1
|
Anandi L, Garcia J, Ros M, Janská L, Liu J, Carmona-Fontaine C. Direct visualization of emergent metastatic features within an ex vivo model of the tumor microenvironment. Life Sci Alliance 2025; 8:e202403053. [PMID: 39419548 PMCID: PMC11487089 DOI: 10.26508/lsa.202403053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemic conditions such as hypoxia and nutrient starvation, together with interactions with stromal cells, are critical drivers of metastasis. These conditions arise deep within tumor tissues, and thus, observing nascent metastases is exceedingly challenging. We thus developed the 3MIC-an ex vivo model of the tumor microenvironment-to study the emergence of metastatic features in tumor cells in a 3-dimensional (3D) context. Here, tumor cells spontaneously create ischemic-like conditions, allowing us to study how tumor spheroids migrate, invade, and interact with stromal cells under different metabolic conditions. Consistent with previous data, we show that ischemia increases cell migration and invasion, but the 3MIC allowed us to directly observe and perturb cells while they acquire these pro-metastatic features. Interestingly, our results indicate that medium acidification is one of the strongest pro-metastatic cues and also illustrate using the 3MIC to test anti-metastatic drugs on cells experiencing different metabolic conditions. Overall, the 3MIC can help dissecting the complexity of the tumor microenvironment for the direct observation and perturbation of tumor cells during the early metastatic process.
Collapse
Affiliation(s)
- Libi Anandi
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Jeremy Garcia
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Manon Ros
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Libuše Janská
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Josephine Liu
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
2
|
Rey-Keim S, Schito L. Origins and molecular effects of hypoxia in cancer. Semin Cancer Biol 2024; 106-107:166-178. [PMID: 39427969 DOI: 10.1016/j.semcancer.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hypoxia (insufficient O2) is a pivotal factor in cancer progression, triggering genetic, transcriptional, translational and epigenetic adaptations associated to therapy resistance, metastasis and patient mortality. In this review, we outline the microenvironmental origins and molecular mechanisms responsible for hypoxic cancer cell adaptations in situ and in vitro, whilst outlining current approaches to stratify, quantify and therapeutically target hypoxia in the context of precision oncology.
Collapse
Affiliation(s)
- Sergio Rey-Keim
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| | - Luana Schito
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| |
Collapse
|
3
|
Yoon SA, Hong SJ, Han J, Lee MH. Sensitive Cancer Hypoxia Detection via a Dual-Locking Fluorescence Response System Using Two Hypoxia Indicators. Anal Chem 2024. [PMID: 39258982 DOI: 10.1021/acs.analchem.4c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Hypoxia is intricately associated with various diseases, including ischemia, vascular disorders, and cancer. Particularly in cancer cells, hypoxia promotes tumor growth, cell proliferation, migration, and invasion and enhances treatment resistance, making its detection crucial for cancer diagnosis and therapy. However, methods for detecting hypoxia are limited, often relying on single-detection systems. In this study, we developed a dual-lock-based fluorescent probe that selectively exhibits strong green fluorescence under hypoxic conditions due to simultaneous activity of nitroreductases (NTRs) and hydrogen sulfide (H2S), with a high signal-to-background ratio. The biocompatibility and photophysical properties of the probes were thoroughly investigated through both extracellular and intracellular experimental analyses. Among the synthesized naphthalimide-based probes, the dual-detection probe DNNC demonstrated excellent selectivity and sensitivity to the simultaneous activity of NTR/H2S compared to other single-detection probes. The performance of DNNC was applied to various organ-derived cancer cells and tumor tissue models such as HeLa cell sparoids, enabling spatiotemporal confocal fluorescence imaging and quantitative analysis of hypoxic levels in cancer. Our development of DNNC is expected to significantly advance cancer diagnosis and treatment by molecularly detecting hypoxia associated with cancer aggressiveness, therapy resistance, and unfavorable prognosis.
Collapse
Affiliation(s)
- Shin A Yoon
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - So Jin Hong
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Jiyou Han
- Department of Biomedical and Chemical Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Min Hee Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
4
|
Huang Z, Tian H, Luo H, Yang K, Chen J, Li G, Ding Z, Luo Y, Tang S, Xu J, Wu H, Dong F. Assessment of Oxygen Saturation in Breast Lesions Using Photoacoustic Imaging: Correlation With Benign and Malignant Disease. Clin Breast Cancer 2024; 24:e210-e218.e1. [PMID: 38423948 DOI: 10.1016/j.clbc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Hypoxia is a hallmark of breast cancer (BC). Photoacoustic (PA) imaging, based on the use of laser-generated ultrasound (US), can detect oxygen saturation (So2) in the tissues of breast lesion patients. PURPOSE To measure the oxygenation status of tissue in and on both sides of the lesion in breast lesion participants using a multimodal Photoacoustic/ultrasound (PA/US) imaging system and to determine the correlation between So2 measured by PA imaging and benign or malignant disease. MATERIALS AND METHODS Multimodal PA/US imaging and gray-scale US (GSUS) of breast lesion was performed in consecutive breast lesion participants imaged in the US Outpatient Clinic between 2022 and 2023. Dual-wavelength PA imaging was used to measure the So2 value inside the lesion and on both sides of the tissue, and to distinguish benign from malignant lesions based on the So2 value. The ability of So2 to distinguish benign from malignant breast lesions was evaluated by the receiver operating characteristic curve (ROC) and the De-Long test. RESULTS A total of 120 breast lesion participants (median age, 42.5 years) were included in the study. The malignant lesions exhibited lower So2 levels compared to benign lesions (malignant: 71.30%; benign: 83.81%; P < .01). Moreover, PA/US imaging demonstrates superior diagnostic results compared to GSUS, with an area under the curve (AUC) of 0.89 versus 0.70, sensitivity of 89.58% versus 85.42%, and specificity of 86.11% versus 55.56% at the So2 cut-off value of 78.85 (P < .001). The false positive rate in GSUS reduced by 30.75%, and the false negative rate diminished by 4.16% with PA /US diagnosis. Finally, the So2 on both sides tissues of malignant lesions are lower than that of benign lesions (P < .01). CONCLUSION PA imaging allows for the assessment of So2 within the lesions of breast lesion patients, thereby facilitating a superior distinction between benign and malignant lesions.
Collapse
Affiliation(s)
- Zhibin Huang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Hongtian Tian
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hui Luo
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Keen Yang
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jing Chen
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Guoqiu Li
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Zhimin Ding
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yuwei Luo
- Department of Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Department of General Surgery, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Shuzhen Tang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Huaiyu Wu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Fajin Dong
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
5
|
Lamela F, Bologna-Molina R, Parietti F, Pereira-Prado V, Millán M, Silva A, Llaguno J, Alonso J, Fernández A, Sotelo-Silveira J, Domingues M, Arocena M, Hochmann J. Differential effects of coverslip-induced hypoxia and cobalt chloride mimetic hypoxia on cellular stress, metabolism, and nuclear structure. Tissue Cell 2024; 88:102408. [PMID: 38772273 DOI: 10.1016/j.tice.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Hypoxia has profound effects on cell physiology, both in normal or pathological settings like cancer. In this study, we asked whether a variant of coverslip-induced hypoxia that recapitulates the conditions found in the tumor microenvironment would elicit similar cellular responses compared to the well established model of cobalt chloride-induced hypoxia. Comparable levels of nuclear HIF-1α were observed after 24 h of coverslip-induced hypoxia or cobalt chloride treatment in CAL-27 oral squamous carcinoma cells. However, cellular stress levels assessed by reactive oxygen species production and lipid droplet accumulation were markedly increased in coverslip-induced hypoxia compared to cobalt chloride treatment. Conversely, mitochondrial ATP production sharply decreased after coverslip-induced hypoxia but was preserved in the presence of cobalt chloride. Coverslip-induced hypoxia also had profound effects in nuclear organization, assessed by changes in nuclear dry mass distribution, whereas these effects were much less marked after cobalt chloride treatment. Taken together, our results show that coverslip-induced hypoxia effects on cell physiology and structure are more pronounced than mimetic hypoxia induced by cobalt chloride treatment. Considering also the simplicity of coverslip-induced hypoxia, our results therefore underscore the usefulness of this method to recapitulate in vitro the effects of hypoxic microenvironments encountered by cells in vivo.
Collapse
Affiliation(s)
- Florencia Lamela
- Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de la República, Uruguay
| | - Ronell Bologna-Molina
- Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de la República, Uruguay
| | - Felipe Parietti
- Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de la República, Uruguay
| | - Vanesa Pereira-Prado
- Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de la República, Uruguay
| | - Magdalena Millán
- Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de la República, Uruguay; Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Alejandro Silva
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Juan Llaguno
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julia Alonso
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Ariel Fernández
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay; Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Manoela Domingues
- Departamento de Odontología Conservadora, Faculdade de Odontología, Universidade Federal do Río Grande Do Sul, Brazil
| | - Miguel Arocena
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay; Departamento de Biología Odontológica, Facultad de Odontología, Universidad de la República, Uruguay.
| | - Jimena Hochmann
- Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de la República, Uruguay; Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay.
| |
Collapse
|
6
|
Huang S, Bao Y, Kong L, Gao S, Hua C. Insights into the complex interactions between Rab22a and extracellular vesicles in cancers. Inflamm Res 2024; 73:99-110. [PMID: 38066108 DOI: 10.1007/s00011-023-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
INTRODUCTION Oncogenic Ras-related GTP-binding proteins, referred to as Rabs, are characterized by their intricate interactions with upstream, downstream molecules, and notably, extracellular vesicles (EVs). While the expansive family of Rabs and their associated signaling pathways have been exhaustively dissected, Rab22a emerges as an entity of outstanding interest, owing to its potent influence in many biological processes and its conspicuous correlation with cancer metastasis and migration. A burgeoning interest in the interactions between Rab22a and EVs in the field of oncology underscores the necessity for more in-depth reviews and scholarly discourses. METHODS We performed a review based on published original and review articles related to Rab22a, tumor, microRNA, exosome, microvesicles, EVs, CD147, lysosome, degradation, endosomal recycling, etc. from PubMed, Web of Science and Google Scholar databases. RESULTS AND CONCLUSIONS We summarize the regulatory processes governing the expression of Rab22a and the mutants of Rab22a. Notably, the present understanding of complex interactions between Rab22a and EVs are highlighted, encompassing both the impact of Rab22a on the genesis of EVs and the role of EVs that are affected by Rab22a mutants in propelling tumor advancement. The dynamic interaction between Rab22a and EVs plays a significant role in the progression of tumors, and it can provide novel insights into the pathogenesis of cancers and the development of new therapeutic targets.
