1
|
El-Shiekh RA, Atwa AM, Elgindy AM, Ibrahim KM, Senna MM, Ebid N, Mustafa AM. Current Perspective and Mechanistic Insights on α-Hederin for the Prevention and Treatment of Several Noncommunicable Diseases. Chem Biodivers 2024:e202402289. [PMID: 39607970 DOI: 10.1002/cbdv.202402289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
α-Hederin, a naturally occurring compound found in various plant sources, has remarkable properties and therapeutic potential for human health. One notable attribute is its potent anti-inflammatory activity, such as in arthritis, asthma, and inflammatory bowel disease. In addition, it exhibits notable antioxidant effects implicated in the development of chronic diseases, including cardiovascular disorders and certain types of cancer. According to research, it may limit the growth and proliferation of cancer cells, making it a possible candidate for future cancer treatments. Moreover, it is a promising neuroprotective agent and enhances cognitive function, suggesting its potential in the treatment of neurodegenerative illnesses like Alzheimer's and Parkinson's disease. The multifaceted benefits of α-hederin make it an intriguing compound with significant therapeutic implications. As research progresses, exploring its mechanisms of action and clinical applications is warranted. Harnessing the potential of α-hederin may pave the way for innovative treatment strategies and improved outcomes in the battle against various chronic diseases.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Faculty of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Ali M Elgindy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Kawther Magdy Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
2
|
Song HK, Kim JM, Noh EM, Youn HJ, Lee YR. Role of NOX1 and NOX5 in protein kinase C/reactive oxygen species‑mediated MMP‑9 activation and invasion in MCF‑7 breast cancer cells. Mol Med Rep 2024; 30:188. [PMID: 39219290 PMCID: PMC11350630 DOI: 10.3892/mmr.2024.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
NADPH oxidases (NOXs) are a family of membrane proteins responsible for intracellular reactive oxygen species (ROS) generation by facilitating electron transfer across biological membranes. Despite the established activation of NOXs by protein kinase C (PKC), the precise mechanism through which PKC triggers NOX activation during breast cancer invasion remains unclear. The present study aimed to investigate the role of NOX1 and NOX5 in the invasion of MCF‑7 human breast cancer cells. The expression and activity of NOXs and matrix metalloprotease (MMP)‑9 were assessed by reverse transcription‑quantitative PCR and western blotting, and the activity of MMP‑9 was monitored using zymography. Cellular invasion was assessed using the Matrigel invasion assay, whereas ROS levels were quantified using a FACSCalibur flow cytometer. The findings suggested that NOX1 and NOX5 serve crucial roles in 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced MMP‑9 expression and invasion of MCF‑7 cells. Furthermore, a connection was established between PKC and the NOX1 and 5/ROS signaling pathways in mediating TPA‑induced MMP‑9 expression and cellular invasion. Notably, NOX inhibitors (diphenyleneiodonium chloride and apocynin) significantly attenuated TPA‑induced MMP‑9 expression and invasion in MCF‑7 cells. NOX1‑ and NOX5‑specific small interfering RNAs attenuated TPA‑induced MMP‑9 expression and cellular invasion. In addition, knockdown of NOX1 and NOX5 suppressed TPA‑induced ROS levels. Furthermore, a PKC inhibitor (GF109203X) suppressed TPA‑induced intracellular ROS levels, MMP‑9 expression and NOX activity in MCF‑7 cells. Therefore, NOX1 and NOX5 may serve crucial roles in TPA‑induced MMP‑9 expression and invasion of MCF‑7 breast cancer cells. Furthermore, the present study indicated that TPA‑induced MMP‑9 expression and cellular invasion were mediated through PKC, thus linking the NOX1 and 5/ROS signaling pathways. These findings offer novel insights into the potential mechanisms underlying their anti‑invasive effects in breast cancer.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Practical Research Division, Honam National Institute of Biological Resources, Mokpo, Jeollanam 58762, Republic of Korea
| | - Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| |
Collapse
|
3
|
Yang B, Cao L, Ge K, Lv C, Zhao Z, Zheng T, Gao S, Zhang J, Wang T, Jiang J, Qin Y. FeSA‐Ir/Metallene Nanozymes Induce Sequential Ferroptosis‐Pyroptosis for Multi‐Immunogenic Responses Against Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401110. [PMID: 38874051 DOI: 10.1002/smll.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Indexed: 06/15/2024]
Abstract
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Collapse
Affiliation(s)
- Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lingzhi Cao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Chaofan Lv
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zunling Zhao
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Qin
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
4
|
Meng X, Shen Y, Zhao H, Lu X, Wang Z, Zhao Y. Redox-manipulating nanocarriers for anticancer drug delivery: a systematic review. J Nanobiotechnology 2024; 22:587. [PMID: 39342211 PMCID: PMC11438196 DOI: 10.1186/s12951-024-02859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Spatiotemporally controlled cargo release is a key advantage of nanocarriers in anti-tumor therapy. Various external or internal stimuli-responsive nanomedicines have been reported for their ability to increase drug levels at the diseased site and enhance therapeutic efficacy through a triggered release mechanism. Redox-manipulating nanocarriers, by exploiting the redox imbalances in tumor tissues, can achieve precise drug release, enhancing therapeutic efficacy while minimizing damage to healthy cells. As a typical redox-sensitive bond, the disulfide bond is considered a promising tool for designing tumor-specific, stimulus-responsive drug delivery systems (DDS). The intracellular redox imbalance caused by tumor microenvironment (TME) regulation has emerged as an appealing therapeutic target for cancer treatment. Sustained glutathione (GSH) depletion in the TME by redox-manipulating nanocarriers can exacerbate oxidative stress through the exchange of disulfide-thiol bonds, thereby enhancing the efficacy of ROS-based cancer therapy. Intriguingly, GSH depletion is simultaneously associated with glutathione peroxidase 4 (GPX4) inhibition and dihydrolipoamide S-acetyltransferase (DLAT) oligomerization, triggering mechanisms such as ferroptosis and cuproptosis, which increase the sensitivity of tumor cells. Hence, in this review, we present a comprehensive summary of the advances in disulfide based redox-manipulating nanocarriers for anticancer drug delivery and provide an overview of some representative achievements for combinational therapy and theragnostic. The high concentration of GSH in the TME enables the engineering of redox-responsive nanocarriers for GSH-triggered on-demand drug delivery, which relies on the thiol-disulfide exchange reaction between GSH and disulfide-containing vehicles. Conversely, redox-manipulating nanocarriers can deplete GSH, thereby enhancing the efficacy of ROS-based treatment nanoplatforms. In brief, we summarize the up-to-date developments of the redox-manipulating nanocarriers for cancer therapy based on DDS and provide viewpoints for the establishment of more stringent anti-tumor nanoplatform.
Collapse
Affiliation(s)
- Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China.
| | - Yongli Shen
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Huanyu Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Xinlei Lu
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
5
|
Isola S, Gammeri L, Furci F, Gangemi S, Pioggia G, Allegra A. Vitamin C Supplementation in the Treatment of Autoimmune and Onco-Hematological Diseases: From Prophylaxis to Adjuvant Therapy. Int J Mol Sci 2024; 25:7284. [PMID: 39000393 PMCID: PMC11241675 DOI: 10.3390/ijms25137284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Vitamin C is a water-soluble vitamin introduced through the diet with anti-inflammatory, immunoregulatory, and antioxidant activities. Today, this vitamin is integrated into the treatment of many inflammatory pathologies. However, there is increasing evidence of possible use in treating autoimmune and neoplastic diseases. We reviewed the literature to delve deeper into the rationale for using vitamin C in treating this type of pathology. There is much evidence in the literature regarding the beneficial effects of vitamin C supplementation for treating autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) and neoplasms, particularly hematological neoplastic diseases. Vitamin C integration regulates the cytokines microenvironment, modulates immune response to autoantigens and cancer cells, and regulates oxidative stress. Moreover, integration therapy has an enhanced effect on chemotherapies, ionizing radiation, and target therapy used in treating hematological neoplasm. In the future, integrative therapy will have an increasingly important role in preventing pathologies and as an adjuvant to standard treatments.
Collapse
Affiliation(s)
- Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Luca Gammeri
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
6
|
Mudambi S, Fitzgerald ME, Washington DL, Pera PJ, Huss WJ, Paragh G. Dual targeting of KDM1A and antioxidants is an effective anticancer strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.597953. [PMID: 38915482 PMCID: PMC11195178 DOI: 10.1101/2024.06.12.597953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Lysine Specific Demethylase 1 (KDM1A / LSD1) regulates mitochondrial respiration and stabilizes HIF-1A (hypoxia-inducible factor 1A). HIF-1A modulates reactive oxygen species (ROS) levels by increasing cellular glucose uptake, glycolysis, and endogenous antioxidants. The role of KDM1A in cellular ROS response has not previously been described. We determined the role of KDM1A in regulating the ROS response and the utility of KDM1A inhibitors in combination with ROS-inducing cancer therapies. Our results show that KDM1A inhibition sensitized cells to oxidative stress and increased total cellular ROS, which was mitigated by treatment with the antioxidant N-acetyl cysteine. KDM1A inhibition decreased basal mitochondrial respiration and impaired induction of HIF-1A after ROS exposure. Overexpression of HIF-1A salvaged cells from KDM1A inhibition enhanced sensitivity to ROS. Thus we found that increased sensitivity of ROS after KDM1A inhibition was mediated by HIF-1A and depletion of endogenous glutathione. We also show that KDM1A-specific inhibitor bizine synergized with antioxidant-depleting therapies, buthionine sulfoximine, and auranofin in rhabdomyosarcoma cell lines (Rh28 and Rh30). In this study, we describe a novel role for KDM1A in regulating HIF-1A functions under oxidative stress and found that dual targeting of KDM1A and antioxidant systems may serve as an effective combination anticancer strategy.
