ signaling, measured as phosphorylated Smad2, was significantly hampered in tumors from mice lacking PDGFB in their platelets, providing a plausible explanation for the reduced deposition of extracellular matrix. These findings indicate a major contribution of platelet-derived PDGFB to a malignant transformation of the tumor microenvironment and address for the first time the role of PDGFB released specifically from platelets in the remodeling of the ECM in tumors.
Collapse
|
14
|
Shihan MH, Novo SG, Wang Y, Sheppard D, Atakilit A, Arnold TD, Rossi NM, Faranda AP, Duncan MK. αVβ8 integrin targeting to prevent posterior capsular opacification. JCI Insight 2021; 6:145715. [PMID: 34554928 PMCID: PMC8663568 DOI: 10.1172/jci.insight.145715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Fibrotic posterior capsular opacification (PCO), a major complication of cataract surgery, is driven by transforming growth factor–β (TGF-β). Previously, αV integrins were found to be critical for the onset of TGF-β–mediated PCO in vivo; however, the functional heterodimer was unknown. Here, β8 integrin–conditional knockout (β8ITG-cKO) lens epithelial cells (LCs) attenuated their fibrotic responses, while both β5 and β6 integrin–null LCs underwent fibrotic changes similar to WT at 5 days post cataract surgery (PCS). RNA-Seq revealed that β8ITG-cKO LCs attenuated their upregulation of integrins and their ligands, as well as known targets of TGF-β–induced signaling, at 24 hours PCS. Treatment of β8ITG-cKO eyes with active TGF-β1 at the time of surgery rescued the fibrotic response. Treatment of WT mice with an anti-αVβ8 integrin function blocking antibody at the time of surgery ameliorated both canonical TGF-β signaling and LC fibrotic response PCS, and treatment at 5 days PCS, after surgically induced fibrotic responses were established, largely reversed this fibrotic response. These data suggest that αVβ8 integrin is a major regulator of TGF-β activation by LCs PCS and that therapeutics targeting αVβ8 integrin could be effective for fibrotic PCO prevention and treatment.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Samuel G Novo
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | | | | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Nicole M Rossi
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
15
|
Decaris ML, Schaub JR, Chen C, Cha J, Lee GG, Rexhepaj M, Ho SS, Rao V, Marlow MM, Kotak P, Budi EH, Hooi L, Wu J, Fridlib M, Martin SP, Huang S, Chen M, Muñoz M, Hom TF, Wolters PJ, Desai TJ, Rock F, Leftheris K, Morgans DJ, Lepist EI, Andre P, Lefebvre EA, Turner SM. Dual inhibition of α vβ 6 and α vβ 1 reduces fibrogenesis in lung tissue explants from patients with IPF. Respir Res 2021; 22:265. [PMID: 34666752 PMCID: PMC8524858 DOI: 10.1186/s12931-021-01863-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022] Open
Abstract
RATIONALE αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. OBJECTIVES We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.
Collapse
Affiliation(s)
| | | | - Chun Chen
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Jacob Cha
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Gail G Lee
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Steve S Ho
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Vikram Rao
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Prerna Kotak
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Erine H Budi
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Lisa Hooi
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Jianfeng Wu
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | | | - Shaoyi Huang
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Ming Chen
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Manuel Muñoz
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Tushar J Desai
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - David J Morgans
- Pliant Therapeutics, South San Francisco, CA, USA
- Maze Therapeutics, South San Francisco, CA, USA
| | | | - Patrick Andre
- Pliant Therapeutics, South San Francisco, CA, USA
- Acceleron Pharma, Cambridge, MA, USA
| | | | | |
Collapse
|
16
|
Lu Q, Sun D, Shivhare SB, Hou H, Bulmer JN, Innes BA, Hapangama DK, Lash GE. Transforming Growth Factor (TGF) β and Endometrial Vascular Maturation. Front Cell Dev Biol 2021; 9:640065. [PMID: 33898426 PMCID: PMC8063037 DOI: 10.3389/fcell.2021.640065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Appropriate growth and development of the endometrium across the menstrual cycle is key for a woman’s quality of life and reproductive well-being. Recurrent pregnancy loss (RPL) and heavy menstrual bleeding (HMB) affect a significant proportion of the female population worldwide. These endometrial pathologies have a significant impact on a woman’s quality of life as well as placing a high economic burden on a country’s health service. An underlying cause for both conditions is unknown in approximately 50% of cases. Previous research has demonstrated that aberrant endometrial vascular maturation is associated with both RPL and HMB, where it is increased in RPL but reduced in HMB. TGFβ1 is one of the key growth factors that regulate vascular maturation, by inducing phenotypic switching of vascular smooth muscle cells (VSMCs) from a synthetic phenotype to a more contractile one. Our previous data demonstrated an increase in TGFβ1 in the endometrium of RPL, while others have shown a decrease in women with HMB. However, TGFβ1 bioavailability is tightly controlled, and we therefore sought to perform an extensive immunohistochemical analysis of different components in the pathway in the endometrium of normal controls, women with HMB or RPL. In addition, two in vitro models were used to examine the role of TGFβ1 in endometrial vascular maturation and endothelial cell (EC):VSMC association. Taken all together, the immunohistochemical data suggest a decrease in bioavailability, receptor binding capacity, and signaling in the endometrium of women with HMB compared with controls. In contrast, there is an increase in the bioavailability of active TGFβ1 in the endometrium of women with RPL compared with controls. Endometrial explants cultured in TGFβ1 had an increase in the number of vessels associated with contractile VSMC markers, although the total number of vessels did not increase. In addition, TGFβ1 increased EC:VSMC association in an in vitro model. In conclusion, TGFβ1 is a key regulator of endometrial vascular maturation and could be considered as a therapeutic target for women suffering from HMB and/or RPL.