Collapse
Affiliation(s)
- Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Bao
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lingjie Kong
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
7
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
8
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
9
|
Bádon ES, Beke L, Mokánszki A, András C, Méhes G. Carbonic Anhydrase IX Expression and Treatment Response Measured in Rectal Adenocarcinoma Following Neoadjuvant Chemo-Radiotherapy. Int J Mol Sci 2023; 24:ijms24032581. [PMID: 36768903 PMCID: PMC9916425 DOI: 10.3390/ijms24032581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The overexpression of the pH regulator carbonic anhydrase IX (CAIX) due to hypoxic/metabolic stress was reported in various tumors as an adverse prognostic feature. Our retrospective study aimed to investigate the general pattern and dynamics of CAIX expression in rectal adenocarcinoma following preoperative neoadjuvant therapy (NAT) in matched initial biopsy and surgical resection samples. A total of 40/55 (72.72%) of the post-treatment samples showed partial CAIX expression, frequently in the proximity of hypoxic tumor areas. CAIX expression showed a significant increase in post-treatment tumors (mean% 21.8 ± 24.9 SD vs. 39.4 ± 29.4 SD, p < 0.0001), that was not obvious in untreated tumors (mean% 15.0 ± 21.3 SD vs. 20 ± 23.02, p = 0.073). CAIXhigh phenotype was associated with mutant KRAS status and lack of pathological regression (WHO Tumor Regression Grade 4 and 5). However, the adverse effect of CAIX on overall or progression-free survival could not be statistically confirmed. In conclusion, the dynamic upregulation of CAIX expression is a general feature of rectal adenocarcinoma following neoadjuvant chemo-radiotherapy indicating therapy-induced metabolic reprogramming and cellular adaptation. A synergism of the CAIX-associated regulatory pathways and the mutant KRAS oncogenic signaling most likely contributes to therapy resistance and survival of residual cancer.
Collapse
Affiliation(s)
- Emese Sarolta Bádon
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lívia Beke
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla András
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-5-2411-600
| |
Collapse
|
10
|
Principle Superiority and Clinical Extensibility of 2D and 3D Charged Nanoprobe Detection Platform Based on Electrophysiological Characteristics of Circulating Tumor Cells. Cells 2023; 12:cells12020305. [PMID: 36672240 PMCID: PMC9856308 DOI: 10.3390/cells12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The electrical characteristic of cancer cells is neglected among tumor biomarkers. The development of nanoprobes with opposing charges for monitoring the unique electrophysiological characteristics of cancer cells. Micro-nano size adsorption binding necessitates consideration of the nanoprobe's specific surface area. On the basis of the electrophysiological characteristics of circulating tumor cells (CTCs), clinical application and performance assessment are determined. To demonstrate that cancer cells have a unique pattern of electrophysiological patterns compared to normal cells, fluorescent nanoprobes with opposing charges were developed and fabricated. Graphene oxide (GO) was used to transform three-dimensional (3D) nanoprobes into two-dimensional (2D) nanoprobes. Compare 2D and 3D electrophysiological magnetic nanoprobes (MNP) in clinical samples and evaluate the adaptability and development of CTCs detection based on cell electrophysiology. Positively charged nanoprobes rapidly bind to negatively charged cancer cells based on electrostatic interactions. Compared to MNPs(+) without GO, the GO/MNPs(+) nanoprobe is more efficient and uses less material to trap cancer cells. CTCs can be distinguished from normal cells that are fully unaffected by nanoprobes by microscopic cytomorphological inspection, enabling the tracking of the number and pathological abnormalities of CTCs in the same patient at various chemotherapy phases to determine the efficacy of treatment. The platform for recognizing CTCs on the basis of electrophysiological characteristics compensates for the absence of epithelial biomarker capture and size difference capture in clinical performance. Under the influence of electrostatic attraction, the binding surface area continues to influence the targeting of cancer cells by nanoprobes. The specific recognition and detection of nanoprobes based on cell electrophysiological patterns has enormous potential in the clinical diagnosis and therapeutic monitoring of cancer.
Collapse
|
11
|
Hypoxia, acidification and oxidative stress in cells cultured at large distances from an oxygen source. Sci Rep 2022; 12:21699. [PMID: 36522457 PMCID: PMC9755289 DOI: 10.1038/s41598-022-26205-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is a condition frequently encountered by cells in tissues, whether as a normal feature of their microenvironment or subsequent to deregulated growth. Hypoxia can lead to acidification and increased oxidative stress, with profound consequences for cell physiology and tumorigenesis. Therefore, the interplay between hypoxia and oxidative stress is an important aspect for understanding the effects of hypoxic microenvironments on cells. We have used a previously developed variant of the method of coverslip-induced hypoxia to study the process of acidification in a hypoxic microenvironment and to simultaneously visualize intracellular levels of hypoxia and oxidative stress. We observed high accumulation of CO2 in hypoxic conditions, which we show is the main contributor to acidification in our model. Also, increased levels of oxidative stress were observed in moderately hypoxic cells close to the oxygen source, where the mitochondrial membrane potential was preserved. Conversely, cells at large distances from the oxygen source showed higher levels of hypoxia, milder oxidative stress and reduced mitochondrial membrane potential. Our results contribute to characterize the interplay between reduced oxygen levels, acidification and oxidative stress in a simple in vitro setting, which can be used to model cell responses to an altered environment, such as the early tumor microenvironment.
Collapse
|
12
|
Xiao P, Huang J, Han X, Cheu JWS, Liu Y, Law LH, Lai JHC, Li J, Park SW, Wong CCL, Lam RHW, Chan KWY. Monitor Tumor pHe and Response Longitudinally during Treatment Using CEST MRI-Detectable Alginate Microbeads. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54401-54410. [PMID: 36448714 PMCID: PMC9756293 DOI: 10.1021/acsami.2c10493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Imaging pHe of the tumor microenvironment has paramount importance for characterizing aggressive, invasive tumors, as well as therapeutic responses. Here, a robust approach to image pH changes in the tumor microenvironment longitudinally and during sodium bicarbonate treatment was reported. The pH-sensing microbeads were designed and prepared based on materials approved for clinical use, i.e., alginate microbead-containing computed tomography (CT) contrast-agent (iopamidol)-loaded liposomes (Iop-lipobeads). This Iop-lipobead prepared using a customized microfluidic device generated a CEST contrast of 10.6% at 4.2 ppm at pH 7.0, which was stable for 20 days in vitro. The CEST contrast decreased by 11.8% when the pH decreased from 7.0 to 6.5 in vitro. Optimized Iop-lipobeads next to tumors showed a significant increase of 19.7 ± 6.1% (p < 0.01) in CEST contrast at 4.2 ppm during the first 3 days of treatment and decreased to 15.2 ± 4.8% when treatment stopped. Notably, percentage changes in Iop-lipobeads were higher than that of amide CEST (11.7% and 9.1%) in tumors during and after treatment. These findings demonstrated that the Iop-lipobead could provide an independent and sensitive assessment of the pHe changes for a noninvasive and longitudinal monitoring of the treatment effects using multiple CEST contrast.