Collapse
Affiliation(s)
- Shaila Mudambi
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Megan E Fitzgerald
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Deschana L Washington
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Paula J Pera
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Wendy J Huss
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| |
Collapse
|
7
|
Luo D, He F, Liu J, Dong X, Fang M, Liang Y, Chen M, Gui X, Wang W, Zeng L, Fan X, Wu Q. Pseudolaric acid B suppresses NSCLC progression through the ROS/AMPK/mTOR/autophagy signalling pathway. Biomed Pharmacother 2024; 175:116614. [PMID: 38670047 DOI: 10.1016/j.biopha.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudolaric acid B (PAB), an acid isolated from the roots of Pseudolarix kaempferi gorden, has shown antitumour effects through multiple mechanisms of action. The objective of this study was to investigate the anticancer effect of PAB on non-small cell lung cancer (NSCLC) and its underlying mechanism. In our experiments, we observed that PAB decreased cell viability, inhibited colony formation, induced cell cycle arrest, impeded scratch healing, and increased apoptosis in H1975 and H1650 cells. Additionally, PAB treatment enhanced the fluorescence intensity of MDC staining in NSCLC cells, upregulated the protein expression of microtubule-associated protein light chain 3 II (LC3 II), and downregulated the expression of sequestosome 1 (SQSTM1/P62). Combined treatment with PAB and chloroquine (CQ) increased the protein expression levels of LC3 II and P62 while decreasing the apoptosis of H1975 and H1650 cells. Moreover, treatment with PAB led to significant mTOR inhibition and AMPK activation. PAB combined with compound C (CC) inhibited autophagy and apoptosis. Furthermore, PAB treatment increased intracellular reactive oxygen species (ROS) levels in NSCLC cells, which correlated with the modulation of the AMPK/mTOR signalling pathway and was associated with autophagy and apoptosis. Finally, we validated the antitumour growth activity and mechanism of PAB in vivo using athymic nude mice bearing H1975 tumour cells. In conclusion, our findings suggest that PAB can induce apoptosis and autophagic cell death in NSCLC through the ROS-triggered AMPK/mTOR signalling pathway, making it a promising candidate for future NSCLC treatment.
Collapse
Affiliation(s)
- Dan Luo
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Fang He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Jingyun Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Xueting Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Mengying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Yuling Liang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Mengqin Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Xuemei Gui
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Li Zeng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China.
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China.
| | - Qibiao Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangdong, Guangzhou 510520, China; Zhuhai MUST Science and Technology Research Institute, Guangdong, Zhuhai 51900, China.
| |
Collapse
|
8
|
Mustokoweni S, Mahyudin F, Setiawati R, Nugrahenny D, Hidayat M, Kalim H, Mintaroem K, Fitri LE, Hogendoorn PCW. Correlation of High-Grade Osteosarcoma Response to Chemotherapy with Enhanced Tissue Immunological Response: Analysis of CD95R, IFN-γ, Catalase, Hsp70, and VEGF. Virchows Arch 2024; 484:925-937. [PMID: 38748263 PMCID: PMC11186924 DOI: 10.1007/s00428-024-03801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 06/20/2024]
Abstract
High-grade osteosarcoma, a primary malignant bone tumour, is experiencing a global increase in reported incidence with varied prevalence. Despite advances in management, which include surgery and neoadjuvant chemotherapy often an unsatisfactory outcome is found due to poor or heterogeneous response to chemotherapy. Our study delved into chemotherapy responses in osteosarcoma patients and associated molecular expressions, focusing on CD95 receptor (CD95R), interferon (IFN)-γ, catalase, heat-shock protein (Hsp)70, and vascular endothelial growth factor (VEGF). Employing immunohistochemistry and Huvos grading of post-chemo specimens, we analysed formalin-fixed paraffin-embedded (FFPE) osteosarcoma tissue of resected post-chemotherapy specimens from Dr. Soetomo General Academic Hospital in Surabaya, Indonesia (DSGAH), spanning from 2016 to 2020. Results revealed varied responses (poor 40.38%, moderate 48.08%, good 11.54%) and distinct patterns in CD95R, IFN-γ, catalase, Hsp70, and VEGF expression. Significant differences among response groups were observed in CD95R and IFN-γ expression in tumour-infiltrating lymphocytes. The trend of diminishing CD95R expression from poor to good responses, accompanied by an increase in IFN-γ, implied a reduction in the count of viable osteosarcoma cells with the progression of Huvos grading. Catalase expression in osteosarcoma cells was consistently elevated in the poor response group, while Hsp70 expression was highest. VEGF expression in macrophages was significantly higher in the good response group. In conclusion, this study enhances our understanding of immune-chemotherapy interactions in osteosarcoma and identifies potential biomarkers for targeted interventions.
Collapse
Affiliation(s)
- Sjahjenny Mustokoweni
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga/Dr, Soetomo General Academic Hospital, Mayjen Prof. Dr. Moestopo 6-8, Airlangga, Gubeng, Surabaya, East Java, Indonesia.
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr, Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Rosy Setiawati
- Department of Radiology, Faculty of Medicine, Universitas Airlangga/Dr, Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dian Nugrahenny
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Mohamad Hidayat
- Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, Universitas Brawijaya/Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya/Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Karyono Mintaroem
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Pancras C W Hogendoorn
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga/Dr, Soetomo General Academic Hospital, Mayjen Prof. Dr. Moestopo 6-8, Airlangga, Gubeng, Surabaya, East Java, Indonesia.
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
Zhao C, Liu H, Huang S, Guo Y, Xu L. Metal-Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy. Molecules 2024; 29:2384. [PMID: 38792244 PMCID: PMC11124105 DOI: 10.3390/molecules29102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, nanomaterials have attracted extensive attention in cancer-targeting therapy and as drug delivery vehicles owing to their unique surface and size properties. Multifunctional combinations of nanomaterials have become a research hotspot as researchers aim to provide a full understanding of their nanomaterial characteristics. In this study, metal-organic framework-capped gold nanorod hybrids were synthesized. Our research explored their ability to kill tumor cells by locally increasing the temperature via photothermal conclusion. The specific peroxidase-like activity endows the hybrids with the ability to disrupt the oxidative balance in vitro. Simultaneously, chemotherapeutic drugs are administered and delivered by loading and transportation for effective combinatorial cancer treatment, thereby enhancing the curative effect and reducing the unpredictable toxicity and side effects of large doses of chemotherapeutic drugs. These studies can improve combinatorial cancer therapy and enhance cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| |
Collapse
|
10
|
Ahn CR, Ha IJ, Kim JE, Ahn KS, Park J, Baek SH. Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:564. [PMID: 38790669 PMCID: PMC11118127 DOI: 10.3390/antiox13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy's anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs.
Collapse
Affiliation(s)
- Chae Ryeong Ahn
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jai-Eun Kim
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
11
|
Huang Z, Zhou L, Duan J, Qin S, Jiang J, Chen H, Wang K, Liu R, Yuan M, Tang X, Nice EC, Wei Y, Zhang W, Huang C. Oxidative Stress Promotes Liver Cancer Metastasis via RNF25-Mediated E-Cadherin Protein Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306929. [PMID: 38286671 PMCID: PMC10987140 DOI: 10.1002/advs.202306929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/25/2023] [Indexed: 01/31/2024]
Abstract
Loss of E-cadherin (ECAD) is required in tumor metastasis. Protein degradation of ECAD in response to oxidative stress is found in metastasis of hepatocellular carcinoma (HCC) and is independent of transcriptional repression as usually known. Mechanistically, protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344. The activation of PKA kinase activity subsequently induces RNF25 phosphorylation at Ser450 to initiate RNF25-catalyzed degradation of ECAD. Functionally, RNF25 repression induces ECAD protein expression and inhibits HCC metastasis in vitro and in vivo. Altogether, these results indicate that RNF25 is a critical regulator of ECAD protein turnover, and PKA is a necessary redox sensor to enable this process. This study provides some mechanistic insight into how oxidative stress-induced ECAD degradation promotes tumor metastasis of HCC.
Collapse
Affiliation(s)
- Zhao Huang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Jiufei Duan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Siyuan Qin
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengdu610041China
| | - Haining Chen
- Colorectal Cancer CenterDepartment of General SurgeryWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesResearch Unit of Oral Carcinogenesis and ManagementChinese Academy of Medical SciencesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Minlan Yuan
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Biomedical Big Data CenterWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiangdong Tang
- Sleep Medicine CenterDepartment of Respiratory and Critical Care MedicineMental Health CenterTranslational Neuroscience CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVIC3167Australia
| | - Yuquan Wei
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Wei Zhang
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengdu610212China
- Medical Big Data CenterSichuan UniversityChengdu610041China
| | - Canhua Huang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengdu610212China
| |
Collapse
|
12
|
Pan D, Wang Q, Tang S, Wu X, Cai L, Wang Z, Li Y, Huang M, Zhou Y, Shen YQ. Acetyl-11-keto-beta-boswellic acid inhibits cell proliferation and growth of oral squamous cell carcinoma via RAB7B-mediated autophagy. Toxicol Appl Pharmacol 2024; 485:116906. [PMID: 38513840 DOI: 10.1016/j.taap.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Natural products can overcome the limitations of conventional chemotherapy. Acetyl-11-keto-beta-boswellic acid (AKBA) as a natural product extracted from frankincense, exhibited chemotherapeutic activities in different cancers. However, whether AKBA exerts inhibiting effect of oral squamous cell carcinoma (OSCC) cells growth and the mechanism need to be explored. We attempted to investigate the therapeutic effects of AKBA against OSCC and explore the mechanism involved. Here we attempt to disclose the cell-killing effect of AKBA on OSCC cell lines and try to figure out the specifical pathway. The presence of increase autophagosome and the production of mitochondrial reactive oxygen species were confirmed after the application of AKBA on OSCC cells, and RAB7B inhibition enhanced autophagosome accumulation. Though the increase autophagosome was detected induced by AKBA, autophagic flux was inhibited as the failure fusion of autophagosome and lysosome. Cal27 xenografts were established to verify the role of anti-OSCC cells of AKBA in vivo. Based above findings, we speculate that natural product AKBA suppresses OSCC cells growth via RAB7B-mediated autophagy and may serve as a promising strategy for the therapy of OSCC.