Collapse
Affiliation(s)
- Qinsheng Lu
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dingqian Sun
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sourima Biswas Shivhare
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Huomei Hou
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Judith N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Barbara A Innes
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool Women's Hospital, Liverpool, United Kingdom
| | - Gendie E Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
18
|
Gonzalez-Junca A, Reiners O, Borrero-Garcia LD, Beckford-Vera D, Lazar AA, Chou W, Braunstein S, VanBrocklin H, Franc BL, Barcellos-Hoff MH. Positron Emission Tomography Imaging of Functional Transforming Growth Factor β (TGFβ) Activity and Benefit of TGFβ Inhibition in Irradiated Intracranial Tumors. Int J Radiat Oncol Biol Phys 2021; 109:527-539. [PMID: 33007434 PMCID: PMC7856163 DOI: 10.1016/j.ijrobp.2020.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Transforming growth factor β (TGFβ) promotes cell survival by endorsing DNA damage repair and mediates an immunosuppressive tumor microenvironment. Thus, TGFβ activation in response to radiation therapy is potentially targetable because it opposes therapeutic control. Strategies to assess this potential in the clinic are needed. METHODS AND MATERIALS We evaluated positron emission tomography (PET) to image 89Zr -fresolimumab, a humanized TGFβ neutralizing monoclonal antibody, as a means to detect TGFβ activation in intracranial tumor models. Pathway activity of TGFβ was validated by immunodetection of phosphorylated SMAD2 and the TGFβ target, tenascin. The contribution of TGFβ to radiation response was assessed by Kaplan-Meier survival analysis of mice bearing intracranial murine tumor models GL261 and SB28 glioblastoma and brain-adapted 4T1 breast cancer (4T1-BrA) treated with TGFβ neutralizing monoclonal antibody, 1D11, and/or focal radiation (10 Gy). RESULTS 89Zr-fresolimumab PET imaging detected engineered, physiological, and radiation-induced TGFβ activation, which was confirmed by immunostaining of biological markers. GL261 glioblastoma tumors had a greater PET signal compared with similar-sized SB28 glioblastoma tumors, whereas the widespread PET signal of 4T1-BrA intracranial tumors was consistent with their highly dispersed histologic distribution. Survival of mice bearing intracranial tumors treated with 1D11 neutralizing antibody alone was similar to that of mice treated with control antibody, whereas 1D11 improved survival when given in combination with focal radiation. The extent of survival benefit of a combination of radiation and 1D11 was associated with the degree of TGFβ activity detected by PET. CONCLUSIONS This study demonstrates that 89Zr-fresolimumab PET imaging detects radiation-induced TGFβ activation in tumors. Functional imaging indicated a range of TGFβ activity in intracranial tumors, but TGFβ blockade provided survival benefit only in the context of radiation treatment. This study provides further evidence that radiation-induced TGFβ activity opposes therapeutic response to radiation.
Collapse
Affiliation(s)
- Alba Gonzalez-Junca
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Oliver Reiners
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Luis D. Borrero-Garcia
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Denis Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ann A. Lazar
- Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of Oral Epidemiology, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
- Division of Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - William Chou
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steve Braunstein
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin L. Franc
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Current address: Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Ma F, Zhang YY, Yang G, Mo LH, Liu DB, Yang LT, Liu ZG, Ning Y, Yang PC. Integrin αvβ6 cooperates with resiquimod to restore antigen-specific immune tolerance in airway allergy. Immunol Lett 2020; 230:49-58. [PMID: 33385440 DOI: 10.1016/j.imlet.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Integrin αvβ6 can convert the transforming growth factor (TGF)-β precursor to the mature form. Resiquimod (R848) can generate TGF-β-producing regulatory T cells (Treg). Thus, to concurrent administration of specific antigen and R848 may generate antigen-specific Tregs, that is expected to restore immune tolerance in subjects with airway allergic diseases (AAD). METHODS A bio-nanoparticle, designated Rexo, containing an antigen/MHC II complex and R848, was naturally assembled in dendritic cells, that was released as an exosome. An AAD mouse model was developed used to test the effects of Rexo on restoring the immune tolerance in the airways. RESULTS Exposure to R848 failed to induce Tregs in the β6-deficient mouse airway tissues, that were successfully induced in wild type mice. The results were validated inin vitro experiments. R848 activated the TLR7/MyD88/p38 signal pathway to increase the αvβ6 levels in CD4+ T cells, the αvβ6 then converted the TGF-β precursor to its mature form, and thus, induced Treg generation. Administration of Rexo restored the antigen-specific immune tolerance in the airways manifesting efficiently suppressing experimental AAD by inducing antigen-specific Tregs in the airways and inhibiting antigen-specific Th2 response. CONCLUSIONS Rexos can inhibit experimental AAD via inducing antigen-specific Tregs to restore immune tolerance in the airway tissues, suggesting that Rexos have the translational potential to be used in the treatment of AAD.
Collapse
Affiliation(s)
- Fei Ma
- Department of Chinese Traditional Medicine, Affiliated Shenzhen Maternal & Children Hospital, Southern Medical University, Shenzhen, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuan-Yi Zhang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China; Department of Respirology & Allergy, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Li-Hua Mo
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Da-Bo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li-Teng Yang
- Department of Respirology & Allergy, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| | - Yan Ning
- Department of Chinese Traditional Medicine, Affiliated Shenzhen Maternal & Children Hospital, Southern Medical University, Shenzhen, China.
| | - Ping-Chang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
20
|
Macarak EJ, Wermuth PJ, Rosenbloom J, Uitto J. Keloid disorder: Fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp Dermatol 2020; 30:132-145. [PMID: 33211348 DOI: 10.1111/exd.14243] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Keloid disorder, a group of fibroproliferative skin diseases, is characterized by unremitting accumulation of the extracellular matrix (ECM) of connective tissue, primarily collagen, to develop cutaneous tumors on the predilection sites of skin. There is a strong genetic predisposition for keloid formation, and individuals of African and Asian ancestry are particularly prone. The principal cell type responsible for ECM accumulation is the myofibroblast derived from quiescent resident skin fibroblasts either through trans-differentiation or from keloid progenitor stem cells with capacity for multi-lineage differentiation and self-renewal. The biosynthetic pathways leading to ECM accumulation are activated by several cytokines, but particularly by TGF-β signalling. The mechanical properties of the cellular microenvironment also play a critical role in the cell's response to TGF-β, as demonstrated by culturing of fibroblasts derived from keloids and control skin on substrata with different degrees of stiffness. These studies also demonstrated that culturing of fibroblasts on tissue culture plastic in vitro does not reflect their biosynthetic capacity in vivo. Collectively, our current understanding of the pathogenesis of keloids suggests a complex network of interacting cellular, molecular and mechanical factors, with distinct pathways leading to myofibroblast differentiation and activation. Keloids can serve as a model system of fibrotic diseases, a group of currently intractable disorders, and deciphering of the critical pathogenetic steps leading to ECM accumulation is expected to identify targets for pharmacologic intervention, not only for keloids but also for a number of other, both genetic and acquired, fibrotic diseases.