Collapse
Affiliation(s)
- Peng Xiao
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jacinth W. S. Cheu
- Department
of Pathology, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Lok Hin Law
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Joseph H. C. Lai
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jiyu Li
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Se Weon Park
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Carmen C. L. Wong
- Department
of Pathology, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Hong Kong, China
- State
Key Laboratory of Liver Research, The University
of Hong Kong, Hong Kong, China
| | - Raymond H. W. Lam
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Kannie W. Y. Chan
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
- City
University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Tung
Biomedical
Sciences Centre, City University of Hong
Kong, Hong Kong, China
- Hong
Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| |
Collapse
|
13
|
Pillai S, Mahmud I, Mahar R, Griffith C, Langsen M, Nguyen J, Wojtkowiak JW, Swietach P, Gatenby RA, Bui MM, Merritt ME, McDonald P, Garrett TJ, Gillies RJ. Lipogenesis mediated by OGR1 regulates metabolic adaptation to acid stress in cancer cells via autophagy. Cell Rep 2022; 39:110796. [PMID: 35545051 PMCID: PMC9137419 DOI: 10.1016/j.celrep.2022.110796] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant tumors exhibit altered metabolism resulting in a highly acidic extracellular microenvironment. Here, we show that cytoplasmic lipid droplet (LD) accumulation, indicative of a lipogenic phenotype, is a cellular adaption to extracellular acidity. LD marker PLIN2 is strongly associated with poor overall survival in breast cancer patients. Acid-induced LD accumulation is triggered by activation of the acid-sensing G-protein-coupled receptor (GPCR) OGR1, which is expressed highly in breast tumors. OGR1 depletion inhibits acid-induced lipid accumulation, while activation by a synthetic agonist triggers LD formation. Inhibition of OGR1 downstream signaling abrogates the lipogenic phenotype, which can be rescued with OGR1 ectopic expression. OGR1-depleted cells show growth inhibition under acidic growth conditions in vitro and tumor formation in vivo. Isotope tracing shows that the source of lipid precursors is primarily autophagy-derived ketogenic amino acids. OGR1-depleted cells are defective in endoplasmic reticulum stress response and autophagy and hence fail to accumulate LDs affecting survival under acidic stress.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Crystal Griffith
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael Langsen
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Analytical Microscopy Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan W Wojtkowiak
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics Parks Road, Oxford OX1 3PT, UK
| | - Robert A Gatenby
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marilyn M Bui
- Analytical Microscopy Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Pathology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Patricia McDonald
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
14
|
Chemical Exchange Saturation Transfer for Pancreatic Ductal Adenocarcinoma Evaluation. Pancreas 2022; 51:463-468. [PMID: 35858211 DOI: 10.1097/mpa.0000000000002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aims of the study are to evaluate the feasibility of using pH-sensitive magnetic resonance imaging, chemical exchange saturation transfer (CEST) in pancreatic imaging and to differentiate pancreatic ductal adenocarcinoma (PDAC) with the nontumor pancreas (upstream and downstream) and normal control pancreas. METHODS Sixteen CEST images with PDAC and 12 CEST images with normal volunteers were acquired and magnetization transfer ratio with asymmetric analysis were measured in areas of PDAC, upstream, downstream, and normal control pancreas. One-way analysis of variance and receiver operating characteristic curve were used to differentiate tumor from nontumor pancreas. RESULTS Areas with PDAC showed higher signal intensity than upstream and downstream on CEST images. The mean (standard deviation) values of magnetization transfer ratio with asymmetric analysis were 0.015 (0.034), -0.044 (0.030), -0.019 (0.027), and -0.037 (0.031), respectively, in PDAC area, upstream, downstream, and nontumor area in patient group and -0.008 (0.024) in normal pancreas. Significant differences were found between PDAC and upstream ( P < 0.001), between upstream and normal pancreas ( P = 0.04). Area under curve is 0.857 in differentiating PDAC with nontumor pancreas. CONCLUSIONS pH-sensitive CEST MRI is feasible in pancreatic imaging and can be used to differentiate PDAC from nontumor pancreas. This provides a novel metabolic imaging method in PDAC.
Collapse
|
15
|
Matsumoto Y, Harada M, Kanazawa Y, Taniguchi Y, Ono M, Bito Y. Quantitative parameter mapping of contrast agent concentration and relaxivity and brain tumor extracellular pH. Sci Rep 2022; 12:2171. [PMID: 35140243 PMCID: PMC8828758 DOI: 10.1038/s41598-022-05711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
In clinical magnetic resonance imaging, gadolinium-based contrast agents are commonly used for detecting brain tumors and evaluating the extent of malignancy. We present a new method to evaluate relaxivity (r1) and contrast agent concentration separately in contrast-enhanced lesions using quantitative parameter mapping (QPM). Furthermore, we also aimed to estimate the extracellular pH (pHe) of tumor lesions. We demonstrated that it is possible to evaluate pathophysiological tumor changes due to therapeutic efficacy by measuring r1 in contrast-enhanced lesions. In this study, the primary brain tumor group showed significantly higher r1 values than other brain disease groups (P < 0.001). Moreover, mean pHe value showed a trend for tumor malignancy having a lower pHe value and primary brain tumor having a significantly lower pHe than other brain diseases (P < 0.001). Our results might suggest that QPM can separately quantify r1 and CA concentration in brain tumors and that pHe brain tumor mapping could serve as a tumor biomarker. In conclusion, our method has potential clinical applications for assessing the treatment effects.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, 770-8503, Japan.
| | - Masafumi Harada
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, 770-8503, Japan
| | - Yuki Kanazawa
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, 770-8503, Japan
| | - Yo Taniguchi
- FUJIFILM Healthcare Corporation, Tokyo, 107-0052, Japan
| | - Masaharu Ono
- FUJIFILM Healthcare Corporation, Tokyo, 107-0052, Japan
| | | |
Collapse
|
16
|
Huang H, Lin Y, Ma W, Liu J, Han J, Hu X, Tang M, Yan S, Abudupataer M, Zhang C, Gao Q, Zhang W. A pre-screening strategy to assess resected tumor margins by imaging cytoplasmic viscosity and hypoxia. eLife 2021; 10:70471. [PMID: 34633289 PMCID: PMC8553343 DOI: 10.7554/elife.70471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
To assure complete tumor removal, frozen section analysis is the most common procedure for intraoperative pathological assessment of resected tumor margins. However, during one operation, multiple biopsies may be sent for examination, but only few of them are made into cryosections because of the complex preparation protocols and time-consuming pathological analysis, which potentially increases the risk of overlooking tumor involvement. Here, we propose a fluorescence-based pre-screening strategy that allows high-throughput, convenient, and fast gross assessment of resected tumor margins. A dual-activatable cationic fluorescent molecular rotor was developed to specifically illuminate live tumor cells’ cytoplasm by emitting two different fluorescence signals in response to elevations in hypoxia-induced nitroreductase (a biochemical marker) and cytoplasmic viscosity (a biophysical marker), two characteristics of cancer cells. The ability of the fluorescent molecular rotor in detecting tumor cells was evaluated in mouse and human specimens of multiple tissues by comparing with hematoxylin and eosin staining. Importantly, the fluorescent molecular rotor achieved 100 % specificity in discriminating lung and liver cancers from normal tissue, allowing pre-screening of the tumor-free surgical margins and promoting clinical decision. Altogether, this type of fluorescent molecular rotor and the proposed strategy may serve as a new option to facilitate intraoperative assessment of resected tumor margins.
Collapse
Affiliation(s)
- Hui Huang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,The State Key Laboratory of Molecular Engineering of Polymers and The Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenrui Ma
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiannan Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Han
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meilin Tang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shiqiang Yan
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,The State Key Laboratory of Molecular Engineering of Polymers and The Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, China
| | - Mieradilijiang Abudupataer
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenping Zhang
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijia Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,The State Key Laboratory of Molecular Engineering of Polymers and The Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, China.,Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Zhu ZJ, Pang Y, Jin G, Zhang HY, Wang WH, Liu JW, Tuo GX, Wu P, Yang Y, Wang ZQ, Wang K. Hypoxia induces chemoresistance of esophageal cancer cells to cisplatin through regulating the lncRNA-EMS/miR-758-3p/WTAP axis. Aging (Albany NY) 2021; 13:17155-17176. [PMID: 34081626 PMCID: PMC8312407 DOI: 10.18632/aging.203062] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/14/2021] [Indexed: 04/10/2023]
Abstract
Hypoxia contributes significantly to the development of chemoresistance of many malignancies including esophageal cancer (EC). Accumulating studies have indicated that long non-coding RNAs play important roles in chemotherapy resistance. Here, we identified a novel lncRNA-EMS/miR-758-3p/WTAP axis that was involved in hypoxia-mediated chemoresistance to cisplatin in human EC. Hypoxia induced the expressions of lncRNA EMS and WTAP, and reduced the expression of miR-758-3p in EC cell line ECA-109. In addition, the expressions of EMS and WTAP were required for the hypoxia-induced drug resistance to cisplatin in EC cells, while overexpression of miR-758-3p reversed such chemoresistance. The targeting relationships between EMS and miR-758-3p, as well as miR-758-3p and WTAP, were verified by luciferase-based reporter assays and multiple quantitative assays after gene overexpression/knockdown. Moreover, we found significant correlations between tumor expressions of these molecules. Notably, higher levels of EMS/WTAP, or lower levels of miR-758-3p in tumors predicted worse survivals of EC patients. Furthermore, in a xenograft mouse model, targeted knockdown of EMS and WTAP in ECA-109 cells markedly attenuated the resistance of tumors to cisplatin treatments. Our study uncovers a critical lncRNA-EMS/miR-758-3p/WTAP axis in regulating hypoxia-mediated drug resistance to cisplatin in EC.
Collapse
Affiliation(s)
- Zi-Jiang Zhu
- Department of Thoracic Surgery 2, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Yao Pang
- Department of Thoracic Surgery 2, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Gang Jin
- Department of Thoracic Surgery 2, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Hong-Yi Zhang
- Department of Thoracic Surgery 2, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Wen-Hao Wang
- Department of Thoracic Surgery 2, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Jia-Wei Liu
- Department of Thoracic Surgery 2, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Guang-Xin Tuo
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Peng Wu
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yi Yang
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Ze-Quan Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia 750004, China
| | - Kui Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia 750004, China
| |
Collapse
|
18
|
Abstract
Glucose is converted to energy through “fermentation” or “oxidation.” Generally, if oxygen is available, cells will oxidize glucose to CO2 because it is more efficient than fermentation, which produces lactic acid. But Warburg noted that cancers ferment glucose at a “remarkable” rate even if O2 is available! This “Warburg Effect” is still misunderstood because it doesn’t make sense that a cell would ferment glucose when it could get much more energy by oxidizing it. The current paper goes to the heart of this problem by defining the microenvironmental conditions that exist in early cancers that would select for a Warburg Effect. This is important because such cells are much more aggressive and like to lead to cancers that are lethal. The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.