Collapse
Affiliation(s)
- Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Xingbo Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Ying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Mei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
13
|
Liu P, Xing N, Xiahou Z, Yan J, Lin Z, Zhang J. Unraveling the intricacies of glioblastoma progression and recurrence: insights into the role of NFYB and oxidative phosphorylation at the single-cell level. Front Immunol 2024; 15:1368685. [PMID: 38510250 PMCID: PMC10950940 DOI: 10.3389/fimmu.2024.1368685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Background Glioblastoma (GBM), with its high recurrence and mortality rates, makes it the deadliest neurological malignancy. Oxidative phosphorylation is a highly active cellular pathway in GBM, and NFYB is a tumor-associated transcription factor. Both are related to mitochondrial function, but studies on their relationship with GBM at the single-cell level are still scarce. Methods We re-analyzed the single-cell profiles of GBM from patients with different subtypes by single-cell transcriptomic analysis and further subdivided the large population of Glioma cells into different subpopulations, explored the interrelationships and active pathways among cell stages and clinical subtypes of the populations, and investigated the relationship between the transcription factor NFYB of the key subpopulations and GBM, searching for the prognostic genes of GBM related to NFYB, and verified by experiments. Results Glioma cells and their C5 subpopulation had the highest percentage of G2M staging and rGBM, which we hypothesized might be related to the higher dividing and proliferating ability of both Glioma and C5 subpopulations. Oxidative phosphorylation pathway activity is elevated in both the Glioma and C5 subgroup, and NFYB is a key transcription factor for the C5 subgroup, suggesting its possible involvement in GBM proliferation and recurrence, and its close association with mitochondrial function. We also identified 13 prognostic genes associated with NFYB, of which MEM60 may cause GBM patients to have a poor prognosis by promoting GBM proliferation and drug resistance. Knockdown of the NFYB was found to contribute to the inhibition of proliferation, invasion, and migration of GBM cells. Conclusion These findings help to elucidate the key mechanisms of mitochondrial function in GBM progression and recurrence, and to establish a new prognostic model and therapeutic target based on NFYB.
Collapse
Affiliation(s)
- Pulin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, China
- National International Joint Research Center of Molecular Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Naifei Xing
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Jingwei Yan
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, China
- National International Joint Research Center of Molecular Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
14
|
Gupta N, Curcic M, Srivastava SK. Proguanil Suppresses Breast Tumor Growth In Vitro and In Vivo by Inducing Apoptosis via Mitochondrial Dysfunction. Cancers (Basel) 2024; 16:872. [PMID: 38473234 DOI: 10.3390/cancers16050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, ranking as the second leading cause of female cancer-related deaths in the U.S., demands the exploration of innovative treatments. Repurposing FDA-approved drugs emerges as an expedited and cost-effective strategy. Our study centered on proguanil, an antimalarial drug, reveals notable anti-proliferative effects on diverse breast cancer cell lines, including those derived from patients. Proguanil-induced apoptosis was associated with a substantial increase in reactive oxygen species (ROS) production, leading to reduced mitochondrial membrane potential, respiration, and ATP production. Proguanil treatment upregulated apoptotic markers (Bax, p-H2AX, cleaved-caspase 3, 9, cleaved PARP) and downregulated anti-apoptotic proteins (bcl-2, survivin) in breast cancer cell lines. In female Balb/c mice implanted with 4T1 breast tumors, daily oral administration of 20 mg/kg proguanil suppressed tumor enlargement by 55%. Western blot analyses of proguanil-treated tumors supported the in vitro findings, demonstrating increased levels of p-H2AX, Bax, c-PARP, and c-caspase3 as compared to controls. Our results collectively highlight proguanil's anticancer efficacy in vitro and in vivo in breast cancer, prompting further consideration for clinical investigations.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Marina Curcic
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
| |
Collapse
|
15
|
Xiao H, Wu GL, Tan S, Tan X, Yang Q. Recent Progress on Tumor Microenvironment-Activated NIR-II Phototheranostic Agents with Simultaneous Activation for Diagnosis and Treatment. Chem Asian J 2024; 19:e202301036. [PMID: 38230541 DOI: 10.1002/asia.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Gui-Long Wu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Senyou Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Xiaofeng Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| | - Qinglai Yang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
16
|
Xing J, Cai H, Lin Z, Zhao L, Xu H, Song Y, Wang Z, Liu C, Hu G, Zheng J, Ren L, Wei Z. Examining the function of macrophage oxidative stress response and immune system in glioblastoma multiforme through analysis of single-cell transcriptomics. Front Immunol 2024; 14:1288137. [PMID: 38274828 PMCID: PMC10808540 DOI: 10.3389/fimmu.2023.1288137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background Glioblastoma (GBM), a prevalent malignant neoplasm within the neuro-oncological domain, has been a subject of considerable scrutiny. Macrophages, serving as the principal immunological constituents, profoundly infiltrate the microenvironment of GBM. However, investigations elucidating the intricate immunological mechanisms governing macrophage involvement in GBM at the single-cell level remain notably limited. Methods We conducted a comprehensive investigation employing single-cell analysis, aiming to redefine the intricate cellular landscape within both the core and peripheral regions of GBM tumors. Our analytical focus extended to the profound study of macrophages, elucidating their roles within the context of oxidative stress, intercellular information exchange, and cellular trajectories concerning GBM and its assorted subpopulations. We pursued the identification of GBM prognostic genes intricately associated with macrophages. Utilizing experimental research to investigate the relevance of MANBA in the context of GBM. Results Our investigations have illuminated the central role of macrophages in the intricate interplay among various subpopulations within the GBM microenvironment. Notably, we observed a pronounced intensity of oxidative stress responses within macrophages when compared to their GBM counterparts in other subpopulations. Moreover, macrophages orchestrated intricate cellular communication networks, facilitated by the SPP1-CD44 axis, both internally and with neighboring subpopulations. These findings collectively suggest the potential for macrophage polarization from an M1 to an M2 phenotype, contributing to immune suppression within the tumor microenvironment. Furthermore, our exploration unearthed GBM prognostic genes closely associated with macrophages, most notably MANBA and TCF12. Remarkably, MANBA appears to participate in the modulation of neuroimmune functionality by exerting inhibitory effects on M1-polarized macrophages, thereby fostering tumor progression. To bolster these assertions, experimental validations unequivocally affirmed the promotional impact of MANBA on GBM, elucidated through its capacity to curb cell proliferation, invasiveness, and metastatic potential. Conclusion These revelations represent a pivotal step towards unraveling the intricate immunological mechanisms governing the interactions between macrophages and diverse subpopulations within the GBM milieu. Furthermore, they lay the foundation for the development of an innovative GBM prognostic model, with MANBA at its epicenter, and underscore the potential for novel immunotherapeutic targets in the ongoing pursuit of enhanced treatment modalities for this formidable malignancy.
Collapse
Affiliation(s)
- Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Huabao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Zhao
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yanbing Song
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chaobo Liu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Guangdong Hu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiajie Zheng
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zilong Wei
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
17
|
Fan N, Zhang L, Wang Z, Ding H, Yue Z. Ivermectin Inhibits Bladder Cancer Cell Growth and Induces Oxidative Stress and DNA Damage. Anticancer Agents Med Chem 2024; 24:348-357. [PMID: 38375808 DOI: 10.2174/0118715206274095231106042833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Bladder cancer is the most common malignant tumor of the urinary system. Nevertheless, current therapies do not provide satisfactory results. It is imperative that novel strategies should be developed for treating bladder cancer. OBJECTIVES To evaluate the effect of a broad-spectrum anti-parasitic agent, Ivermectin, on bladder cancer cells in vitro and in vivo. METHODS CCK-8 and EdU incorporation assays were used to evaluate cell proliferation. Apoptosis was detected by flow cytometry, TUNEL assay, and western blotting. Flow cytometry and DCFH-DA assay were used to analyze the reactive oxygen species (ROS) levels. DNA damage was determined by Neutral COMET assay and γ H2AX expression. Proteins related to apoptosis and DNA damage pathways were determined by WB assay. Xenograft tumor models in nude mice were used to investigate the anti-cancer effect of Ivermectin in vivo. RESULTS Our study showed that in vitro and in vivo, Ivermectin inhibited the growth of bladder cancer cells. In addition, Ivermectin could induce apoptosis, ROS production, DNA damage, and activate ATM/P53 pathwayrelated proteins in bladder cancer cells. CONCLUSIONS According to these findings, Ivermectin may be a potential therapeutic candidate against bladder cancer due to its significant anti-cancer effect.