Collapse
Affiliation(s)
- Edward J Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter J Wermuth
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jouni Uitto
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Hiepen C, Mendez PL, Knaus P. It Takes Two to Tango: Endothelial TGFβ/BMP Signaling Crosstalk with Mechanobiology. Cells 2020; 9:E1965. [PMID: 32858894 PMCID: PMC7564048 DOI: 10.3390/cells9091965] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGFβ) superfamily of cytokines. While some ligand members are potent inducers of angiogenesis, others promote vascular homeostasis. However, the precise understanding of the molecular mechanisms underlying these functions is still a growing research field. In bone, the tissue in which BMPs were first discovered, crosstalk of TGFβ/BMP signaling with mechanobiology is well understood. Likewise, the endothelium represents a tissue that is constantly exposed to multiple mechanical triggers, such as wall shear stress, elicited by blood flow or strain, and tension from the surrounding cells and to the extracellular matrix. To integrate mechanical stimuli, the cytoskeleton plays a pivotal role in the transduction of these forces in endothelial cells. Importantly, mechanical forces integrate on several levels of the TGFβ/BMP pathway, such as receptors and SMADs, but also global cell-architecture and nuclear chromatin re-organization. Here, we summarize the current literature on crosstalk mechanisms between biochemical cues elicited by TGFβ/BMP growth factors and mechanical cues, as shear stress or matrix stiffness that collectively orchestrate endothelial function. We focus on the different subcellular compartments in which the forces are sensed and integrated into the TGFβ/BMP growth factor signaling.
Collapse
Affiliation(s)
| | | | - Petra Knaus
- Knaus-Lab/Signal Transduction, Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (C.H.); (P.-L.M.)
| |
Collapse
|
22
|
Zhou M, Niu J, Wang J, Gao H, Shahbaz M, Niu Z, Li Z, Zou X, Liang B. Integrin αvβ8 serves as a Novel Marker of Poor Prognosis in Colon Carcinoma and Regulates Cell Invasiveness through the Activation of TGF-β1. J Cancer 2020; 11:3803-3815. [PMID: 32328185 PMCID: PMC7171496 DOI: 10.7150/jca.43826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/29/2020] [Indexed: 12/24/2022] Open
Abstract
Integrin αvβ8 expressed on tumor cells executes crucial regulatory functions during cell adhesion in the tumor microenvironment and supports the activation of TGF-β1. This study aimed to investigate the expression of integrin αvβ8 and its clinical significance in colon cancer, in addition to its influence on the invasion and migration of cancer cells. Our results showed that integrin αvβ8 was an indicator of progression and poor prognosis in patients with colon cancer. Moreover, integrin αvβ8 significantly promoted the invasion and migration of colon cancer cells by the activation of TGF-β1 and upregulation of metalloproteinase-9. Furthermore, suppression of integrin αvβ8 was found to inhibit the growth of colon cancer in vivo. Our results indicate that integrin αvβ8 promotes tumor invasiveness and the migration of colon cancer through TGF-β1 activation and is a potential prognostic biomarker. This study may provide clues to further understand the manner in which the tumor microenvironment mediates the development of colon cancer and develop strategies for novel therapeutic targets in the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Mingliang Zhou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Jun Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012 Shandong, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Huijie Gao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012 Shandong, China
| | - Muhammad Shahbaz
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012 Shandong, China
| | - Zhengchuan Niu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Zequn Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Xueqing Zou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Benjia Liang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| |
Collapse
|
23
|
Huang H, Yuan M, Wu SL, Ba J, Yu X, Mao X, Jin F. Clinical Significance of C-X-C Motif Chemokine Receptor 4 and Integrin αvβ6 Expression in Breast Cancer. J Breast Cancer 2020; 23:171-181. [PMID: 32395376 PMCID: PMC7192747 DOI: 10.4048/jbc.2020.23.e23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose C-X-C motif chemokine receptor 4 (CXCR4) and integrin αvβ6 play important roles in the malignant progression of multiple cancers. However, it remains unclear whether the expression of one or both proteins in breast cancer (BC) is of clinical significance. In this study, we investigated the expression of CXCR4 and integrin αvβ6 in BC tissues and their correlation with clinicopathological characteristics, including survival. Methods CXCR4 and αvβ6 expression in 111 BC tissues was examined by immunocytochemistry. Correlations between the expression of the 2 proteins and patient clinicopathological characteristic were investigated using the Kaplan–Meier method and the Cox proportional hazards model. Results CXCR4 and αvβ6 were overexpressed in BC tissue compared with normal breast tissue. Overexpression of both molecules was related to lymph node status (p = 0.013 and p = 0.022, respectively). αvβ6 overexpression was also associated with tumor size (p = 0.044). A positive correlation was detected between the expression of CXCR4 and αvβ6 (r = 0.649, p = 0.001), and co-overexpression of both molecules was associated with tumor size (p = 0.018) and lymph node metastasis (p = 0.015). Kaplan–Meier analysis revealed that overexpression of CXCR4, αvβ6, or both molecules was associated with short overall survival (OS; p < 0.001, p < 0.001, and p = 0.009, respectively) and disease-free survival (DFS; p < 0.001, p = 0.005, and p = 0.019, respectively). Multivariate analysis indicated that lymph node metastasis was an independent prognostic factor for unfavorable OS and DFS (p = 0.002 and p = 0.005, respectively), whereas co-overexpression of CXCR4 and αvβ6 was an independent prognostic factor only for OS (p = 0.043). Conclusion CXCR4 and αvβ6 may play synergistic roles in the progression of BC, and co-targeting of CXCR4 and αvβ6 could be a potential strategy for the prevention and treatment of BC.