Collapse
|
19
|
King R, Hayes C, Donohoe CL, Dunne MR, Davern M, Donlon NE. Hypoxia and its impact on the tumour microenvironment of gastroesophageal cancers. World J Gastrointest Oncol 2021; 13:312-331. [PMID: 34040696 PMCID: PMC8131902 DOI: 10.4251/wjgo.v13.i5.312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The malfeasant role of the hypoxic tumour microenvironment (TME) in cancer progression was recognized decades ago but the exact mechanisms that augment the hallmarks of cancer and promote treatment resistance continue to be elucidated. Gastroesophageal cancers (GOCs) represent a major burden of worldwide disease, responsible for the deaths of over 1 million people annually. Disentangling the impact of hypoxia in GOCs enables a better overall understanding of the disease pathogenesis while shining a light on novel therapeutic strategies and facilitating precision treatment approaches with the ultimate goal of improving outcomes for patients with these diseases. This review discusses the underlying principles and processes of the hypoxic response and the effect of hypoxia in promoting the hallmarks of cancer in the context of GOCs. We focus on its bidirectional influence on inflammation and how it drives angiogenesis, innate and adaptive immune evasion, metastasis, and the reprogramming of cellular bioenergetics. The contribution of the hypoxic GOC TME to treatment resistance is examined and a brief overview of the pharmacodynamics of hypoxia-targeted therapeutics is given. The principal methods that are used in measuring hypoxia and how they may enhance prognostication or provide rationale for individually tailored management in the case of tumours with significant hypoxic regions are also discussed.
Collapse
Affiliation(s)
- Ross King
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Conall Hayes
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Claire L Donohoe
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Margaret R Dunne
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Maria Davern
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Noel E Donlon
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| |
Collapse
|
20
|
Chen W, Li Y, Zhong J, Wen G. circ-PRKCI targets miR-1294 and miR-186-5p by downregulating FOXK1 expression to suppress glycolysis in hepatocellular carcinoma. Mol Med Rep 2021; 23:464. [PMID: 33880589 PMCID: PMC8097765 DOI: 10.3892/mmr.2021.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Numerous human circular RNAs (circRNAs/circ) have been functionally characterized. However, the potential role of circ-protein kinase C iota (PRKCI) in hepatocellular carcinoma (HCC) remains unknown. The effects of each transfection and expression levels of circ-PRKCI, microRNA (miR)-1294, miR-186-5p and forkhead box K1 (FOXK1) in HCC cells were analyzed using reverse transcription-quantitative PCR analysis. The interactions between circ-PRKCI and miR-1294 or miR-186-5p, and miR-1294 or miR-186-5p and FOXK1 were validated using dual luciferase reporter assays. The viability, invasion and migration of HCC cells were determined using Cell Counting Kit-8, Transwell and wound healing assays, respectively. The expression levels of FOXK1, hexokinase-2 (HK2), glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA) in HCC cells were analyzed using western blotting. The levels of glucose and lactic acid in the cultured supernatant were detected using commercially available kits. The results of the present study revealed that miR-1294 and miR-186-5p expression levels were downregulated in the HCC cell line, HCCLM3, and were subsequently downregulated by circ-PRKCI overexpression and upregulated by the knockdown of circ-PRKCI. circ-PRKCI overexpression promoted the viability, invasion and migration of HCCLM3 cells, which was also reversed by the overexpression of miR-1294 and miR-186-5p. In addition, the overexpression of circ-PRKCI upregulated FOXK1 expression levels, while the overexpression of miR-1294 and miR-186-5p downregulated FOXK1 expression levels. Conversely, the knockdown of circ-PRKCI expression downregulated FOXK1 expression levels, while the knockdown of miR-1294 and miR-186-5p upregulated FOXK1 expression levels. Furthermore, circ-PRKCI was identified to target miR-1294 and miR-186-5p, and miR-1294 and miR-186-5p were subsequently found to target FOXK1. The overexpression of circ-PRKCI also increased glucose and lactic acid levels, while the knockdown of FOXK1 decreased glucose and lactic acid levels. The knockdown of circ-PRKCI decreased glucose and lactic acid levels, which were reversed by FOXK1 overexpression. In conclusion, the findings of the present study suggested that circ-PRKCI may promote the viability, invasion and migration of HCC cells by sponging miR-1294 and miR-186-5p to upregulate FOXK1 expression levels.
Collapse
Affiliation(s)
- Wenqi Chen
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuehua Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jing Zhong
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Gebo Wen
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
21
|
Tran NH, Foster NR, Mahipal A, Byrne T, Hubbard J, Silva A, Mody K, Alberts S, Borad MJ. Phase IB study of sorafenib and evofosfamide in patients with advanced hepatocellular and renal cell carcinomas (NCCTG N1135, Alliance). Invest New Drugs 2021; 39:1072-1080. [PMID: 33646489 DOI: 10.1007/s10637-021-01090-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/30/2022]
Abstract
Background Sorafenib (Sor) remains a first-line option for hepatocellular carcinoma (HCC) or refractory renal cell carcinomas (RCC). PLC/PRF/5 HCC model showed upregulation of hypoxia with enhanced efficacy when Sor is combined with hypoxia-activated prodrug evofosfamide (Evo). Methods This phase IB 3 + 3 design investigated 3 Evo dose levels (240, 340, 480 mg/m2 on days 8, 15, 22), combined with Sor 200 mg orally twice daily (po bid) on days 1-28 of a 28-day cycle. Primary objectives included determining maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of Sor + Evo. Results Eighteen patients were enrolled (median age 62.5 years; 17 male /1 female; 12 HCC/6 RCC) across three dose levels (DL0: Sor 200 mg bid/Evo 240 mg/m2 [n = 6], DL1:Sor 200 mg bid/Evo 480 mg/m2 [n = 5], DL1a: Sor 200 mg bid/Evo 340 mg/m2 [n = 7]). Two dose-limiting toxicities (DLTs) were reported with Evo 480 mg/m2 (grade 3 mucositis, grade 4 hepatic failure). Grade 3 rash DLT was observed in one patient at Evo 240 mg/m2. No DLTs were observed at Evo 340 mg/m2. MTD and RP2D were established as Sor 200 mg/Evo 340 mg/m2 and Sor 200/Evo 240 mg/m2, respectively. The most common treatment-related adverse events included fatigue, hand-foot syndrome, hypertension, and nausea/vomiting. Two partial responses were observed, one each at DL0 and DL1a.; disease control rate was 55%. Conclusions RP2D was established as sorafenib 200 mg bid + Evo 240 mg/m2. While preliminary anti-tumor activity was observed, future development must account for advances in immunotherapy in HCC/RCC.
Collapse
Affiliation(s)
- Nguyen H Tran
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nathan R Foster
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Thomas Byrne
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ, USA
| | - Joleen Hubbard
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alvin Silva
- Department of Radiology, Mayo Clinic, AZ, Scottsdale, USA
| | - Kabir Mody
- Division of Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Steven Alberts
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA. .,Division of Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA. .,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA. .,Director - Precision Cancer Therapeutics Program, Mayo Clinic Center for Individualized Medicine (CIM) Program Leader - Gene and Virus Therapy Program, Mayo Clinic Cancer Center, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA.
| |
Collapse
|
22
|
Damaghi M, Mori H, Byrne S, Xu L, Chen T, Johnson J, Gallant ND, Marusyk A, Borowsky AD, Gillies RJ. Collagen production and niche engineering: A novel strategy for cancer cells to survive acidosis in DCIS and evolve. Evol Appl 2020; 13:2689-2703. [PMID: 33294017 PMCID: PMC7691473 DOI: 10.1111/eva.13075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
Growing tumors are dynamic and nonlinear ecosystems, wherein cancer cells adapt to their local microenvironment, and these adaptations further modify the environment, inducing more changes. From nascent intraductal neoplasms to disseminated metastatic disease, several levels of evolutionary adaptations and selections occur. Here, we focus on one example of such an adaptation mechanism, namely, "niche construction" promoted by adaptation to acidosis, which is a metabolic adaptation to the early harsh environment in intraductal neoplasms. The avascular characteristics of ductal carcinoma in situ (DCIS) make the periluminal volume profoundly acidic, and cancer cells must adapt to this to survive. Based on discovery proteomics, we hypothesized that a component of acid adaptation involves production of collagen by pre-cancer cells that remodels the extracellular matrix (ECM) and stabilizes cells under acid stress. The proteomic data were surprising as collagen production and deposition are commonly believed to be the responsibility of mesenchymally derived fibroblasts, and not cells of epithelial origin. Subsequent experiments in 3D culture, spinning disk and second harmonic generation microscopy of DCIS lesions in patients' samples are concordant. Collagen production assay by acid-adapted cells in vitro demonstrated that the mechanism of induction involves the RAS and SMAD pathways. Secretome analyses show upregulation of ECM remodeling enzymes such as TGM2 and LOXL2 that are collagen crosslinkers. These data strongly indicate that acidosis in incipient cancers induces collagen production by cancer cells and support the hypothesis that this adaptation initiates a tumor-permissive microenvironment promoting survival and growth of nascent cancers.
Collapse
Affiliation(s)
- Mehdi Damaghi
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
- Department of Oncologic SciencesMorsani College of MedicineUniversity of South FloridaTampaFLUSA
| | - Hidetoshi Mori
- Center for Immunology and Infectious DiseasesComprehensive Cancer CenterDepartment of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCAUSA
| | - Samantha Byrne
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Liping Xu
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Tingan Chen
- Analytic Microscopy CoreMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Joseph Johnson
- Analytic Microscopy CoreMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Nathan D. Gallant
- Department of Mechanical EngineeringUniversity of South FloridaTampaFLUSA
| | - Andriy Marusyk
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Alexander D. Borowsky
- Center for Immunology and Infectious DiseasesComprehensive Cancer CenterDepartment of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCAUSA
| | - Robert J. Gillies
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| |
Collapse
|
23
|
Kadakia RT, Xie D, Guo H, Bouley B, Yu M, Que EL. Responsive fluorinated nanoemulsions for 19F magnetic resonance detection of cellular hypoxia. Dalton Trans 2020; 49:16419-16424. [PMID: 32692342 PMCID: PMC7688550 DOI: 10.1039/d0dt01182g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report two highly fluorinated Cu-based imaging agents, CuL1 and CuL2, for detecting cellular hypoxia as nanoemulsion formulations. Both complexes retained their initial quenched 19F MR signals due to paramagnetic Cu2+; however, both complexes displayed a large signal increase when the complex was reduced. DLS studies showed that the CuL1 nanoemulsion (NECuL1) had a hydrodiameter of approximately 100 nm and that it was stable for four weeks post-preparation. Hypoxic cells incubated with NECuL1 showed that 40% of the Cu2+ taken up was reduced in low oxygen environments.