Collapse
Affiliation(s)
- Ning Fan
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Lixiu Zhang
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Gansu. Lanzhou, 730050, China
| | - Zhiping Wang
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Hui Ding
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhongjin Yue
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| |
Collapse
|
18
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
19
|
Liang X, Wang Q, Wang H, Wang X, Chu P, Yang C, Li Y, Liao L, Zhu Z, Wang Y, He L. Grass carp superoxide dismutases exert antioxidant function and inhibit autophagy to promote grass carp reovirus (GCRV) replication. Int J Biol Macromol 2024; 256:128454. [PMID: 38016608 DOI: 10.1016/j.ijbiomac.2023.128454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Superoxide dismutases (SODs) are potent antioxidants crucial for neutralizing reactive oxygen species (ROS) and protecting organisms from oxidative damage. In this study, we successfully cloned and analyzed two SOD genes, CiSOD1 and CiSOD2, from grass carp (Ctenopharyngodon idellus). CiSOD1 consists of two CuZn signature motifs and two conserved cysteine residues, while CiSOD2 contains a single Mn signature motif. The expression of CiSODs was found to be ubiquitous across all examined tissues, with their expression levels significantly altered after stimulation by grass carp reovirus (GCRV) or pathogen-associated molecular patterns (PAMPs). CiSOD1 was observed to be uniformly distributed in the cytoplasm, whereas CiSOD2 localized in the mitochondria. Escherichia coli transformed with both CiSODs demonstrated enhanced host resistance to H2O2 and heavy metals. Additionally, purified recombinant CiSOD proteins effectively protected DNA against oxidative damage. Furthermore, overexpression of CiSODs in fish cells reduced intracellular ROS, inhibited autophagy, and then resulted in the promotion of GCRV replication. Knockdown of CiSODs showed opposite trends. Notably, these roles of CiSODs in autophagy and GCRV replication were reversed upon treatment with an autophagy inducer. In summary, our findings suggest that grass carp SODs play an important role in decreasing intracellular ROS levels, inhibiting autophagy, and subsequently promoting GCRV replication.
Collapse
Affiliation(s)
- Xinyu Liang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyue Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyang Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cheng Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongming Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Libo He
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Mathur P, Bhatt S, Kumar S, Kamboj S, Kamboj R, Rana A, Kumar H, Verma R. Deciphering the Therapeutic Applications of Nanomedicine in Ovarian Cancer Therapy: An Overview. Curr Drug Deliv 2024; 21:1180-1196. [PMID: 37818568 DOI: 10.2174/0115672018253815230922070558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023]
Abstract
The majority of deadly cancers that afflict the female reproductive system occur in the ovary. Around 1,40,000 women worldwide die from ovarian cancer each year, making it the sixth most common cancer-associated deceases among females in the United States. Modern, cutting-edge treatments like chemotherapy and surgery frequently produce full remissions, but the recurrence rate is still very high. When this crippling condition is diagnosed, there are frequently few therapeutic choices available because of how quietly it manifests. Healthcare practitioners must have a fundamental grasp of the warning signs and symptoms of ovarian cancer, as well as the imaging techniques and treatment choices available, to give the patient the best care possible. The discipline of medical nanotechnology has gained a lot of momentum in recent years in resolving issues and enhancing the detection and treatment of different illnesses, including cancer. This article gives a brief summary of types, risk factors and approaches to ovarian cancer treatment. We subsequently discussed the pathophysiology of ovarian cancer with the risk factors. This review also emphasizes the various signalling pathways involved in ovarian cancer. Our comprehensive integration of recent findings in fundamental research in the nano arena reveals the strong interest in these nanomedicines in ovarian cancer treatment. However, these nanomedicines still require more research, as indicated by the comparatively small number of clinical trials ongoing. This article will provide a reference for ovarian cancer treatment.
Collapse
Affiliation(s)
- Pooja Mathur
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Shailendra Bhatt
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Suresh Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Sweta Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Arpana Rana
- Advanced Institute of Pharmacy, Delhi Mathura Road, Palwal-121105, India
| | - Harish Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, India
| |
Collapse
|
21
|
Li R, Kato H, Fumimoto C, Nakamura Y, Yoshimura K, Minagawa E, Omatsu K, Ogata C, Taguchi Y, Umeda M. Essential Amino Acid Starvation-Induced Oxidative Stress Causes DNA Damage and Apoptosis in Murine Osteoblast-like Cells. Int J Mol Sci 2023; 24:15314. [PMID: 37894999 PMCID: PMC10607495 DOI: 10.3390/ijms242015314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Intracellular nutrient metabolism, particularly the metabolism of essential amino acids (EAAs), is crucial for cellular functions, including energy production and redox homeostasis. An EAA deficiency can lead to cellular dysfunction and oxidative stress. This study explores the mechanisms underlying cellular responses to EAA starvation, focusing on ROS-induced DNA damage and apoptosis. MC3T3-E1 cells were subjected to EAA starvation, and various assays were conducted to assess cell proliferation, survival, DNA damage, and apoptosis. The antioxidant N-acetylcysteine (NAC) was employed to block ROS formation and mitigate cellular damage. Gene expression and Western blot analyses were performed to elucidate molecular pathways. EAA starvation-induced ROS generation, DNA damage, and apoptosis in MC3T3-E1 cells. NAC administration effectively reduced DNA damage and apoptosis, highlighting the pivotal role of ROS in mediating these cellular responses during EAA deficiency. This study demonstrates that EAA starvation triggers ROS-mediated DNA damage and apoptosis, offering insights into the intricate interplay between nutrient deficiency, oxidative stress, and programmed cell death. NAC emerges as a potential therapeutic intervention to counteract these adverse effects.
Collapse
Affiliation(s)
- Runbo Li
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Chihiro Fumimoto
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yurika Nakamura
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Kimihiro Yoshimura
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Emika Minagawa
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Keiju Omatsu
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Chizuko Ogata
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
22
|
Liu K, Yao Y, Xue S, Zhang M, Li D, Xu T, Zhi F, Liu Y, Ding D. Recent Advances of Tumor Microenvironment-Responsive Nanomedicines-Energized Combined Phototherapy of Cancers. Pharmaceutics 2023; 15:2480. [PMID: 37896240 PMCID: PMC10610502 DOI: 10.3390/pharmaceutics15102480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as a powerful tumor treatment tool due to its advantages including minimal invasiveness, high selectivity and thus dampened side effects. On the other side, the efficacy of PDT is severely frustrated by the limited oxygen level in tumors, thus promoting its combination with other therapies, particularly photothermal therapy (PTT) for bolstered tumor treatment outcomes. Meanwhile, nanomedicines that could respond to various stimuli in the tumor microenvironment (TME) provide tremendous benefits for combined phototherapy with efficient hypoxia relief, tailorable drug release and activation, improved cellular uptake and intratumoral penetration of nanocarriers, etc. In this review, we will introduce the merits of combining PTT with PDT, summarize the recent important progress of combined phototherapies and their combinations with the dominant tumor treatment regimen, chemotherapy based on smart nanomedicines sensitive to various TME stimuli with a focus on their sophisticated designs, and discuss the challenges and future developments of nanomedicine-mediated combined phototherapies.
Collapse
Affiliation(s)
- Kehan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Yao Yao
- Department of Gerontology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China;
| | - Shujuan Xue
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Mengyao Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dazhao Li
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Tao Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), D02 NY74 Dublin, Ireland
| | - Feng Zhi
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yang Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| |
Collapse
|
23
|
Mehdizadeh R, Ansari AM, Forouzesh F, Ghadirian R, Shahriari F, Shariatpanahi SP, Javidi MA. Cross-talk between non-ionizing electromagnetic fields and metastasis; EMT and hybrid E/M may explain the anticancer role of EMFs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00060-3. [PMID: 37302516 DOI: 10.1016/j.pbiomolbio.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Recent studies have shown that non-ionizing electromagnetic fields (NIEMFs) in a specific frequency, intensity, and exposure time can have anti-cancer effects on various cancer cells; however, the underlying precise mechanism of action is not transparent. Most cancer deaths are due to metastasis. This important phenomenon plays an inevitable role in different steps of cancer including progression and development. It has different stages including invasion, intravasation, migration, extravasation, and homing. Epithelial-mesenchymal transition (EMT), as well as hybrid E/M state, are biological processes, that involve both natural embryogenesis and tissue regeneration, and abnormal conditions including organ fibrosis or metastasis. In this context, some evidence reveals possible footprints of the important EMT-related pathways which may be affected in different EMFs treatments. In this article, critical EMT molecules and/or pathways which can be potentially affected by EMFs (e.g., VEGFR, ROS, P53, PI3K/AKT, MAPK, Cyclin B1, and NF-кB) are discussed to shed light on the mechanism of EMFs anti-cancer effect.