Collapse
Affiliation(s)
- Hongshan Huang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengci Yuan
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Shuang-Ling Wu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinling Ba
- Department of Breast Thyroid Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Multiple Targets of the Canonical WNT/β-Catenin Signaling in Cancers. Front Oncol 2019; 9:1248. [PMID: 31803621 PMCID: PMC6876670 DOI: 10.3389/fonc.2019.01248] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Canonical WNT/β-catenin signaling is involved in most of the mechanisms that lead to the formation and development of cancer cells. It plays a central role in three cyclic processes, which are the cell division cycle, the immune cycle, and circadian rhythms. When the canonical WNT pathway is upregulated as in cancers, the increase in β-catenin in the nucleus leads to activation of the expression of numerous genes, in particular CYCLIN D1 and cMYC, where the former influences the G1 phase of the cell division cycle, and the latter, the S phase. Every stage of the immune cycle is disrupted by the canonical WNT signaling. In numerous cancers, the dysfunction of the canonical WNT pathway is accompanied by alterations of the circadian genes (CLOCK, BMAL1, PER). Induction of these cyclic phenomena leads to the genesis of thermodynamic mechanisms that operate far from equilibrium, and that have been called “dissipative structures.” Moreover, upregulation of the canonical WNT/β-catenin signaling is important in the myofibroblasts of the cancer stroma. Their differentiation is controlled by the canonical WNT /TGF-β1 signaling. Myofibroblasts present ultraslow contractile properties due to the presence of the non-muscle myosin IIA. Myofibroblats also play a role in the inflammatory processes, often found in cancers and fibrosis processes. Finally, upregulated canonical WNT deviates mitochondrial oxidative phosphorylation toward the Warburg glycolysis metabolism, which is characteristic of cancers. Among all these cancer-generating mechanisms, the upregulated canonical WNT pathway would appear to offer the best hope as a therapeutic target, particularly in the field of immunotherapy.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Olivier Schussler
- Research Laboratory, Department of Cardiovascular Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Louis Hébert
- Institut de Cardiologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Alexandre Vallée
- Hypertension and Cardiovascular Prevention Unit, Diagnosis and Therapeutic Center, Hôtel-Dieu Hospital, AP-HP, Paris, France.,DACTIM-MIS, LMA, UMR CNRS 7348, CHU de Poitiers, Université de Poitiers, Poitiers, France
| |
Collapse
|
25
|
Buß M, Tegtmeyer N, Schnieder J, Dong X, Li J, Springer TA, Backert S, Niemann HH. Specific high affinity interaction of Helicobacter pylori CagL with integrin α V β 6 promotes type IV secretion of CagA into human cells. FEBS J 2019; 286:3980-3997. [PMID: 31197920 DOI: 10.1111/febs.14962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
CagL is an essential pilus surface component of the virulence-associated type IV secretion system (T4SS) employed by Helicobacter pylori to translocate the oncogenic effector protein CagA into human gastric epithelial cells. CagL contains an RGD motif and integrin α5 β1 is widely accepted as its host cell receptor. Here, we show that CagL binds integrin αV β6 with substantially higher affinity and that this interaction is functionally important. Cell surface expression of αV β6 on various cell lines correlated perfectly with cell adhesion to immobilized CagL and with binding of soluble CagL to cells. We found no such correlation for α5 β1 . The purified αV β6 ectodomain bound CagL with high affinity. This interaction was highly specific, as the affinity of CagL for other RGD-binding integrins was two to three orders of magnitude weaker. Mutation of either conserved leucine in the CagL RGDLXXL motif, a motif that generally confers specificity for integrin αV β6 and αV β8 , lowered the affinity of CagL for αV β6 . Stable expression of αV β6 in αV β6 -negative but α5 β1 -expressing human cells promoted two hallmarks of the functional H. pylori T4SS, namely translocation of CagA into host cells and induction of interleukin-8 secretion by host cells. These findings suggest that integrin αV β6 , although not essential for T4SS function, represents an important host cell receptor for CagL.
Collapse
Affiliation(s)
- Maren Buß
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
| | - Jennifer Schnieder
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| | - Xianchi Dong
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jing Li
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Timothy A Springer
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| |
Collapse
|
26
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
27
|
DiPersio CM, Van De Water L. Integrin Regulation of CAF Differentiation and Function. Cancers (Basel) 2019; 11:cancers11050715. [PMID: 31137641 PMCID: PMC6563118 DOI: 10.3390/cancers11050715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Extensive remodeling of the extracellular matrix, together with paracrine communication between tumor cells and stromal cells, contribute to an “activated” tumor microenvironment that supports malignant growth and progression. These stromal cells include inflammatory cells, endothelial cells, and cancer-associated fibroblasts (CAFs). Integrins are expressed on all tumor and stromal cell types where they regulate both cell adhesion and bidirectional signal transduction across the cell membrane. In this capacity, integrins control pro-tumorigenic cell autonomous functions such as growth and survival, as well as paracrine crosstalk between tumor cells and stromal cells. The myofibroblast-like properties of cancer-associated fibroblasts (CAFs), such as robust contractility and extracellular matrix (ECM) deposition, allow them to generate both chemical and mechanical signals that support invasive tumor growth. In this review, we discuss the roles of integrins in regulating the ability of CAFs to generate and respond to extracellular cues in the tumor microenvironment. Since functions of specific integrins in CAFs are only beginning to emerge, we take advantage of a more extensive literature on how integrins regulate wound myofibroblast differentiation and function, as some of these integrin functions are likely to extrapolate to CAFs within the tumor microenvironment. In addition, we discuss the roles that integrins play in controlling paracrine signals that emanate from epithelial/tumor cells to stimulate fibroblasts/CAFs.
Collapse
|
28
|
Olof Olsson P, Gustafsson R, Salnikov AV, Göthe M, Zeller KS, Friman T, Baldetorp B, Koopman LA, Weinreb PH, Violette SM, Kalamajski S, Heldin NE, Rubin K. Inhibition of integrin α Vβ 6 changes fibril thickness of stromal collagen in experimental carcinomas. Cell Commun Signal 2018; 16:36. [PMID: 29966518 PMCID: PMC6027735 DOI: 10.1186/s12964-018-0249-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapeutic efficacy can be improved by targeting the structure and function of the extracellular matrix (ECM) in the carcinomal stroma. This can be accomplished by e.g. inhibiting TGF-β1 and -β3 or treating with Imatinib, which results in scarcer collagen fibril structure in xenografted human KAT-4/HT29 (KAT-4) colon adenocarcinoma. Methods The potential role of αVβ6 integrin-mediated activation of latent TGF-β was studied in cultured KAT-4 and Capan-2 human ductal pancreatic carcinoma cells as well as in xenograft carcinoma generated by these cells. The monoclonal αVβ6 integrin-specific monoclonal antibody 3G9 was used to inhibit the αVβ6 integrin activity. Results Both KAT-4 and Capan-2 cells expressed the αVβ6 integrin but only KAT-4 cells could utilize this integrin to activate latent TGF-β in vitro. Only when Capan-2 cells were co-cultured with human F99 fibroblasts was the integrin activation mechanism triggered, suggesting a more complex, fibroblast-dependent, activation pathway. In nude mice, a 10-day treatment with 3G9 reduced collagen fibril thickness and interstitial fluid pressure in KAT-4 but not in the more desmoplastic Capan-2 tumors that, to achieve a similar effect, required a prolonged 3G9 treatment. In contrast, a 10-day direct inhibition of TGF-β1 and -β3 reduced collagen fibril thickness in both tumor models. Conclusion Our data demonstrate that the αVβ6-directed activation of latent TGF-β plays a pivotal role in modulating the stromal collagen network in carcinoma, but that the sensitivity to αVβ6 inhibition depends on the simultaneous presence of alternative paths for latent TGF-β activation and the extent of desmoplasia. Electronic supplementary material The online version of this article (10.1186/s12964-018-0249-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Olof Olsson