Collapse
Affiliation(s)
- Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Mamo M, Ye IC, DiGiacomo JW, Park JY, Downs B, Gilkes DM. Hypoxia Alters the Response to Anti-EGFR Therapy by Regulating EGFR Expression and Downstream Signaling in a DNA Methylation-Specific and HIF-Dependent Manner. Cancer Res 2020; 80:4998-5010. [PMID: 33023947 DOI: 10.1158/0008-5472.can-20-1232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/05/2020] [Accepted: 10/01/2020] [Indexed: 01/09/2023]
Abstract
Intratumoral hypoxia occurs in 90% of solid tumors and is associated with a poor prognosis for patients. Cancer cells respond to hypoxic microenvironments by activating the transcription factors, hypoxia-inducible factor 1 (HIF1) and HIF2. Here, we studied the unique gene expression patterns of 31 different breast cancer cell lines exposed to hypoxic conditions. The EGFR, a member of the ErbB (avian erythroblastosis oncogene B) family of receptors that play a role in cell proliferation, invasion, metastasis, and apoptosis, was induced in seven of the 31 breast cancer cell lines by hypoxia. A functional hypoxia response element (HRE) was identified, which is activated upon HIF1 binding to intron 18 of the EGFR gene in cell lines in which EGFR was induced by hypoxia. CpG methylation of the EGFR HRE prevented induction under hypoxic conditions. The HRE of EGFR was methylated in normal breast tissue and some breast cancer cell lines, and could be reversed by treatment with DNA methyltransferase inhibitors. Induction of EGFR under hypoxia led to an increase in AKT, ERK, and Rb phosphorylation as well as increased levels of cyclin D1, A, B1, and E2F, and repression of p21 in an HIF1α-dependent manner, leading to cell proliferation and migration. Also, increased EGFR expression sensitized cells to EGFR inhibitors. Collectively, our data suggest that patients with hypoxic breast tumors and hypomethylated EGFR status may benefit from EGFR inhibitors currently used in the clinic. SIGNIFICANCE: Hypoxia sensitizes breast cancer cells to EGFR inhibitors in an HIF1α- and a methylation-specific manner, suggesting patients with hypoxic tumors may benefit from EGFR inhibitors already available in the clinic. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/22/4998/F1.large.jpg.
Collapse
Affiliation(s)
- Mahelet Mamo
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Doctoral Diversity Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - I Chae Ye
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical & Biomolecular Engineering and The Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Josh W DiGiacomo
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical & Biomolecular Engineering and The Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Je Yeon Park
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bradley Downs
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Doctoral Diversity Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical & Biomolecular Engineering and The Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
26
|
Kreuzer M, Banerjee A, Birts CN, Darley M, Tavassoli A, Ivan M, Blaydes JP. Glycolysis, via NADH-dependent dimerisation of CtBPs, regulates hypoxia-induced expression of CAIX and stem-like breast cancer cell survival. FEBS Lett 2020; 594:2988-3001. [PMID: 32618367 DOI: 10.1002/1873-3468.13874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Adaptive responses to hypoxia are mediated by the hypoxia-inducible factor (HIF) family of transcription factors. These responses include the upregulation of glycolysis to maintain ATP production. This also generates acidic metabolites, which require HIF-induced carbonic anhydrase IX (CAIX) for their neutralisation. C-terminal binding proteins (CtBPs) are coregulators of gene transcription and couple glycolysis with gene transcription due to their regulation by the glycolytic coenzyme NADH. Here, we find that experimental manipulation of glycolysis and CtBP function in breast cancer cells through multiple complementary approaches supports a hypothesis whereby the expression of known HIF-inducible genes, and CAIX in particular, adapts to available glucose in the microenvironment through a mechanism involving CtBPs. This novel pathway promotes the survival of stem cell-like cancer (SCLC) cells in hypoxia.
Collapse
Affiliation(s)
- Mira Kreuzer
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| | - Arindam Banerjee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK
| | - Charles N Birts
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| | - Matthew Darley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK
| | - Ali Tavassoli
- Institute for Life Sciences, University of Southampton, Southampton, Hants, UK.,School of Chemistry, University of Southampton, Southampton, Hants, UK
| | - Mircea Ivan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeremy P Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| |
Collapse
|
27
|
Voskuil FJ, Steinkamp PJ, Zhao T, van der Vegt B, Koller M, Doff JJ, Jayalakshmi Y, Hartung JP, Gao J, Sumer BD, Witjes MJH, van Dam GM. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat Commun 2020; 11:3257. [PMID: 32591522 PMCID: PMC7320194 DOI: 10.1038/s41467-020-16814-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023] Open
Abstract
Cancer cell metabolism leads to a uniquely acidic microenvironment in solid tumors, but exploiting the labile extracellular pH differences between cancer and normal tissues for clinical use has been challenging. Here we describe the clinical translation of ONM-100, a nanoparticle-based fluorescent imaging agent. This is comprised of an ultra-pH sensitive amphiphilic polymer, conjugated with indocyanine green, which rapidly and irreversibly dissociates to fluoresce in the acidic extracellular tumor microenvironment due to the mechanism of nanoscale macromolecular cooperativity. Primary outcomes were safety, pharmacokinetics and imaging feasilibity of ONM-100. Secondary outcomes were to determine a range of safe doses of ONM-100 for intra-operative imaging using commonly used fluorescence camera systems. In this study (Netherlands National Trial Register #7085), we report that ONM-100 was well tolerated, and four solid tumor types could be visualized both in- and ex vivo in thirty subjects. ONM-100 enables detection of tumor-positive resection margins in 9/9 subjects and four additional otherwise missed occult lesions. Consequently, this pH-activatable optical imaging agent may be clinically beneficial in differentiating previously unexploitable narrow physiologic differences. It is well known that the pH of tumor tissue is lower than that of the corresponding normal adjacent tissue. Here, the authors report a clinical trial of a pH activatable nanoparticle for imaging tumours.
Collapse
Affiliation(s)
- F J Voskuil
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P J Steinkamp
- Departments of Surgery, Nuclear Medicine and Molecular Imaging, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - T Zhao
- OncoNano Medicine Inc., Dallas, TX, 75390, USA
| | - B van der Vegt
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Koller
- Departments of Surgery, Nuclear Medicine and Molecular Imaging, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J J Doff
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - J P Hartung
- JPH Clinical Development, San Diego, CA, 92131, USA
| | - J Gao
- Department of Otolaryngology Head and Neck Surgery, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - B D Sumer
- Department of Otolaryngology Head and Neck Surgery, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - M J H Witjes
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G M van Dam
- Departments of Surgery, Nuclear Medicine and Molecular Imaging, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,AxelaRx/TRACER B.V, Groningen, The Netherlands.
| | | |
Collapse
|
28
|
Zhang MM, Wang ZQ, Xu X, Huang S, Yin WX, Luo C. MfOfd1 is crucial for stress responses and virulence in the peach brown rot fungus Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2020; 21:820-833. [PMID: 32319202 PMCID: PMC7214477 DOI: 10.1111/mpp.12933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/01/2023]
Abstract
Monilinia fructicola is the most widely distributed species among the Monilinia genus in the world, and causes blossom blight, twig canker, and fruit rot on Rosaceae fruits. To date, studies on genomics and pathogenicity are limited in M. fructicola. In this study, we identified a redox-related gene, MfOfd1, which was significantly up-regulated at 1 hr after inoculation of M. fructicola on peach fruits. We used the clustered regulatory inter-spaced short palindromic repeats (CRISPR)/Cas9 system combined with homologous recombination to determine the function of the MfOfd1 gene. The results showed that the sporulation of knockdown transformants was reduced by 53% to 83%. The knockdown transformants showed increased sensitivity to H2 O2 and decreased virulence on peach fruits compared to the wild-type isolate Bmpc7. It was found that H2 O2 could stimulate the expression of MfOfd1 in the wild-type isolate. The transformants were also more sensitive to exogenous osmotic stress, such as glycerol, d-sorbitol, and NaCl, and to dicarboximide fungicides (iprodione and dimethachlon). These results indicate that the MfOfd1 gene plays an important role in M. fructicola in sporulation, oxidative response, osmotic stress tolerance, and virulence.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil FertilizerHubei Academy of Agricultural ScienceWuhanChina
| | - Xiao Xu
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Song Huang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei-Xiao Yin
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao‐Xi Luo
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
29
|
Chen F, Wu X, Niculite C, Gilca M, Petrusca D, Rogozea A, Rice S, Guo B, Griffin S, Calin GA, Boswell HS, Konig H. Classic and targeted anti-leukaemic agents interfere with the cholesterol biogenesis metagene in acute myeloid leukaemia: Therapeutic implications. J Cell Mol Med 2020; 24:7378-7392. [PMID: 32450611 PMCID: PMC7339218 DOI: 10.1111/jcmm.15339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Despite significant advances in deciphering the molecular landscape of acute myeloid leukaemia (AML), therapeutic outcomes of this haematological malignancy have only modestly improved over the past decades. Drug resistance and disease recurrence almost invariably occur, highlighting the need for a deeper understanding of these processes. While low O2 compartments, such as bone marrow (BM) niches, are well‐recognized hosts of drug‐resistant leukaemic cells, standard in vitro studies are routinely performed under supra‐physiologic (21% O2, ambient air) conditions, which limits clinical translatability. We hereby identify molecular pathways enriched in AML cells that survive acute challenges with classic or targeted therapeutic agents. Experiments took into account variations in O2 tension encountered by leukaemic cells in clinical settings. Integrated RNA and protein profiles revealed that lipid biosynthesis, and particularly the cholesterol biogenesis branch, is a particularly therapy‐induced vulnerability in AML cells under low O2 states. We also demonstrate that the impact of the cytotoxic agent cytarabine is selectively enhanced by a high‐potency statin. The cholesterol biosynthesis programme is amenable to additional translational opportunities within the expanding AML therapeutic landscape. Our findings support the further investigation of higher‐potency statin (eg rosuvastatin)–based combination therapies to enhance targeting residual AML cells that reside in low O2 environments.