Collapse
Affiliation(s)
- Romina Mehdizadeh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Madjid Ansari
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhane Ghadirian
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
24
|
Zheng Z, Zheng X, Kong D, Ding K, Zhang Z, Zhong R, He J, Zhou S. Pressure-Gradient Counterwork of Dual-Fuel Driven Nanocarriers in Abnormal Interstitial Fluids for Enhancing Drug Delivery Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207252. [PMID: 36922734 DOI: 10.1002/smll.202207252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Indexed: 06/15/2023]
Abstract
The abnormal pressure in tumor tissue is a significant limitation on the drug delivery efficiency of tumor therapy. This work reports a gradient-driven nanomotor as drug nanocarrier with the pressure-counterworking function. The dual-fuel nanomotors are formed by co-electrospinning of the photosensitive polymers with calcium peroxide (CaO2 ) and catalase (CAT), followed by ultraviolet (UV) irradiation and bovine serum albumin (BSA) incubation. The UV-responsive cleavage nanomotors can effectively release O2 molecules at the fractures as a driving force to increase the delivery speed and escape the phagocytosis of macrophage system in normal tissues. Furthermore, CAT catalyzes H2 O2 produced by CaO2 and the tumor interstitial fluids to provide stronger power for the nanomotors. Additionally, according to the analysis of directional motions of the nanomotors, the functional relationship between the rotational diffusion coefficient (DR ) and the physiological viscosity is constructed. The dual-fuel nanocarriers enable up to 13.25% of the injected dose (ID)/per gram tissue and significantly improve the penetration in deep tumor. It is of vital importance to design and obtain the adaptive pressure-gradient counterworking nanomotors, which can effectively improve the drug delivery efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Zhiwen Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiaotong Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Degang Kong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Kai Ding
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhao Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Run Zhong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jing He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
25
|
Chen D, Shao M, Song Y, Ren G, Guo F, Fan X, Wang Y, Zhang W, Qin G. Single-cell RNA-seq with spatial transcriptomics to create an atlas of human diabetic kidney disease. FASEB J 2023; 37:e22938. [PMID: 37130011 DOI: 10.1096/fj.202202013rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Diabetic kidney disease (DKD) develops in ~40% of patients with diabetes and is the leading cause of chronic kidney disease worldwide. We used single-cell RNA-sequencing and spatial transcriptomic analyses of kidney specimens from patients with DKD. Unsupervised clustering revealed distinct cell clusters, including epithelial cells and fibroblasts. We also identified differentially expressed genes (DEGs) and assessed enrichment, and cell-cell interactions. Specific enrichment of DKD was evident in venous endothelial cells (VECs) and fibroblasts with elevated CCL19 expression. The DEGs in most kidney parenchymal cells in DKD were primarily enriched in inflammatory signaling pathways. Intercellular crosstalk revealed that most cell interactions in DKD are associated with chemokines. Spatial transcriptomics revealed that VECs co-localized with fibroblasts, with most immune cells being enriched in areas of renal fibrosis. These results provided insight into the cell populations, intercellular interactions, and signaling pathways underlying the pathogenesis and potential targets for treating DKD.
Collapse
Affiliation(s)
- Duo Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Song
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xunjie Fan
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Wang
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Cheff DM, Cheng Q, Guo H, Travers J, Klumpp-Thomas C, Shen M, Arnér ESJ, Hall MD. Development of an assay pipeline for the discovery of novel small molecule inhibitors of human glutathione peroxidases GPX1 and GPX4. Redox Biol 2023; 63:102719. [PMID: 37244126 DOI: 10.1016/j.redox.2023.102719] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023] Open
Abstract
Selenoprotein glutathione peroxidases (GPX), like ubiquitously expressed GPX1 and the ferroptosis modulator GPX4, enact antioxidant activities by reducing hydroperoxides using glutathione. Overexpression of these enzymes is common in cancer and can be associated with the development of resistance to chemotherapy. GPX1 and GPX4 inhibitors have thus shown promise as anti-cancer agents, and targeting other GPX isoforms may prove equally beneficial. Existing inhibitors are often promiscuous, or modulate GPXs only indirectly, so novel direct inhibitors identified through screening against GPX1 and GPX4 could be valuable. Here, we developed optimized glutathione reductase (GR)-coupled GPX assays for the biochemical high-throughput screen (HTS) of almost 12,000 compounds with proposed mechanisms of action. Initial hits were triaged using a GR counter-screen, assessed for isoform specificity against an additional GPX isoform, GPX2, and were assessed for general selenocysteine-targeting activity using a thioredoxin reductase (TXNRD1) assay. Importantly, 70% of the GPX1 inhibitors identified in the primary screen, including several cephalosporin antibiotics, were found to also inhibit TXNRD1, while auranofin, previously known as a TXNRD1 inhibitor, also inhibited GPX1 (but not GPX4). Additionally, every GPX1 inhibitor identified (including omapatrilat, tenatoprazole, cefoxitin and ceftibuten) showed similar inhibitory activity against GPX2. Some compounds inhibiting GPX4 but not GPX1 or GPX2, also inhibited TXNRD1 (26%). Compounds only inhibiting GPX4 included pranlukast sodium hydrate, lusutrombopag, brilanestrant, simeprevir, grazoprevir (MK-5172), paritaprevir, navitoclax, venetoclax and VU0661013. Two compounds (metamizole sodium and isoniazid sodium methanesulfate) inhibited all three GPXs but not TXNRD1, while 2,3-dimercaptopropanesulfonate, PI4KIII beta inhibitor 3, SCE-2174 and cefotetan sodium inhibited all tested selenoproteins (but not GR). The detected overlaps in chemical space suggest that the counter screens introduced here should be imperative for identification of specific GPX inhibitors. With this approach, we could indeed identify novel GPX1/GPX2- or GPX4-specific inhibitors, thus presenting a validated pipeline for future identification of specific selenoprotein-targeting agents. Our study also identified GPX1/GPX2, GPX4 and/or TXNRD1 as targets for several previously developed pharmacologically active compounds.
Collapse
Affiliation(s)
- Dorian M Cheff
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States; Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
| | - Hui Guo
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Jameson Travers
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Carleen Klumpp-Thomas
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Min Shen
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
| | - Matthew D Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States.
| |
Collapse
|
27
|
Chu Z, Yang J, Zheng W, Sun J, Wang W, Qian H. Recent advances on modulation of H2O2 in tumor microenvironment for enhanced cancer therapeutic efficacy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Caligiuri I, Vincenzo C, Asano T, Kumar V, Rizzolio F. The metabolic crosstalk between PIN1 and the tumour microenvironment. Semin Cancer Biol 2023; 91:143-157. [PMID: 36871635 DOI: 10.1016/j.semcancer.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.
Collapse
Affiliation(s)
- Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Canzonieri Vincenzo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tomochiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy.
| |
Collapse
|
29
|
Nanoplatform-based cellular reactive oxygen species regulation for enhanced oncotherapy and tumor resistance alleviation. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
30
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
31
|
Eom JW, Lim JW, Kim H. Lutein Induces Reactive Oxygen Species-Mediated Apoptosis in Gastric Cancer AGS Cells via NADPH Oxidase Activation. Molecules 2023; 28:molecules28031178. [PMID: 36770846 PMCID: PMC9919728 DOI: 10.3390/molecules28031178] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Disruption of apoptosis leads to cancer cell progression; thus, anticancer agents target apoptosis of cancer cells. Reactive oxygen species (ROS) induce apoptosis by activating caspases and caspase-dependent DNase, leading to DNA fragmentation. ROS increase the expression of apoptotic protein Bax, which is mediated by activation of nuclear factor-κB (NF--κB). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of endogenous ROS, and its activation is involved in apoptosis. Lutein, an oxygenated carotenoid and known antioxidant, is abundant in leafy dark green vegetables, such as spinach and kale, and in yellow-colored foods, such as corn and egg yolk. High amounts of lutein increase ROS levels and exhibit anticancer activity. However, its anticancer mechanism remains unclear. This study aimed to determine whether lutein activates NADPH oxidase to produce ROS and induce apoptosis in gastric cancer AGS cells. Lutein increased ROS levels and promoted the activation of NADPH oxidase by increasing the translocation of NADPH oxidase subunit p47 phox to the cell membrane. It increased NF-κB activation and apoptotic indices, such as Bax, caspase-3 cleavage, and DNA fragmentation, and decreased Bcl-2, cell viability, and colony formation in AGS cells. The specific NADPH oxidase inhibitor ML171, and the known antioxidant N-acetyl cysteine reversed lutein-induced cell death, DNA fragmentation, and NF-κB DNA-binding activity in AGS cells. These results suggest that lutein-induced ROS production is dependent on NADPH oxidase, which mediates NF-κB activation and apoptosis in gastric cancer AGS cells. Therefore, lutein supplementation may be beneficial for increasing ROS-mediated apoptosis in gastric cancer cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
32
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Myeloid-Derived Suppressor Cells in Cancer and COVID-19 as Associated with Oxidative Stress. Vaccines (Basel) 2023; 11:218. [PMID: 36851096 PMCID: PMC9966263 DOI: 10.3390/vaccines11020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Myeloid-derived suppressor cells MDSCs are a heterogeneous population of cells that expand beyond their physiological regulation during pathologies such as cancer, inflammation, bacterial, and viral infections. Their key feature is their remarkable ability to suppress T cell and natural killer NK cell responses. Certain risk factors for severe COVID-19 disease, such as obesity and diabetes, are associated with oxidative stress. The resulting inflammation and oxidative stress can negatively impact the host. Similarly, cancer cells exhibit a sustained increase in intrinsic ROS generation that maintains the oncogenic phenotype and drives tumor progression. By disrupting endoplasmic reticulum calcium channels, intracellular ROS accumulation can disrupt protein folding and ultimately lead to proteostasis failure. In cancer and COVID-19, MDSCs consist of the same two subtypes (PMN-MSDC and M-MDSC). While the main role of polymorphonuclear MDSCs is to dampen the response of T cells and NK killer cells, they also produce reactive oxygen species ROS and reactive nitrogen species RNS. We here review the origin of MDSCs, their expansion mechanisms, and their suppressive functions in the context of cancer and COVID-19 associated with the presence of superoxide anion •O2- and reactive oxygen species ROS.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Celia Andrés Juan
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
33
|
Liu Y, She W, Li Y, Wang M, Liu Y, Ning B, Xu T, Huang T, Wei Y. Aa-Z2 triggers ROS-induced apoptosis of osteosarcoma by targeting PDK-1. J Transl Med 2023; 21:7. [PMID: 36611209 PMCID: PMC9826572 DOI: 10.1186/s12967-022-03862-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most frequent cancer derived from bone, and the prognosis of OS is poor. Metabolic alterations have been previously reported to contribute to the development of OS, and arsenic compounds have been suggested to exhibit strong anti-OS effects. However, few studies have described the therapeutic efficiency of arsenic compounds by targeting metabolism in OS. METHODS Here, we presented a novel organo-arsenic compound, Aa-Z2, and its antitumour efficacy against OS both in vitro and in vivo. RESULTS Aa-Z2 induced OS cell apoptosis, G2/M phase arrest, and autophagy through the accumulation of reactive oxygen species (ROS). Elevated ROS functioned by promoting the mitochondrial-dependent caspase cascade and attenuating the PI3K/Akt/mTOR signalling pathway. N-acetylcysteine (NAC), a kind of ROS scavenger, could reverse the effects of Aa-Z2 treatment on 143B and HOS cells. Specifically, by targeting pyruvate dehydrogenase kinase 1 (PDK-1), Aa-Z2 induced changes in mitochondrial membrane potential and alterations in glucose metabolism to accumulate ROS. Overexpression of PDK-1 could partially desensitize OS cells to Aa-Z2 treatment. Importantly, Aa-Z2 suppressed tumour growth in our xenograft osteosarcoma model. CONCLUSION The study provides new insights into the mechanism of Aa-Z2-related metabolic alterations in OS inhibition, as well as pharmacologic evidence supporting the development of metabolism-targeting therapeutics.