- Department of Experimental Medical Science, Medicon Village 406, SE-22381, Lund, Sweden
| | - Renata Gustafsson
- Department of Experimental Medical Science, Medicon Village 406, SE-22381, Lund, Sweden
| | - Alexei V Salnikov
- Oncology Clinic, Department of Clinical Sciences, University Hospital Lund, SE-221 85, Lund, Sweden
| | - Maria Göthe
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden
| | - Kathrin S Zeller
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden
| | - Tomas Friman
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden
| | - Bo Baldetorp
- Oncology Clinic, Department of Clinical Sciences, University Hospital Lund, SE-221 85, Lund, Sweden
| | | | | | | | - Sebastian Kalamajski
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden
| | - Nils-Erik Heldin
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kristofer Rubin
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
29
|
Liang B, Wu L, Xu H, Cheung CW, Fung WY, Wong SW, Wang CC. Efficacy, safety and recurrence of new progestins and selective progesterone receptor modulator for the treatment of endometriosis: a comparison study in mice. Reprod Biol Endocrinol 2018; 16:32. [PMID: 29615065 PMCID: PMC5883298 DOI: 10.1186/s12958-018-0347-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Current medical treatments for endometriosis are very limited. Progestin and selective progesterone receptor modulators (SPRM) are developed but their efficacy, safety, mechanism and recurrence in endometriosis are not fully studied. METHODS In order to compare therapeutic, side effects and therapeutic actions of Esmya, Duphaston and Dienogest in endometriosis. Experimental endometriosis was induced by either intraperitoneal or subcutaneous mouse endometrium transplantation. Lesion size, weight and histology at the end of intervention were compared. Expression of related markers in the endometriotic lesions were examined. Body, uterus and ovary weights, endometrial glands and thickness (ETI), and follicle count were measured. For recurrent study, lesion growth before and after intervention was monitored. RESULTS After Esmya, Duphaston, Dienogest treatment, lesion size and weight were significantly decreased. Proliferation Pcna expression was significantly decreased in all groups, but proliferation cells were significantly decreased only in Duphaston group. Apoptosis Mapk1 expression and TUNEL-positive cells were significantly increased in Duphaston group. Adhesion Mmp2 and Itgavβ3 expression were significantly increased in Esmya group. Plau, Hif1α and Vegfa expression, peritoneal fluid PGE2 levels, and ERα and ERβ expression were not affected; while PR expression was significantly lower in all groups. Endometrial gland count in uterus was significantly increased in Dienogest group, ETI was significantly decreased in Duphaston group, and AFC were significantly increased in Esmya group. Upon treatment cessation, lesion growth rebound quickly in Dienogest and Duphaston groups, but slowly in Esmya group. CONCLUSION Esmya, Duphaston and Dienogest are effective anti-endometriosis drugs targeting proliferation, apoptosis and adhesion. Esmya, Duphaston and Dienogest are all well tolerable, although endometrial glandular hyperplasia was found in Dienogest, endometrial atrophy in Duphaston, follicle accumulation in Esmya.
Collapse
Affiliation(s)
- Bo Liang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, c/o 1st Floor, Special Block E, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ling Wu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, c/o 1st Floor, Special Block E, Prince of Wales Hospital, Shatin, Hong Kong
| | - Hui Xu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, c/o 1st Floor, Special Block E, Prince of Wales Hospital, Shatin, Hong Kong
| | - Chun Wai Cheung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, c/o 1st Floor, Special Block E, Prince of Wales Hospital, Shatin, Hong Kong
| | - Wen Ying Fung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, c/o 1st Floor, Special Block E, Prince of Wales Hospital, Shatin, Hong Kong
| | - Sze Wai Wong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, c/o 1st Floor, Special Block E, Prince of Wales Hospital, Shatin, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, c/o 1st Floor, Special Block E, Prince of Wales Hospital, Shatin, Hong Kong.
- Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
30
|
Wesseling M, Sakkers TR, de Jager SCA, Pasterkamp G, Goumans MJ. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul Pharmacol 2018; 106:1-8. [PMID: 29471141 DOI: 10.1016/j.vph.2018.02.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022]
Abstract
Cell transdifferentiation occurs during cardiovascular development or remodeling either as a pathologic feature in the progression of disease or as a response to injury. Endothelial-to-Mesenchymal Transition (EndMT) is a process that is classified as a specialized form of Epithelial-to-Mesenchymal Transition (EMT), in which epithelial cells lose their epithelial characteristics and gain a mesenchymal phenotype. During transdifferentiation, cells lose both cell-cell contacts and their attachment to the basement membrane. Subsequently, the shape of the cells changes from a cuboidal to an elongated shape. A rearrangement of actin filaments facilitates the cells to become motile and prime their migration into the underlying tissue. EMT is a key process during embryonic development, wound healing and tissue regeneration, but has also been implicated in pathophysiological processes, such organ fibrosis and tumor metastases. EndMT has been associated with additional pathophysiological processes in cardiovascular related diseases, including atherosclerosis. Recent studies prove a significant role for EndMT in the progression and destabilization of atherosclerotic plaques, as a consequence of EndMT-derived fibroblast infiltration and the increased secretion of matrix metalloproteinase respectively. In this review we will discuss the essential molecular and morphological mechanisms of EMT and EndMT, along with their common denominators and key differences. Finally, we will discuss the role of EMT/EndMT in developmental and pathophysiological processes, focusing on the potential role of EndMT in atherosclerosis in more depth.
Collapse
Affiliation(s)
- M Wesseling
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Clinical Chemistry and Histology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S C A de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Pasterkamp
- Laboratory of Clinical Chemistry and Histology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Goumans
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
31
|
Goumans MJ, Ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022210. [PMID: 28348036 DOI: 10.1101/cshperspect.a022210] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
32
|
Dual αvβ3 and αvβ5 blockade attenuates fibrotic and vascular alterations in a murine model of systemic sclerosis. Clin Sci (Lond) 2018; 132:231-242. [PMID: 29237724 DOI: 10.1042/cs20171426] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023]
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by fibroblast activation and fibrosis of the skin and internal organs. Alterations in cell-integrin interaction are sufficient to initiate profibrotic processes. SSc fibroblasts express both αvβ3 and αvβ5 integrins and their activation induces myofibroblasts differentiation. The aim of the present study was to evaluate the effect of the anb3 and anb5 inhibitor, cilengitide, on the development of vascular and fibrotic changes in the chronic oxidant stress murine model of systemic sclerosis. SSc was induced in BALB/c mice by daily s.c. injections of HOCl for 6 weeks. Mice were randomized in three arms: HOCl alone (n=8), HOCl + Cilengitide (n=8), or Vehicle alone (n=8). Treatment with cilengitide 20 (mg/kg/i.p./day) was started 4 weeks after the first administration of HOCl and maintained throughout the remaining experimental period (2 weeks). Lung, skin, and heart fibrosis were evaluated by histology while kidney morphology by PAS staining. Collagen type I, focal adhesion kinase (FAK), and a-SMA were evaluated by immunostaining and p-FAK and TGF-β1 by Western blot and gene expression. Both cutaneous and pulmonary fibrosis induced by HOCl were attenuated by cilengitide treatment. Cilengitide administration reduced a-SMA, TGF-β1, and p-FAK expression and the increased deposition of fibrillar collagen in the heart and prevented glomeruli collapse in the kidneys. The inhibition of aνβ3 and aνβ5 integrin signaling prevented systemic fibrosis and renal vascular abnormalities in the reactive oxygen species model of SSc. Integrins aνβ3 and aνβ5 could prove useful as a therapeutic target in SSc.