Collapse
Affiliation(s)
- Fangli Chen
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Xue Wu
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Cristina Niculite
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,University of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| | - Marilena Gilca
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,University of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| | - Daniela Petrusca
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Adriana Rogozea
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Susan Rice
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Bin Guo
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Shawn Griffin
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - George A Calin
- Division of Cancer Medicine, Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - H Scott Boswell
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Heiko Konig
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
30
|
Ordway B, Swietach P, Gillies RJ, Damaghi M. Causes and Consequences of Variable Tumor Cell Metabolism on Heritable Modifications and Tumor Evolution. Front Oncol 2020; 10:373. [PMID: 32292719 PMCID: PMC7119341 DOI: 10.3389/fonc.2020.00373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
When cancer research advanced into the post-genomic era, it was widely anticipated that the sought-after cure will be delivered promptly. Instead, it became apparent that an understanding of cancer genomics, alone, is unable to translate the wealth of information into successful cures. While gene sequencing has significantly improved our understanding of the natural history of cancer and identified candidates for therapeutic targets, it cannot predict the impact of the biological response to therapies. Hence, patients with a common mutational profile may respond differently to the same therapy, due in part to different microenvironments impacting on gene regulation. This complexity arises from a feedback circuit involving epigenetic modifications made to genes by the metabolic byproducts of cancer cells. New insights into epigenetic mechanisms, activated early in the process of carcinogenesis, have been able to describe phenotypes which cannot be inferred from mutational analyses per se. Epigenetic changes can propagate throughout a tumor via heritable modifications that have long-lasting consequences on ensuing phenotypes. Such heritable epigenetic changes can be evoked profoundly by cancer cell metabolites, which then exercise a broad remit of actions across all stages of carcinogenesis, culminating with a meaningful impact on the tumor's response to therapy. This review outlines some of the cross-talk between heritable epigenetic changes and tumor cell metabolism, and the consequences of such changes on tumor progression.
Collapse
Affiliation(s)
- Bryce Ordway
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert J Gillies
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mehdi Damaghi
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
31
|
Reed DR, Metts J, Pressley M, Fridley BL, Hayashi M, Isakoff MS, Loeb DM, Makanji R, Roberts RD, Trucco M, Wagner LM, Alexandrow MG, Gatenby RA, Brown JS. An evolutionary framework for treating pediatric sarcomas. Cancer 2020; 126:2577-2587. [PMID: 32176331 PMCID: PMC7318114 DOI: 10.1002/cncr.32777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
Lessons from extinction can be used in trials designed to pursue a cure for cancer. When cancer cannot be cured, similar strategies may be unwise, and strategies that leverage the adaptations of cancer to therapy should be considered.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Mariyah Pressley
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brooke L Fridley
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Michael S Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children's Medical Center, Hartford, Connecticut
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Rikesh Makanji
- Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ryan D Roberts
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio
| | - Matteo Trucco
- Depatment of Pediatrics, University of Miami, Miami, Florida
| | - Lars M Wagner
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Mark G Alexandrow
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
32
|
Sadeghi M, Ordway B, Rafiei I, Borad P, Fang B, Koomen JL, Zhang C, Yoder S, Johnson J, Damaghi M. Integrative Analysis of Breast Cancer Cells Reveals an Epithelial-Mesenchymal Transition Role in Adaptation to Acidic Microenvironment. Front Oncol 2020; 10:304. [PMID: 32211331 PMCID: PMC7076123 DOI: 10.3389/fonc.2020.00304] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Early ducts of breast tumors are unequivocally acidic. High rates of glycolysis combined with poor perfusion lead to a congestion of acidic metabolites in the tumor microenvironment, and pre-malignant cells must adapt to this acidosis to thrive. Adaptation to acidosis selects cancer cells that can thrive in harsh conditions and are capable of outgrowing the normal or non-adapted neighbors. This selection is usually accompanied by phenotypic change. Epithelial mesenchymal transition (EMT) is one of the most important switches correlated to malignant tumor cell phenotype and has been shown to be induced by tumor acidosis. New evidence shows that the EMT switch is not a binary system and occurs on a spectrum of transition states. During confirmation of the EMT phenotype, our results demonstrated a partial EMT phenotype in our acid-adapted cell population. Using RNA sequencing and network analysis we found 10 dysregulated network motifs in acid-adapted breast cancer cells playing a role in EMT. Our further integrative analysis of RNA sequencing and SILAC proteomics resulted in recognition of S100B and S100A6 proteins at both the RNA and protein level. Higher expression of S100B and S100A6 was validated in vitro by Immunocytochemistry. We further validated our finding both in vitro and in patients' samples by IHC analysis of Tissue Microarray (TMA). Correlation analysis of S100A6 and LAMP2b as marker of acidosis in each patient from Moffitt TMA approved the acid related role of S100A6 in breast cancer patients. Also, DCIS patients with higher expression of S100A6 showed lower survival compared to lower expression. We propose essential roles of acid adaptation in cancer cells EMT process through S100 proteins such as S100A6 that can be used as therapeutic strategy targeting both acid-adapted and malignant phenotypes.
Collapse
Affiliation(s)
- Mehdi Sadeghi
- Department of Cell and Molecular Biology, Faculty of Science, Semnan University, Semnan, Iran
| | - Bryce Ordway
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ilyia Rafiei
- Department of Cell and Molecular Biology, Faculty of Science, Semnan University, Semnan, Iran
| | - Punit Borad
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Bin Fang
- Proteomics Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - John L Koomen
- Proteomics Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Chaomei Zhang
- Molecular Biology Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Sean Yoder
- Molecular Biology Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Joseph Johnson
- Microscopy Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mehdi Damaghi
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
33
|
Johansson H, Hussain O, Allison SJ, Robinson TV, Phillips RM, Sejer Pedersen D. Revisiting Bromohexitols as a Novel Class of Microenvironment-Activated Prodrugs for Cancer Therapy. ChemMedChem 2020; 15:228-235. [PMID: 31769617 DOI: 10.1002/cmdc.201900578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/29/2019] [Indexed: 11/08/2022]
Abstract
Bromohexitols represent a potent class of DNA-alkylating carbohydrate chemotherapeutics that has been largely ignored over the last decades due to safety concerns. The limited structure-activity relationship data available reveals significant changes in cytotoxicity with even subtle changes in stereochemistry. However, no attempts have been made to improve the therapeutic window by rational drug design or by using a prodrug approach to exploit differences between tumour physiology and healthy tissue, such as acidic extracellular pH and hypoxia. Herein, we report the photochemical synthesis of highly substituted endoperoxides as key precursors for dibromohexitol derivatives and investigate their use as microenvironment-activated prodrugs for targeting cancer cells. One endoperoxide was identified to have a marked increased activity under hypoxic and low pH conditions, indicating that endoperoxides may serve as microenvironment-activated prodrugs.
Collapse
Affiliation(s)
- Henrik Johansson
- Department of Drug Design and Pharmacology Faculty of Health and Medical Science, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Omar Hussain
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Tony V Robinson
- Department of Drug Design and Pharmacology Faculty of Health and Medical Science, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Roger M Phillips
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology Faculty of Health and Medical Science, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| |
Collapse
|
34
|
Tang Y, Xiao G, Shen Z, Zhuang C, Xie Y, Zhang X, Yang Z, Guan J, Shen Y, Chen Y, Lai L, Chen Y, Chen S, Dai Z, Wang R, Wu R. Noninvasive Detection of Extracellular pH in Human Benign and Malignant Liver Tumors Using CEST MRI. Front Oncol 2020; 10:578985. [PMID: 33224880 PMCID: PMC7667286 DOI: 10.3389/fonc.2020.578985] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE In this study, we aimed to use 3T magnetic resonance imaging (MRI), which is clinically available, to determine the extracellular pH (pHe) of liver tumors and prospectively evaluate the ability of chemical exchange saturation transfer (CEST) MRI to distinguish between benign and malignant liver tumors. METHODS Different radiofrequency irradiation schemes were assessed for ioversol-based pH measurements at 3T. CEST effects were quantified in vitro using the asymmetric magnetization transfer ratio (MTRasym) at 4.3 ppm from the corrected Z spectrum. Generalized ratiometric analysis was conducted by rationing resolved ioversol CEST effects at 4.3 ppm at a flip angle of 60 and 350°. Fifteen patients recently diagnosed with hepatic carcinoma and five patients diagnosed with hepatic hemangioma [1 male; mean age, 48.6 (range, 37-59) years] were assessed. RESULTS By conducting dual-power CEST MRI, the pH of solutions was determined to be 6.0-7.2 at 3T in vitro. In vivo, ioversol signal intensities in the tumor region showed that the extracellular pH in hepatic carcinoma was acidic(mean ± standard deviation, 6.66 ± 0.19), whereas the extracellular pH was more physiologically neutral in hemangioma (mean ± standard deviation, 7.34 ± 0.09).The lesion size was similar between CEST pH MRI and T2-weighted imaging. CONCLUSION dual-power CEST MRI can detect extracellular pH in human liver tumors and can provide molecular-level diagnostic tools for differentiating benign and malignant liver tumors at 3T.