Collapse
Affiliation(s)
- Yixin Liu
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China
| | - Wenyan She
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, No. 299 Bayi Road, Wuchang District, Wuhan, 430072 Hubei People’s Republic of China
| | - Yi Li
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China
| | - Miao Wang
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China
| | - Yin Liu
- grid.413247.70000 0004 1808 0969Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China
| | - Biao Ning
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China
| | - Tianzi Xu
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China
| | - Tianhe Huang
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China
| | - Yongchang Wei
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei People’s Republic of China
| |
Collapse
|
34
|
Shi Y, Zhang C, Liu C, Ma X, Liu Z. Image-Guided Precision Treatments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:59-86. [PMID: 37460727 DOI: 10.1007/978-981-32-9902-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Chemotherapy, radiotherapy, and surgery are traditional cancer treatments, which usually produce unpredictable side effects and potential risks to normal healthy organs/tissues. Thus, safe and reliable treatment strategies are urgently required for maximized therapeutic efficiency to lesions and minimized risks to healthy regions. To this end, molecular imaging is responsible to undertake a specific targeting therapy. Besides that, the image guidance as a precision visualized approach for real-time in situ evaluations as well as an intraoperational navigation approach has earned attractive attention in the past decade. Along with the rapid development of multifunctional micro-/nanobiomaterials, versatile cutting-edge and advanced therapy strategies (e.g., thermal therapy, dynamic therapy, gas therapy, etc.) have been achieved and greatly contributed to the image-guided precision treatments in every aspect. Therefore, this chapter aims to discuss about both traditional and advanced cancer treatments and especially to elucidate the important roles that visualized medicine has been playing in the image-guided precision treatments.
Collapse
Affiliation(s)
- Yu Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chenxi Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xinyong Ma
- Division of Academic & Cultural Activities, Academic Divisions of the Chinese Academy of Sciences, Beijing, China
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
35
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
36
|
Dharshini LCP, Rasmi RR, Kathirvelan C, Kumar KM, Saradhadevi KM, Sakthivel KM. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl Biochem Biotechnol 2022; 195:2893-2916. [PMID: 36441404 DOI: 10.1007/s12010-022-04266-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
Cancer progression is closely linked to oxidative stress (OS) inflammation. OS is caused by an imbalance between the amount of reactive oxygen species produced and antioxidants present in the body. Excess ROS either oxidizes biomolecules or activates the signaling cascade, resulting in inflammation. Immune cells secrete cytokines and chemokines when inflammation is activated. These signaling molecules attract a wide range of immune cells to the site of infection or oxidative stress. Similarly, increased ROS production by immune cells at the inflamed site causes oxidative stress in the affected area. A review on the role of oxidative stress and inflammation in cancer-related literature was conducted to obtain data. All of the information gathered was focused on the current state of oxidative stress and inflammation in various cancers. After gathering all relevant information, a narrative review was created to provide a detailed note on oxidative stress and inflammation in cancer. Proliferation, differentiation, angiogenesis, migration, invasion, metabolic changes, and evasion of programmed cell death are all aided by OS and inflammation in cancer. Imbalance between reactive oxygen species (ROS) and antioxidants lead to oxidative stress that damages macromolecules (nucleic acids, lipids and proteins). It causes breakdown of the biological signaling cascade. Prolonged oxidative stress causes inflammation by activating transcription factors (NF-κB, p53, HIF-1α, PPAR-γ, Nrf2, AP-1) that alter the expression of many other genes and proteins, including growth factors, tumor-suppressor genes, oncogenes, and pro-inflammatory cytokines, resulting in cancer cell survival. The present review article examines the complex relationship between OS and inflammation in certain types of cancer (colorectal, breast, lung, bladder, and gastric cancer).
Collapse
Affiliation(s)
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India
| | - Chinnadurai Kathirvelan
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal, 637 002, Tamil Nadu, India
| | - Kalavathi Murugan Kumar
- School of Lifescience, Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - K M Saradhadevi
- Department of Biochemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India.
| |
Collapse
|
37
|
A Background-Free SERS Strategy for Sensitive Detection of Hydrogen Peroxide. Molecules 2022; 27:molecules27227918. [PMID: 36432018 PMCID: PMC9695938 DOI: 10.3390/molecules27227918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The accurate and sensitive detection of biomolecules by surface-enhanced Raman spectroscopy (SERS) is possible, but remains challenging due to the interference from biomolecules in complex samples. Herein, a new SERS sensor is developed for background-free detection of hydrogen peroxide (H2O2) with an ultralow detection limit (1 × 10-10 mol/L), using a Raman-silent strategy. The Au microparticles (Au-RSMPs) resembling rose-stones are devised as SERS substrates with a high enhancement effect, and 4-mercaptophenylboronic acid (4-MPBA) is selected as an H2O2-responsive Raman reporter. Upon the reaction with H2O2, the phenylboronic group of 4-MPBA was converted to a phenol group, which subsequently reacted with 4-diazonium-phenylalkyne (4-DP), an alkyne-carrying molecule via the azo reaction. The formed product exhibits an intense and sharp SERS signal in the Raman-silent region, avoiding interference of impurities and biomolecules. As a proof-of-concept demonstration, we show that this SERS sensor possesses significant merits towards the determination of H2O2 in terms of broad linear range, low limit of detection, and high selectivity, showing promise for the quantitative analysis of H2O2 in complicated biological samples.
Collapse
|
38
|
Zhang J, Yang HZ, Liu S, Islam MO, Zhu Y, Wang Z, Chen R. PCDH9 suppresses melanoma proliferation and cell migration. Front Oncol 2022; 12:903554. [PMID: 36452505 PMCID: PMC9703089 DOI: 10.3389/fonc.2022.903554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/12/2022] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Melanoma has dramatically increased during last 30 years with low 5-year survival and prognosis rate. METHODS Melanoma cells (A375 and G361) were chosen as the in vitro model. The immunohistochemical (IHC) analysis and bioinformatics mining exhibited the suppression of PCDH9 on melanoma. The interference and overexpression of PCDH9 were infected by lentivirus. The effects of PCDH9 on melanoma cells were assessed in terms of alteration of PCDH9 such as cell viability, apoptosis, cell cycle, and wound-healing assay. Moreover, expressions of PCDH9 with other genes (MMP2, MMP9, CCND1, and RAC1) were also assessed by PCR. RESULTS The alteration of PCDH9 has a negative correlation with MMP2, MMP9, and RAC1 but had a positive correlation with CCND1 (Cyclin D1) and apoptosis. Increase of PCDH9 could suppress melanoma cells and inhibit migration but not exert significant effects on cell cycle. IHC showed lower PCDH9 expression in melanoma tissue with main expression in cytoplasm. CONCLUSION Overexpressed PCDH9 suppressed melanoma cells, and PCDH9 can be considered as an independent prognostic factor for melanoma; even re-expression of PCDH9 can serve as a potential therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Hui-Zhi Yang
- The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Shuang Liu
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Md Obaidul Islam
- Department of Surgery, University of Miami, Miami, FL, United States
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Nano-drug Technology Research Center at Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Nano-drug Technology Research Center at Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - RongYi Chen
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:12. [PMID: 36352310 DOI: 10.1007/s12032-022-01871-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Cellular ROS production participates in various cellular functions but its accumulation decides the cell fate. Malignant cells have higher levels of ROS and active antioxidant machinery, a characteristic hallmark of cancer with an outcome of activation of stress-induced pathways like autophagy. Autophagy is an intracellular catabolic process that produces alternative raw materials to meet the energy demand of cells and is influenced by the cellular redox state thus playing a definite role in cancer cell fate. Since damaged mitochondria are the main source of ROS in the cell, however, cancer cells remove them by upregulating the process of mitophagy which is known to play a decisive role in tumorigenesis and tumor progression. Chemotherapy exploits cell machinery which results in the accumulation of toxic levels of ROS in cells resulting in cell death by activating either of the pathways like apoptosis, necrosis, ferroptosis or autophagy in them. So understanding these redox and autophagy regulations offers a promising method to design and develop new cancer therapies that can be very effective and durable for years. This review will give a summary of the current therapeutic molecules targeting redox regulation and autophagy for the treatment of cancer. Further, it will highlight various challenges in developing anticancer agents due to autophagy and ROS regulation in the cell and insights into the development of future therapies.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Baseerat Hamza
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
40
|
Wang Q, Wu M, Li H, Rao X, Ao L, Wang H, Yao L, Wang X, Hong X, Wang J, Aa J, Sun M, Wang G, Liu J, Zhou F. Therapeutic targeting of glutamate dehydrogenase 1 that links metabolic reprogramming and Snail-mediated epithelial–mesenchymal transition in drug-resistant lung cancer. Pharmacol Res 2022; 185:106490. [DOI: 10.1016/j.phrs.2022.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 10/31/2022]
|
41
|
Cai G, Zou R, yang H, Xie J, Chen X, Zheng C, Luo S, Wei N, Liu S, Chen R. Circ_0084043-miR-134-5p axis regulates PCDH9 to suppress melanoma. Front Oncol 2022; 12:891476. [PMID: 36387162 PMCID: PMC9641620 DOI: 10.3389/fonc.2022.891476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
The low survival rates, poor responses, and drug resistance of patients with melanoma make it urgent to find new therapeutic targets. This study investigated whether the circ_0084043-miR-134-5p axis regulates the antitumor effect of protocadherin 9 (PCDH9) in melanoma. Ectopic expression or knock down (KD) of PCDH9 with a lentivirus vector, we explored its effects on the proliferation, invasion, and apoptosis of melanoma and verified its regulatory effect on ras-related C3 botulinum toxin substrate 1 (RAC1), proline-rich tyrosine kinase 2 (Pyk2), Cyclin D1, matrix metalloproteinase 2 (MMP2), and MMP9. We further observed the effect of KD circ_0084043 on the malignant behavior of melanoma and studied whether circ_0084043 sponged miR-134-5p and regulated PCDH9. We found that circ_0084043 was overexpressed in melanoma and associated with the malignant phenotype. PCDH9 was poorly expressed in human melanoma tissues, and overexpression of PCDH9 inhibited melanoma progression. Quantitative real-time PCR and Western blotting results showed that overexpression of PCDH9 could downregulate RAC1, MMP2, and MMP9 and upregulate Pyk2 and Cyclin D1. Circ_0084043 KD inhibited invasion and promoted apoptosis in melanoma cells. Circ_0084043 could sponge miR-134-5p and thus indirectly regulate PCDH9. Furthermore, we discovered that inhibiting circ_0084043 had an anti–PD-Ll effect. In vivo, PCDH9 overexpression inhibited melanoma tumor growth, but PCDH9 KD promoted it. In conclusion, PCDH9, which is regulated by the circ 0084043-miR-134-5p axis, can suppress malignant biological behavior in melanoma and influence the expression levels of Pyk2, RAC1, Cyclin D1, MMP2, and MMP9.