Collapse
|
33
|
Wei Y, Kim TJ, Peng DH, Duan D, Gibbons DL, Yamauchi M, Jackson JR, Le Saux CJ, Calhoun C, Peters J, Derynck R, Backes BJ, Chapman HA. Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest 2017; 127:3675-3688. [PMID: 28872461 DOI: 10.1172/jci94624] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
TGF-β1 signaling is a critical driver of collagen accumulation and fibrotic disease but also a vital suppressor of inflammation and epithelial cell proliferation. The nature of this multifunctional cytokine has limited the development of global TGF-β1 signaling inhibitors as therapeutic agents. We conducted phenotypic screens for small molecules that inhibit TGF-β1-induced epithelial-mesenchymal transition without immediate TGF-β1 receptor (TβR) kinase inhibition. We identified trihydroxyphenolic compounds as potent blockers of TGF-β1 responses (IC50 ~50 nM), Snail1 expression, and collagen deposition in vivo in models of pulmonary fibrosis and collagen-dependent lung cancer metastasis. Remarkably, the functional effects of trihydroxyphenolics required the presence of active lysyl oxidase-like 2 (LOXL2), thereby limiting effects to fibroblasts or cancer cells, the major LOXL2 producers. Mechanistic studies revealed that trihydroxyphenolics induce auto-oxidation of a LOXL2/3-specific lysine (K731) in a time-dependent reaction that irreversibly inhibits LOXL2 and converts the trihydrophenolic to a previously undescribed metabolite that directly inhibits TβRI kinase. Combined inhibition of LOXL2 and TβRI activities by trihydrophenolics resulted in potent blockade of pathological collagen accumulation in vivo without the toxicities associated with global inhibitors. These findings elucidate a therapeutic approach to attenuate fibrosis and the disease-promoting effects of tissue stiffness by specifically targeting TβRI kinase in LOXL2-expressing cells.
Collapse
Affiliation(s)
- Ying Wei
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| | - Thomas J Kim
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| | - David H Peng
- Departments of Thoracic/Head and Neck Medical Oncology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dana Duan
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Don L Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia R Jackson
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| | - Claude J Le Saux
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA.,Department of Pulmonary and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Cheresa Calhoun
- Department of Pulmonary and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jay Peters
- Department of Pulmonary and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Bradley J Backes
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| | - Harold A Chapman
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| |
Collapse
|
34
|
Li Y, Zou T, Xue L, Yin ZQ, Huo S, Xu H. TGF-β1 enhances phagocytic removal of neuron debris and neuronal survival by olfactory ensheathing cells via integrin/MFG-E8 signaling pathway. Mol Cell Neurosci 2017; 85:45-56. [PMID: 28860093 DOI: 10.1016/j.mcn.2017.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 08/26/2017] [Indexed: 01/14/2023] Open
Abstract
Olfactory ensheathing cells (OECs) have been shown to be a leading candidate in cell therapies for central nervous system (CNS) injuries and neurodegenerative diseases. Rapid clearance of neuron debris can promote neuronal survival and axonal regeneration in CNS injuries and neurodegenerative diseases. The phagocytic removal of neuron debris by OECs has been shown to contribute to neuronal outgrowth. However, the precise molecular and cellular mechanisms of phagocytic removal of neuron debris by OECs have not been explored. In this study, we found that OECs secreted anti-inflammatory cytokine transforming growth factor β1 (TGF-β1) during the phagocytic removal of neuron debris. TGF-β1 enhanced phagocytic activity of OECs through regulating integrin/MFG-E8 signaling pathway. In addition, TGF-β1 shifted OECs towards a flattened shape with increased cellular area, which might also be involved in the enhancement of phagocytic activity of OECs. Furthermore, the removal of neuron debris by OECs affected neuronal survival and outgrowth. TGF-β1 enhanced the clearance of neuron debris by OECs and increased neuronal survival. These results reveal the role and mechanism of TGF-β1 in enhancing the phagocytic activity of OECs, which will update the understanding of phagocytosis of OECs and improve the therapeutic use of OECs in CNS injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Langyue Xue
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Shujia Huo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
35
|
Raab-Westphal S, Marshall JF, Goodman SL. Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel) 2017; 9:E110. [PMID: 28832494 PMCID: PMC5615325 DOI: 10.3390/cancers9090110] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.
Collapse
Affiliation(s)
- Sabine Raab-Westphal
- Translational In Vivo Pharmacology, Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | - John F Marshall
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Simon L Goodman
- Translational and Biomarkers Research, Translational Innovation Platform Oncology, Merck KGaA, 64293 Darmstadt, Germany.
| |
Collapse
|
36
|
Feldkoren B, Hutchinson R, Rapoport Y, Mahajan A, Margulis V. Integrin signaling potentiates transforming growth factor-beta 1 (TGF-β1) dependent down-regulation of E-Cadherin expression – Important implications for epithelial to mesenchymal transition (EMT) in renal cell carcinoma. Exp Cell Res 2017; 355:57-66. [DOI: 10.1016/j.yexcr.2017.03.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
|
37
|
Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis. Bone Res 2017; 5:17008. [PMID: 28392965 PMCID: PMC5360159 DOI: 10.1038/boneres.2017.8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αvβ6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin αv in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and αvβ6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD.
Collapse
|
38
|
Malek R, Wang H, Taparra K, Tran PT. Therapeutic Targeting of Epithelial Plasticity Programs: Focus on the Epithelial-Mesenchymal Transition. Cells Tissues Organs 2017; 203:114-127. [PMID: 28214899 DOI: 10.1159/000447238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/14/2022] Open
Abstract
Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into 3 groups: (1) extracellular inducers of EMT, (2) the transcription factors that orchestrate the EMT transcriptome, and (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT, such as the signal transduction pathways TGFβ, EFGR, and Axl-Gas6. We emphasize in more detail pathways that we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways, and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only 1 EMT-related process will be unsuccessful or only transiently successful. We suggest that with greater understanding of epithelial plasticity regulation, such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes.