Collapse
Affiliation(s)
- Yanyan Tang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Department of Medical Imaging, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Gang Xiao
- Department of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
| | | | - Caiyu Zhuang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yudan Xie
- Department of General Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xiaolei Zhang
- College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, China
| | - Zhongxian Yang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jitian Guan
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanyu Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yanzi Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lihua Lai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanfeng Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Shuo Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Runrun Wang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Provincial Key Laboratory of Medical Molecular Imaging, Shantou, China
- *Correspondence: Renhua Wu,
| |
Collapse
|
35
|
Nardi F, Fitchev P, Brooks KM, Franco OE, Cheng K, Hayward SW, Welte MA, Crawford SE. Lipid droplet velocity is a microenvironmental sensor of aggressive tumors regulated by V-ATPase and PEDF. J Transl Med 2019; 99:1822-1834. [PMID: 31409893 PMCID: PMC7289525 DOI: 10.1038/s41374-019-0296-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) utilize microtubules (MTs) to participate in intracellular trafficking of cargo proteins. Cancer cells accumulate LDs and acidify their tumor microenvironment (TME) by increasing the proton pump V-ATPase. However, it is not known whether these two metabolic changes are mechanistically related or influence LD movement. We postulated that LD density and velocity are progressively increased with tumor aggressiveness and are dependent on V-ATPase and the lipolysis regulator pigment epithelium-derived factor (PEDF). LD density was assessed in human prostate cancer (PCa) specimens across Gleason scores (GS) 6-8. LD distribution and velocity were analyzed in low and highly aggressive tumors using live-cell imaging and in cells exposed to low pH and/or treated with V-ATPase inhibitors. The MT network was disrupted and analyzed by α-tubulin staining. LD density positively correlated with advancing GS in human tumors. Acidification promoted peripheral localization and clustering of LDs. Highly aggressive prostate, breast, and pancreatic cell lines had significantly higher maximum LD velocity (LDVmax) than less aggressive and benign cells. LDVmax was MT-dependent and suppressed by blocking V-ATPase directly or indirectly with PEDF. Upon lowering pH, LDs moved to the cell periphery and carried metalloproteinases. These results suggest that acidification of the TME can alter intracellular LD movement and augment velocity in cancer. Restoration of PEDF or blockade of V-ATPase can normalize LD distribution and decrease velocity. This study identifies V-ATPase and PEDF as new modulators of LD trafficking in the cancer microenvironment.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Kyrsten M. Brooks
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| | - Omar E. Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Kevin Cheng
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| | - Simon W. Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Michael A. Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627
| | - Susan E. Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201,Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| |
Collapse
|
36
|
Goldenberg JM, Pagel MD. Assessments of tumor metabolism with CEST MRI. NMR IN BIOMEDICINE 2019; 32:e3943. [PMID: 29938857 PMCID: PMC7377947 DOI: 10.1002/nbm.3943] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 05/06/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a relatively new contrast mechanism for MRI. CEST MRI exploits a specific MR frequency (chemical shift) of a molecule while generating an image with good spatial resolution using standard MRI techniques, combining the specificity of MRS with the spatial resolution of MRI. Many CEST MRI acquisition methods have been developed to improve analyses of tumor metabolism. GluCEST, CrCEST, and LATEST can map glutamate, creatine, and lactate, which are important metabolites involved in tumor metabolism. GlucoCEST MRI tracks the pharmacokinetics of glucose transport and cell internalization within tumors. CatalyCEST MRI detects enzyme catalysis that changes a substrate CEST agent. AcidoCEST MRI measures extracellular pH of the tumor microenvironment by exploiting a ratio of two pH-dependent CEST signals. This review describes each technique, the technical issues involved with CEST MRI and each specific technique, and the merits and challenges associated with applying each CEST MRI technique to study tumor metabolism.
Collapse
Affiliation(s)
- Joshua M. Goldenberg
- Department of Pharmaceutical Sciences, The University of Arizona, Tucson, AZ, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Kadakia RT, Xie D, Martinez D, Yu M, Que EL. A dual-responsive probe for detecting cellular hypoxia using 19F magnetic resonance and fluorescence. Chem Commun (Camb) 2019; 55:8860-8863. [PMID: 31219109 DOI: 10.1039/c9cc00375d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the first dual-responsive 19F MRI and fluorescence imaging probe for cellular hypoxia. The Cu2+-based probe exhibits no 19F MR signal and reduced fluorescence signal due to paramagnetic quenching; however, the probe turns-on in both modes following reduction to Cu+. This bimodal agent can differentiate hypoxic and normoxic cells in both modalities.
Collapse
Affiliation(s)
- Rahul T Kadakia
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Stop A5300, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
38
|
Xu K, Zhan Y, Yuan Z, Qiu Y, Wang H, Fan G, Wang J, Li W, Cao Y, Shen X, Zhang J, Liang X, Yin P. Hypoxia Induces Drug Resistance in Colorectal Cancer through the HIF-1α/miR-338-5p/IL-6 Feedback Loop. Mol Ther 2019; 27:1810-1824. [PMID: 31208913 DOI: 10.1016/j.ymthe.2019.05.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/12/2019] [Accepted: 05/19/2019] [Indexed: 01/24/2023] Open
Abstract
Hypoxia is associated with poor prognosis and therapeutic resistance in cancer patients. Accumulating evidence has shown that microRNA (miRNA) plays an important role in the acquired drug resistance in colorectal carcinoma (CRC). However, the role of miRNA in hypoxia-induced CRC drug resistance remains to be elucidated. Here, we identified a hypoxia-triggered feedback loop that involves hypoxia-inducible transcription factor 1α (HIF-1α)-mediated repression of miR-338-5p and confers drug resistance in CRC. In this study, the unbiased miRNA array screening revealed that miR-338-5p is downregulated in both hypoxic CRC cell lines tested. Repression of miR-338-5p was required for hypoxia-induced CRC drug resistance. Furthermore, we identified interleukin-6 (IL-6), which mediates STAT3/Bcl2 activation under hypoxic conditions, as a direct miR-338-5p target. The resulting HIF-1α/miR-338-5p/IL-6 feedback loop was necessary for drug resistance in colon cancer cell lines. Using CRC patient samples, we found miR-338-5p has a negative correlation with HIF-1α and IL-6. Finally, in a xenograft model, overexpressing miR-338-5p in CRC cells and HIF-1α inhibitor PX-478 were able to enhance the sensitivity of CRC to oxaliplatin (OXA) via suppressing the HIF-1α/miR-338-5p/IL-6 feedback loop in vivo. Taken together, our results uncovered an HIF-1α/miR-338-5p/IL-6 feedback circuit that is critical in hypoxia-mediated drug resistance in CRC; targeting each member of this feedback loop could potentially reverse hypoxia-induced drug resistance in CRC.
Collapse
Affiliation(s)
- Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
| | - Yueping Zhan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Yanyan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Haijing Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Wang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xian Shen
- The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325035, China
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
39
|
Arocena M, Landeira M, Di Paolo A, Silva A, Sotelo‐Silveira J, Fernández A, Alonso J. Using a variant of coverslip hypoxia to visualize tumor cell alterations at increasing distances from an oxygen source. J Cell Physiol 2019; 234:16671-16678. [DOI: 10.1002/jcp.28507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Miguel Arocena
- Sección Biología Celular, Facultad de Ciencias Universidad de la República Montevideo Uruguay
- Departamento de Genómica Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Cátedra de Bioquímica y Biofísica, Facultad de Odontología Universidad de la República Montevideo Uruguay
| | - Mercedes Landeira
- Sección Biología Celular, Facultad de Ciencias Universidad de la República Montevideo Uruguay
- Departamento de Genómica Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Andrés Di Paolo
- Departamento de Genómica Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Alejandro Silva
- Instituto de Física, Facultad de Ingeniería Universidad de la República Montevideo Uruguay
| | - José Sotelo‐Silveira
- Sección Biología Celular, Facultad de Ciencias Universidad de la República Montevideo Uruguay
- Departamento de Genómica Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Ariel Fernández
- Instituto de Física, Facultad de Ingeniería Universidad de la República Montevideo Uruguay
| | - Julia Alonso
- Instituto de Física, Facultad de Ingeniería Universidad de la República Montevideo Uruguay
| |
Collapse
|
40
|
|
41
|
Goldenberg JM, Cárdenas-Rodríguez J, Pagel MD. Machine learning improves classification of preclinical models of pancreatic cancer with chemical exchange saturation transfer MRI. Magn Reson Med 2019; 81:594-601. [PMID: 30277270 PMCID: PMC6258293 DOI: 10.1002/mrm.27439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/06/2022]
Abstract
PURPOSE We sought to assess whether machine learning-based classification approaches can improve the classification of pancreatic tumor models relative to more simplistic analysis methods, using T1 relaxation, CEST, and DCE MRI. METHODS The T1 relaxation time constants, % CEST at five saturation frequencies, and vascular permeability constants from DCE MRI were measured from Hs 766 T, MIA PaCa-2, and SU.86.86 pancreatic tumor models. We used each of these measurements as predictors for machine learning classifier algorithms. We also used principal component analysis to reduce the dimensionality of entire CEST spectra and DCE signal evolutions, which were then analyzed using classification methods. RESULTS The T1 relaxation time constants, % CEST amplitudes at specific saturation frequencies, and the relative Ktrans and kep values from DCE MRI could not classify all three tumor types. However, the area under the curve from DCE signal evolutions could classify each tumor type. Principal component analysis was used to analyze the entire CEST spectrum and DCE signal evolutions, which predicted the correct tumor model with 87.5% and 85.1% accuracy, respectively. CONCLUSIONS Machine learning applied to the entire CEST spectrum improved the classification of the three tumor models, relative to classifications that used % CEST values at single saturation frequencies. A similar improvement was not attained with machine learning applied to T1 relaxation times or DCE signal evolutions, relative to more simplistic analysis methods.