Collapse
Affiliation(s)
- Guiyue Cai
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Ruitao Zou
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Huizhi yang
- Dermatology Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahao Xie
- Dermatology Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoxuan Chen
- Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Chunchan Zheng
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Luo
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Na Wei
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Shuang Liu
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shuang Liu, ; Rongyi Chen,
| | - Rongyi Chen
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Clinical School, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Shuang Liu, ; Rongyi Chen,
| |
Collapse
|
42
|
Galasso M, Dalla Pozza E, Chignola R, Gambino S, Cavallini C, Quaglia FM, Lovato O, Dando I, Malpeli G, Krampera M, Donadelli M, Romanelli MG, Scupoli MT. The rs1001179 SNP and CpG methylation regulate catalase expression in chronic lymphocytic leukemia. Cell Mol Life Sci 2022; 79:521. [PMID: 36112236 PMCID: PMC9481481 DOI: 10.1007/s00018-022-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an extremely variable clinical course. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course. Elucidating mechanisms regulating CAT expression in CLL is preeminent to understand disease mechanisms and develop strategies for improving its clinical management. In this study, we investigated the role of the CAT promoter rs1001179 single nucleotide polymorphism (SNP) and of the CpG Island II methylation encompassing this SNP in the regulation of CAT expression in CLL. Leukemic cells harboring the rs1001179 SNP T allele exhibited a significantly higher CAT expression compared with cells bearing the CC genotype. CAT promoter harboring the T -but not C- allele was accessible to ETS-1 and GR-β transcription factors. Moreover, CLL cells exhibited lower methylation levels than normal B cells, in line with the higher CAT mRNA and protein expressed by CLL in comparison with normal B cells. Methylation levels at specific CpG sites negatively correlated with CAT levels in CLL cells. Inhibition of methyltransferase activity induced a significant increase in CAT levels, thus functionally validating the role of CpG methylation in regulating CAT expression in CLL. Finally, the CT/TT genotypes were associated with lower methylation and higher CAT levels, suggesting that the rs1001179 T allele and CpG methylation may interact in regulating CAT expression in CLL. This study identifies genetic and epigenetic mechanisms underlying differential expression of CAT, which could be of crucial relevance for the development of therapies targeting redox regulatory pathways in CLL.
Collapse
Affiliation(s)
- Marilisa Galasso
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Simona Gambino
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Francesca Maria Quaglia
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ornella Lovato
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ilaria Dando
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Giorgio Malpeli
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Massimo Donadelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Maria G Romanelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Maria T Scupoli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
43
|
Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN, Lee AYL. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? J Biomed Sci 2022; 29:74. [PMID: 36154922 PMCID: PMC9511749 DOI: 10.1186/s12929-022-00859-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022] Open
Abstract
The major concept of "oxidative stress" is an excess elevated level of reactive oxygen species (ROS) which are generated from vigorous metabolism and consumption of oxygen. The precise harmonization of oxidative stresses between mitochondria and other organelles in the cell is absolutely vital to cell survival. Under oxidative stress, ROS produced from mitochondria and are the major mediator for tumorigenesis in different aspects, such as proliferation, migration/invasion, angiogenesis, inflammation, and immunoescape to allow cancer cells to adapt to the rigorous environment. Accordingly, the dynamic balance of oxidative stresses not only orchestrate complex cell signaling events in cancer cells but also affect other components in the tumor microenvironment (TME). Immune cells, such as M2 macrophages, dendritic cells, and T cells are the major components of the immunosuppressive TME from the ROS-induced inflammation. Based on this notion, numerous strategies to mitigate oxidative stresses in tumors have been tested for cancer prevention or therapies; however, these manipulations are devised from different sources and mechanisms without established effectiveness. Herein, we integrate current progress regarding the impact of mitochondrial ROS in the TME, not only in cancer cells but also in immune cells, and discuss the combination of emerging ROS-modulating strategies with immunotherapies to achieve antitumor effects.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Ananth Ponneri Babuharisankar
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan
| | - Ying-Chen Lin
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Vidhya Tangeda
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan
| | - Li-Chun Cheng
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - An Ning Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan. .,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan. .,Department of Life Sciences, College of Health Sciences and Technology, National Central University, Zhongli, Taoyuan, 32001, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
44
|
Turan M, Turan G, Can HY. The role of cyclophilin A and VEGF in the pathogenesis and recurrence of pterygium. Eur J Ophthalmol 2022; 33:11206721221128664. [PMID: 36147022 DOI: 10.1177/11206721221128664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Pterygium is defined as overgrowth of abnormal conjunctival tissue on the cornea. Many proinflammatory cytokines and various growth factors have been implicated in the pathogenesis of pterygium. Cyclophilin A (CyPA) is a protein that is used by cyclosporin A (CsA) as the intracellular receptor and is secreted in response to inflammatory stimuli. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor. This study aimed to assessment CyPA and VEGF immunoreactivity in pterygium specimens. MATERIAL AND METHODS In this cross-sectional study, 32 primary pterygium samples, 25 recurrent pterygium samples and 25 normal bulbar conjunctiva samples were included. The histopathological features, CyPA and VEGF immunoreactivity of surgically excised pterygium specimens were compared with control conjunctiva specimens obtained from normal bulbar conjunctiva. RESULTS CyPA immunoreactivity in vascular endothelial cells, epithelial cells, and stromal cells was remarkably higher in pterygium specimens than control conjunctiva specimens (p = 0.004, p = 0.012, p = 0.001, respectively). Morever, VEGF immunoreactivity in endothelial cells was remarkably higher in pterygium specimens than control conjunctiva specimens (p < 0.001). When recurrent and primary pterygium specimens were compared, CyPA and VEGF immunoreactivity was remarkably higher in recurrent pterygium (p = 0.001, p = 0.001, respectively). Pearson correlation showed that CyPA immunoreactivity correlated with stromal vascularity, stromal inflammation, and mast cell count in pterygium specimens. CONCLUSION This study aimed to assess CyPA and VEGF may have a important function in the pathogenesis and recurrence of pterygium.
Collapse
Affiliation(s)
- Meydan Turan
- Ophthalmology Clinic, Balıkesir Ataturk City Hospital, Balikesir, Turkey
| | - Gulay Turan
- Faculty of Medicine, Department of Pathology, Balikesir University, Balikesir, Turkey
| | - Humeyra Yildirim Can
- Faculty of Medicine, Department of Ophthalmology, Balikesir University, Balikesir, Turkey
| |
Collapse
|
45
|
Lu F, Fang D, Li S, Zhong Z, Jiang X, Qi Q, Liu Y, Zhang W, Xu X, Liu Y, Zhu W, Jiang L. Thioredoxin 1 supports colorectal cancer cell survival and promotes migration and invasion under glucose deprivation through interaction with G6PD. Int J Biol Sci 2022; 18:5539-5553. [PMID: 36147458 PMCID: PMC9461668 DOI: 10.7150/ijbs.71809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Overcoming energy stress is a critical step for cells in solid tumors. Under this stress microenvironment, cancer cells significantly alter their energy metabolism to maintain cell survival and even metastasis. Our previous studies have shown that thioredoxin-1 (Trx-1) expression is increased in colorectal cancer (CRC) and promotes cell proliferation. However, the exact role and mechanism of how Trx-1 is involved in energy stress are still unknown. Here, we observed that glucose deprivation of CRC cells led to cell death and promoted the migration and invasion, accompanied by upregulation of Trx-1. Increased Trx-1 supported CRC cell survival under glucose deprivation. Whereas knockdown of Trx-1 sensitized CRC cells to glucose deprivation-induced cell death and reversed glucose deprivation-induced migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, we identified glucose-6-phosphate dehydrogenase (G6PD) interacting with Trx-1 by HuPortTM human protein chip, co-IP and co-localization. Trx-1 promoted G6PD protein expression and activity under glucose deprivation, thereby increasing nicotinamide adenine dinucleotide phosphate (NADPH) generation. Moreover, G6PD knockdown sensitized CRC cells to glucose deprivation-induced cell death and suppressed glucose deprivation-induced migration, invasion, and EMT. Inhibition of Trx-1 and G6PD, together with inhibition of glycolysis using 2-deoxy-D-glucose (2DG), resulted in significant anti-tumor effects in CRC xenografts in vivo. These findings demonstrate a novel mechanism and may represent a new effective therapeutic regimen for CRC.