Collapse
Affiliation(s)
- Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
39
|
|
40
|
Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Methods Mol Biol 2017; 1627:1-23. [PMID: 28836191 DOI: 10.1007/978-1-4939-7113-8_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human fibrotic diseases constitute a major health problem worldwide owing to the large number of affected individuals, the incomplete knowledge of the fibrotic process pathogenesis, the marked heterogeneity in their etiology and clinical manifestations, the absence of appropriate and fully validated biomarkers, and, most importantly, the current void of effective disease-modifying therapeutic agents. The fibrotic disorders encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis (SSc), sclerodermatous graft vs. host disease, and nephrogenic systemic fibrosis, as well as numerous organ-specific disorders including radiation-induced fibrosis and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse and in several instances have remained elusive, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrotic tissue in affected organs causing their dysfunction and ultimate failure. Despite the remarkable heterogeneity in the etiologic mechanisms responsible for the development of fibrotic diseases and in their clinical manifestations, numerous studies have identified activated myofibroblasts as the common cellular element ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. Critical signaling cascades, initiated primarily by transforming growth factor-β (TGF-β), but also involving numerous cytokines and signaling molecules which stimulate profibrotic reactions in myofibroblasts, offer potential therapeutic targets. Here, we briefly review the current knowledge of the molecular mechanisms involved in the development of tissue fibrosis and point out some of the most important challenges to research in the fibrotic diseases and to the development of effective therapeutic approaches for this often fatal group of disorders. Efforts to further clarify the complex pathogenetic mechanisms of the fibrotic process should be encouraged to attain the elusive goal of developing effective therapies for these serious, untreatable, and often fatal disorders.
Collapse
Affiliation(s)
- Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Bianchini F, Peppicelli S, Fabbrizzi P, Biagioni A, Mazzanti B, Menchi G, Calorini L, Pupi A, Trabocchi A. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells. Mol Cell Biochem 2016; 424:99-110. [PMID: 27761847 PMCID: PMC5219041 DOI: 10.1007/s11010-016-2847-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/08/2016] [Indexed: 12/26/2022]
Abstract
Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.
Collapse
Affiliation(s)
- Francesca Bianchini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy.
| | - Silvia Peppicelli
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | | | - Alessio Biagioni
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | | | - Gloria Menchi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| | - Lido Calorini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Alberto Pupi
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| |
Collapse
|
42
|
The role of biophysical properties of provisional matrix proteins in wound repair. Matrix Biol 2016; 60-61:124-140. [PMID: 27534610 DOI: 10.1016/j.matbio.2016.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
Abstract
Wound healing is a complex, dynamic process required for maintaining homeostasis in an organism. Along with being controlled biochemically, wound healing is also controlled through the transduction of biophysical stimuli through cell interactions with the extracellular matrix (ECM). This review provides an overview of the ECM's role in the wound healing process and subsequently expands on the variety of roles biophysical phenomenon play.
Collapse
|
43
|
Paolillo M, Serra M, Schinelli S. Integrins in glioblastoma: Still an attractive target? Pharmacol Res 2016; 113:55-61. [PMID: 27498157 DOI: 10.1016/j.phrs.2016.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/08/2023]
Abstract
Integrin-mediated signaling pathways have been found to promote the invasiveness and survival of glioma cells by modifying the brain microenvironment to support the formation of the tumoral niche. A variety of cells in the niche express integrin receptors, including tumor-associated macrophages, fibroblasts, endothelial cells and pericytes. In particular, RGD-binding integrins have been demonstrated to have an important role in the epithelial-mesenchymal transition process, considered the first step in the infiltration of tissue by cancer cells and molecular markers of which have been found in glioma cells. In simultaneous research, Small Molecule Integrin Antagonists (SMIA) yielded initially promising results in in vitro and in vivo studies, leading to clinical trials to test their safety and efficacy in combination with other anticancer drugs in the treatment of several tumor types. The initially high expectations, especially because of their antiangiogenic activity, which appeared to be a winning strategy against GBM, were not confirmed and this cast serious doubts on the real benefits to be gained from the use of SMIA for the treatment of cancer in humans. In this review, we provide an overview of recent findings concerning the functional roles of integrins, especially RGD-binding integrins, in the processes related to glioma cells survival and brain tissue infiltration. These findings disclose a new scenario in which recently developed SMIA might become useful tools to hinder glioblastoma cell dissemination.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, Pavia, Italy.
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
44
|
Lu H, Wang T, Li J, Fedele C, Liu Q, Zhang J, Jiang Z, Jain D, Iozzo RV, Violette SM, Weinreb PH, Davis RJ, Gioeli D, FitzGerald TJ, Altieri DC, Languino LR. αvβ6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res 2016; 76:5163-74. [PMID: 27450452 DOI: 10.1158/0008-5472.can-16-0543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Androgen receptor signaling fuels prostate cancer and is a major therapeutic target. However, mechanisms of resistance to therapeutic androgen ablation are not well understood. Here, using a prostate cancer mouse model, Pten(pc-/-), carrying a prostate epithelial-specific Pten deletion, we show that the αvβ6 integrin is required for tumor growth in vivo of castrated as well as of noncastrated mice. We describe a novel signaling pathway that couples the αvβ6 integrin cell surface receptor to androgen receptor via activation of JNK1 and causes increased nuclear localization and activity of androgen receptor. This downstream kinase activation by αvβ6 is specific for JNK1, with no involvement of p38 or ERK kinase. In addition, differential phosphorylation of Akt is not observed under these conditions, nor is cell morphology affected by αvβ6 expression. This pathway, which is specific for αvβ6, because it is not regulated by a different αv-containing integrin, αvβ3, promotes upregulation of survivin, which in turn supports anchorage-independent growth of αvβ6-expressing cells. Consistently, both αvβ6 and survivin are significantly increased in prostatic adenocarcinoma, but are not detected in normal prostatic epithelium. Neither XIAP nor Bcl-2 is affected by αvβ6 expression. In conclusion, we show that αvβ6 expression is required for prostate cancer progression, including castrate-resistant prostate cancer; mechanistically, by promoting activation of JNK1, the αvβ6 integrin causes androgen receptor-increased activity in the absence of androgen and consequent upregulation of survivin. These preclinical results pave the way for further clinical development of αvβ6 antagonists for prostate cancer therapy. Cancer Res; 76(17); 5163-74. ©2016 AACR.