Collapse
Affiliation(s)
- Fengying Lu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Changzhou maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Daoquan Fang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shuhan Li
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zuyue Zhong
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiujiao Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qinqin Qi
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yining Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenqi Zhang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaohui Xu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weijian Zhu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
46
|
CCAAT/Enhancer-Binding Protein Delta Regulates Glioblastoma Survival through Catalase-Mediated Hydrogen Peroxide Clearance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4081380. [PMID: 36035213 PMCID: PMC9411925 DOI: 10.1155/2022/4081380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022]
Abstract
It has long been documented that cancer cells show increased and persistent oxidative stress due to increased reactive oxygen species (ROS), which is necessary for their increased proliferative rate. Due to the high levels of ROS, cancer cells also stimulate the antioxidant system, which includes the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), to eliminate ROS. However, overexpressed antioxidant enzymes often lead to drug resistance and therapeutic failure. Glioblastoma (GBM) is the most aggressive brain tumor and has the poorest prognosis. The transcription factor CCAAT/enhancer-binding protein delta (CEBPD) is highly expressed in GBM and correlates with drug resistance, prompting us to elucidate its role in GBM cell survival. In this study, we first demonstrated that loss of CEBPD significantly inhibited GBM cell viability and increased cell apoptosis. Furthermore, the expression of CAT was attenuated through promoter regulation following CEBPD knockdown, accelerating intracellular hydrogen peroxide (H2O2) accumulation. In addition, mitochondrial function was impaired in CEBPD knockdown cells. Together, we revealed the mechanism by which CEBPD-mediated CAT expression regulates H2O2 clearance for GBM cell survival.
Collapse
|
47
|
Stimuli-responsive nanoassemblies for targeted delivery against tumor and its microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188779. [PMID: 35977690 DOI: 10.1016/j.bbcan.2022.188779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
Despite the emergence of various cancer treatments, such as surgery, chemotherapy, radiotherapy, and immunotherapy, their use remains restricted owing to their limited tumor elimination efficacy and side effects. The use of nanoassemblies as delivery systems in nanomedicine for tumor diagnosis and therapy is flourishing. These nanoassemblies can be designed to have various shapes, sizes, and surface charges to meet the requirements of different applications. It is crucial for nanoassemblies to have enhanced delivery of payloads while inducing minimal to no toxicity to healthy tissues. In this review, stimuli-responsive nanoassemblies capable of combating the tumor microenvironment (TME) are discussed. First, various TME characteristics, such as hypoxia, oxidoreduction, adenosine triphosphate (ATP) elevation, and acidic TME, are described. Subsequently, the unique characteristics of the vascular and stromal TME are differentiated, and multiple barriers that have to be overcome are discussed. Furthermore, strategies to overcome these barriers for successful drug delivery to the targeted site are reviewed and summarized. In conclusion, the possible challenges and prospects of using these nanoassemblies for tumor-targeted delivery are discussed. This review aims at inspiring researchers to develop stimuli-responsive nanoassemblies for tumor-targeted delivery for clinical applications.
Collapse
|
48
|
PGC1α Cooperates with FOXA1 to Regulate Epithelial Mesenchymal Transition through the TCF4-TWIST1. Int J Mol Sci 2022; 23:ijms23158247. [PMID: 35897813 PMCID: PMC9332154 DOI: 10.3390/ijms23158247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a critical transcriptional coactivator that maintains metabolic homeostasis and energy expenditure by cooperating with various transcription factors. Recent studies have shown that PGC1α deficiency promotes lung cancer metastasis to the bone through activation of TCF4 and TWIST1-mediated epithelial–mesenchymal transition (EMT), which is suppressed by the inhibitor of DNA binding 1 (ID1); however, it is not clear which transcription factor participates in PGC1α-mediated EMT and lung cancer metastasis. Here, we identified forkhead box A1 (FOXA1) as a potential transcription factor that coordinates with PGC1α and ID1 for EMT gene expression using transcriptome analysis. Cooperation between FOXA1 and PGC1α inhibits promoter occupancy of TCF4 and TWIST1 on CDH1 and CDH2 proximal promoter regions due to increased ID1, consequently regulating the expression of EMT-related genes such as CDH1, CDH2, VIM, and PTHLH. Transforming growth factor beta 1 (TGFβ1), a major EMT-promoting factor, was found to decrease ID1 due to the suppression of FOXA1 and PGC1α. In addition, ectopic expression of ID1, FOXA1, and PGC1α reversed TGFβ1-induced EMT gene expression. Our findings suggest that FOXA1- and PGC1α-mediated ID1 expression involves EMT by suppressing TCF4 and TWIST1 in response to TGFβ1. Taken together, this transcriptional framework is a promising molecular target for the development of therapeutic strategies for lung cancer metastasis.
Collapse
|
49
|
Biscaia SMP, Pires C, Lívero FAR, Bellan DL, Bini I, Bustos SO, Vasconcelos RO, Acco A, Iacomini M, Carbonero ER, Amstalden MK, Kubata FR, Cummings RD, Dias-Baruffi M, Simas FF, Oliveira CC, Freitas RA, Franco CRC, Chammas R, Trindade ES. MG-Pe: A Novel Galectin-3 Ligand with Antimelanoma Properties and Adjuvant Effects to Dacarbazine. Int J Mol Sci 2022; 23:ijms23147635. [PMID: 35886983 PMCID: PMC9317553 DOI: 10.3390/ijms23147635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoma is a highly metastatic and rapidly progressing cancer, a leading cause of mortality among skin cancers. The melanoma microenvironment, formed from the activity of malignant cells on the extracellular matrix and the recruitment of immune cells, plays an active role in the development of drug resistance and tumor recurrence, which are clinical challenges in cancer treatment. These tumoral metabolic processes are affected by proteins, including Galectin-3 (Gal-3), which is extensively involved in cancer development. Previously, we characterized a partially methylated mannogalactan (MG-Pe) with antimelanoma activities. In vivo models of melanoma were used to observe MG-Pe effects in survival, spontaneous, and experimental metastases and in tissue oxidative stress. Analytical assays for the molecular interaction of MG-Pe and Gal-3 were performed using a quartz crystal microbalance, atomic force microscopy, and contact angle tensiometer. MG-Pe exhibits an additive effect when administered together with the chemotherapeutic agent dacarbazine, leading to increased survival of treated mice, metastases reduction, and the modulation of oxidative stress. MG-Pe binds to galectin-3. Furthermore, MG-Pe antitumor effects were substantially reduced in Gal-3/KO mice. Our results showed that the novel Gal-3 ligand, MG-Pe, has both antitumor and antimetastatic effects, alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- Stellee M. P. Biscaia
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Cassiano Pires
- Department of Chemistry, Biopol, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (C.P.); (R.A.F.)
| | - Francislaine A. R. Lívero
- Post-Graduate Program in Medicinal Plants and Phytotherapics in Basic Attention, Parana University (UNIPAR), Umuarama 87502-210, Brazil;
| | - Daniel L. Bellan
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Israel Bini
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Silvina O. Bustos
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
| | - Renata O. Vasconcelos
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil;
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil;
| | - Elaine R. Carbonero
- Institute of Chemistry, Federal University of Catalão (UFCAT), Catalão 75704-020, Brazil;
| | - Martin K. Amstalden
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Fábio R. Kubata
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Richard D. Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Fernanda F. Simas
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Carolina C. Oliveira
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Rilton A. Freitas
- Department of Chemistry, Biopol, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (C.P.); (R.A.F.)
| | - Célia Regina Cavichiolo Franco
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Roger Chammas
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
- Correspondence: (R.C.); (E.S.T.)
| | - Edvaldo S. Trindade
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
- Correspondence: (R.C.); (E.S.T.)
| |
Collapse
|
50
|
Nitric Oxide-Releasing NO–Curcumin Hybrid Inhibits Colon Cancer Cell Proliferation and Induces Cell Death In Vitro. Processes (Basel) 2022. [DOI: 10.3390/pr10050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and most of the currently available drugs for cancer treatment have limited potential. Natural products and their relatives continue to represent a very high percentage of the drugs used for cancer treatment. Curcumin is one of several natural drugs that has recently attracted much attention due to its putative cancer-preventive and anticancer properties. As well, Nitric Oxide (NO) holds a great potential for NO-based treatments for a wide variety of diseases. Here, for the first time, we tested the anti-cancer activities of an NO–Curcumin hybrid, hypothesizing that by joining the effects of curcumin and NO in one compound, the hybrid compound would be more potent than curcumin alone in treating colon cancer. To compare the anti-cancer activities of curcumin and NO–curcumin, we treated different colon cancer cell lines with either curcumin or NO–curcumin and tested their effects on cell proliferation and death. Our results show that NO–curcumin is more effective in reducing cell proliferation and increasing cell death when compared to curcumin. In addition, NO–curcumin has a lower IC50 compared to curcumin. Altogether, our results demonstrate for the first time that an NO–curcumin hybrid has more potent anti-cancer activity compared to curcumin alone, making it a potential future treatment for cancer and perhaps other diseases.
Collapse
|