Collapse
Affiliation(s)
- Huimin Lu
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tao Wang
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jing Li
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carmine Fedele
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Qin Liu
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania. Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jianzhong Zhang
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - Roger J Davis
- Program in Molecular Medicine and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Thomas J FitzGerald
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania. Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
45
|
Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 2016; 365:467-82. [PMID: 27351421 DOI: 10.1007/s00441-016-2446-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins-the major cell adhesion receptors for the extracellular matrix-that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit. Graphical abstract In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts.
Collapse
|
46
|
Horejs CM. Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur J Cell Biol 2016; 95:427-440. [PMID: 27397693 DOI: 10.1016/j.ejcb.2016.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) enables cells of epithelial phenotype to become motile and change to a migratory mesenchymal phenotype. EMT is known to be a fundamental requisite for tissue morphogenesis, and EMT-related pathways have been described in cancer metastasis and tissue fibrosis. Epithelial structures are marked by the presence of a sheet-like extracellular matrix, the basement membrane, which is assembled from two major proteins, laminin and collagen type IV. This specialized matrix is essential for tissue function and integrity, and provides an important barrier to the potential pathogenic migration of cells. The profound phenotypic transition in EMT involves the epithelial cells disrupting the basement membrane. Matrix metalloproteinases (MMPs) are known to cleave components of basement membranes, but MMP-basement membrane crosstalk during EMT in vivo is poorly understood. However, MMPs have been reported to play a role in EMT-related processes and a variety of basement membrane fragments have been shown to be released by specific MMPs in vitro and in vivo exhibiting distinct biological activities. This review discusses general considerations regarding the basement membrane in the context of EMT, a possible role for specific MMPs in EMT and highlights biologically active basement membrane fragments liberated by MMPs.
Collapse
Affiliation(s)
- Christine-Maria Horejs
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vaeg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
47
|
Bokhari AA, Syed V. Inhibition of Transforming Growth Factor-β (TGF-β) Signaling by Scutellaria baicalensis and Fritillaria cirrhosa Extracts in Endometrial Cancer. J Cell Biochem 2016; 116:1797-805. [PMID: 25683036 DOI: 10.1002/jcb.25138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-β (TGF-β), regulates cell proliferation, angiogenesis, metastasis, and is an inducer of epithelial-mesenchymal transition (EMT). Cancer cells exhibit activated TGF-β/SMAD signaling pathway and its inhibition is an attractive strategy for cancer treatment. The Chinese Herbs Scutellaria baicalensis (SB) and Fritillaria cirrhosa (FC) have been shown to be beneficial to cancer patients, but the mechanisms by which the extracts of two herbs elicit the beneficial effects are unclear. In this study, we have used human endometrial cancer cells to assess the anticancer efficacy of SB and FC on TGF-β signaling pathway components. SB and FC treatment of cancer cells resulted in a significant decrease in expression of TGF-β isoforms, TGF-β receptors, and SMADs. Both herbs effectively inhibited basal and TGF-β1-induced cancer cell proliferation and invasion, which was accompanied with abrogation of Snail, Slug, matrix metalloproteinases (MMPs), αvβ3 integrin, focal adhesion kinase (FAK), and p-FAK expression. An inhibitor of TGF-βRI blocked TGF-β1-induced cell invasion and significantly diminished antitumor effects of SB and FC. These results suggest that SB and FC block endometrial cancer growth by downregulating TGF-β/SMAD signaling pathway.
Collapse
Affiliation(s)
- Amber A Bokhari
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Viqar Syed
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Cell and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
48
|
Abstract
Tenascin-C (TNC) is highly expressed in cancer tissues. Its cellular sources are cancer and stromal cells, including fibroblasts/myofibroblasts, and also vascular cells. TNC expressed in cancer tissues dominantly contains large splice variants. Deposition of the stroma promotes the epithelial-mesenchymal transition, proliferation, and migration of cancer cells. It also facilitates the formation of cancer stroma including desmoplasia and angiogenesis. Integrin receptors that mediate the signals of TNC have also been discussed.
Collapse
Key Words
- CAF, cancer-associated fibroblasts
- ECM, extracellular matrix
- EDA, extra domain A
- EMT, epithelial-mesenchymal transition
- FAK, focal adhesion kinase
- FBG, fibrinogen-like globe
- FN, fibronectin
- FNIII, fibronectin type III-like
- HS, heparan sulfate
- ISH, in situ hybridization
- LAP, latency-associated peptide
- MMPs, matrix metalloproteinases
- OPN, osteopontin
- PDGF, platelet-derived growth factor
- RPTP, receptor protein-tyrosine phosphatase
- Stromal cell
- TGF, transforming growth factor
- TNC, tenascin-C
- VN, vitronectin
- cancer cell
- integrins
- splice variant
- tenascin-C
Collapse
Affiliation(s)
- Toshimichi Yoshida
- a Department of Pathology and Matrix Biology ; Mie University Graduate School of Medicine
| | | | | |
Collapse
|
49
|
Shahriary A, Seyedzadeh MH, Ahmadi A, Salimian J. The footprint of TGF-β in airway remodeling of the mustard lung. Inhal Toxicol 2015; 27:745-53. [PMID: 26606948 DOI: 10.3109/08958378.2015.1116645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mustard lung is a major pulmonary complication in individuals exposed to sulfur mustard (SM) gas during the Iran-Iraq war. It shares common pathological and clinical features with some chronic inflammatory lung disorders, particularly chronic obstructive pulmonary disease (COPD). Airway remodeling, which is one of the main causes of lung dysfunction and the dominant phenomenon of chronic pulmonary diseases, is seen in the mustard lung. Among all mediators involved in the remodeling process, the transforming growth factor (TGF)-β plays a pivotal role in lung fibrosis and consequently in the airway remodeling. Regarding the high levels of this mediator detected in mustard lung patients, in the present study, we have discussed the possible roles of TGF-β in airway remodeling (including epithelial layer damage, subepithelial fibrosis and angiogenesis). Finally, based on TGF-β targeting, we have reviewed new airway remodeling therapeutic approaches.
Collapse
Affiliation(s)
- Alireza Shahriary
- a Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Mir Hadi Seyedzadeh
- b Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran , and
| | - Ali Ahmadi
- c Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Jafar Salimian
- a Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
50
|
Cantor DI, Cheruku HR, Nice EC, Baker MS. Integrin αvβ6 sets the stage for colorectal cancer metastasis. Cancer Metastasis Rev 2015; 34:715-34. [DOI: 10.1007/s10555-015-9591-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|