Collapse
Affiliation(s)
- Joshua M. Goldenberg
- Department of Pharmaceutical Sciences, University of Arizona, Tucson, AZ
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Mark D. Pagel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
42
|
Andreeva ER, Matveeva DK. Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s0362119718060038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Ye IC, Fertig EJ, DiGiacomo JW, Considine M, Godet I, Gilkes DM. Molecular Portrait of Hypoxia in Breast Cancer: A Prognostic Signature and Novel HIF-Regulated Genes. Mol Cancer Res 2018; 16:1889-1901. [PMID: 30037853 PMCID: PMC6279594 DOI: 10.1158/1541-7786.mcr-18-0345] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2018] [Accepted: 07/11/2018] [Indexed: 01/21/2023]
Abstract
Intratumoral hypoxia has been associated with invasion, metastasis, and treatment failure, prompting the need for a global characterization of the response to hypoxic conditions. The current study presents the results of a large-scale RNA sequencing (RNA-seq) effort, analyzing 31 breast cancer cell lines representative of breast cancer subtypes or normal mammary epithelial (NME) cells exposed to control tissue culture conditions (20% O2) or hypoxic conditions (1% O2). The results demonstrate that NME have a stronger response to hypoxia both in terms of number of genes induced by hypoxia as well as level of expression. A conserved 42-gene hypoxia signature shared across PAM50 subtypes and genes that are exclusively upregulated in Luminal A, Luminal B, and normal-like mammary epithelial cells is identified. The 42-gene expression signature is enriched in a subset of basal-like cell lines and tumors and differentiates survival among patients with basal-like tumors. Mechanistically, the hypoxia-inducible factors (HIF-1 and/or HIF-2) mediate the conserved hypoxic response. Also, four novel hypoxia-regulated and HIF-1-responsive genes were identified as part of the conserved signature. This dataset provides a novel resource to query transcriptional changes that occur in response to hypoxia and serves as a starting point for a clinical assay to aid in stratifying patients that would benefit from hypoxia-targeted therapies, some of which are currently in clinical trials. IMPLICATIONS: RNA-seq of 31 breast cancer cells exposed to control or hypoxic conditions reveals a conserved genomic signature that contains novel HIF-regulated genes and is prognostic for the survival of patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- I Chae Ye
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Josh W DiGiacomo
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Michael Considine
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
44
|
Huang C, Huang Z, Bai P, Luo G, Zhao X, Wang X. Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther 2018; 11:2075-2082. [PMID: 29695915 PMCID: PMC5905464 DOI: 10.2147/ott.s152999] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Pyruvate kinase M2 (PKM2) is a key regulator of the Warburg effect and has critical functions in glycolysis, contributing to the Warburg effect, tumor growth, angiogenesis, cell division, metastasis, and apoptosis. The high expression of PKM2 in various solid tumors renders it a potential biomarker of tumorigenesis and tumor invasion, but the expression and role of PKM2 in bladder cancer have not been studied extensively. Patients and methods Western blot and immunohistochemistry (IHC) were used to measure the expression of PKM2, and quantitative real-time polymerase chain reaction (PCR) was performed to determine PKM2 mRNA levels. The relationships between PKM2 expression and clinicopathological parameters and prognosis were analyzed using the Kaplan–Meier plots and a Cox proportional hazards regression model. Results Compared with paired adjacent normal bladder tissues, PKM2 mRNA and protein levels were found to be higher in urothelial carcinoma of the bladder (UCB) samples by real-time PCR and Western blot. By IHC, high expression of PKM2 was seen in 117 of 215 UCBs (54.4%) and in eight of 90 adjacent normal bladder tissues (8.9%). The expression of PKM2 was significantly associated with grade, stage, and lymph node status (P<0.001). In the univariate survival analysis, a significant association between PKM2 expression and shorter patient survival was observed (P<0.001). In different subsets of UCB patients, we found that PKM2 expression was a prognostic factor in patients with G2 (P=0.009), G3 (P<0.001), pTa/pTis (P=0.006), pT1, pT2–4, and pN− disease (P<0.001). Importantly, PKM2 expression (P=0.003), with tumor histological grade (P<0.001), pT (P<0.001), and pN status (P=0.005), was a significant independent prognostic parameter in the multivariate analysis. Conclusion PKM2 protein and mRNA are upregulated in UCBs and may serve as molecular markers for a poor prognosis in patients with UCB.
Collapse
Affiliation(s)
- Changkun Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhichao Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Peiming Bai
- Department of Urology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Guangcheng Luo
- Department of Urology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinjun Wang
- Department of Urology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
45
|
Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI. Oncotarget 2018; 8:45759-45767. [PMID: 28501855 PMCID: PMC5542224 DOI: 10.18632/oncotarget.17404] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/03/2017] [Indexed: 02/04/2023] Open
Abstract
Extracellular pH (pHe) decrease is associated with tumor growth, invasion, metastasis, and chemoresistance, which can be detected by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). Here, we demonstrated that ioversol CEST MRI can be exploited to achieve pHe mapping of the liver cancer microenvironment. In in vitro studies, we firstly explored whether ioversol signal is pH-dependent, and calculated the function equation between the CEST effects of ioversol and pH values, in the range of 6.0 to 7.8, by a ratiometric method. Then we verified the feasibility of this technique and the equation in vivo by applying pHe imaging in an MMTV-Erbb2 transgenic mouse breast cancer model, which is often used in CEST pHe studies. Furthermore, in vivo ioversol CEST MRI, we were able to map relative pHe and differentiate between tumor and normal tissue in a McA-RH7777 rat hepatoma model. This suggests pHe may be a useful biomarker for human liver cancer.
Collapse
|
46
|
Stoyanova R, Pollack A, Takhar M, Lynne C, Parra N, Lam LLC, Alshalalfa M, Buerki C, Castillo R, Jorda M, Ashab HAD, Kryvenko ON, Punnen S, Parekh DJ, Abramowitz MC, Gillies RJ, Davicioni E, Erho N, Ishkanian A. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 2018; 7:53362-53376. [PMID: 27438142 PMCID: PMC5288193 DOI: 10.18632/oncotarget.10523] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/30/2016] [Indexed: 01/06/2023] Open
Abstract
Standard clinicopathological variables are inadequate for optimal management of prostate cancer patients. While genomic classifiers have improved patient risk classification, the multifocality and heterogeneity of prostate cancer can confound pre-treatment assessment. The objective was to investigate the association of multiparametric (mp)MRI quantitative features with prostate cancer risk gene expression profiles in mpMRI-guided biopsies tissues.Global gene expression profiles were generated from 17 mpMRI-directed diagnostic prostate biopsies using an Affimetrix platform. Spatially distinct imaging areas ('habitats') were identified on MRI/3D-Ultrasound fusion. Radiomic features were extracted from biopsy regions and normal appearing tissues. We correlated 49 radiomic features with three clinically available gene signatures associated with adverse outcome. The signatures contain genes that are over-expressed in aggressive prostate cancers and genes that are under-expressed in aggressive prostate cancers. There were significant correlations between these genes and quantitative imaging features, indicating the presence of prostate cancer prognostic signal in the radiomic features. Strong associations were also found between the radiomic features and significantly expressed genes. Gene ontology analysis identified specific radiomic features associated with immune/inflammatory response, metabolism, cell and biological adhesion. To our knowledge, this is the first study to correlate radiogenomic parameters with prostate cancer in men with MRI-guided biopsy.
Collapse
Affiliation(s)
- Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mandeep Takhar
- Reserach and Development, GenomeDx Biosciences, Vancouver, BC, Canada
| | - Charles Lynne
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nestor Parra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucia L C Lam
- Reserach and Development, GenomeDx Biosciences, Vancouver, BC, Canada
| | | | - Christine Buerki
- Reserach and Development, GenomeDx Biosciences, Vancouver, BC, Canada
| | - Rosa Castillo
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merce Jorda
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Oleksandr N Kryvenko
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanoj Punnen
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dipen J Parekh
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert J Gillies
- Cancer Imaging and Metabolism, Moffitt Cancer Center, Tampa, FL, USA
| | - Elai Davicioni
- Reserach and Development, GenomeDx Biosciences, Vancouver, BC, Canada
| | - Nicholas Erho
- Reserach and Development, GenomeDx Biosciences, Vancouver, BC, Canada
| | - Adrian Ishkanian
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
Konkankit CC, Marker SC, Knopf KM, Wilson JJ. Anticancer activity of complexes of the third row transition metals, rhenium, osmium, and iridium. Dalton Trans 2018; 47:9934-9974. [DOI: 10.1039/c8dt01858h] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A summary of recent developments on the anticancer activity of complexes of rhenium, osmium, and iridium is described.
Collapse
Affiliation(s)
| | - Sierra C. Marker
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Kevin M. Knopf
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
48
|
Zhang P, Huang H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 2018; 47:14841-14854. [DOI: 10.1039/c8dt03432j] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we summarize recent progress in the design and application of innovative osmium compounds as anticancer agents with diverse modes of action, as organelle-targeted imaging probes and photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
49
|
Martı Nez-González A, Calvo GF, Ayuso JM, Ochoa I, Fernández LJ, Pérez-García VM. Hypoxia in Gliomas: Opening Therapeutical Opportunities Using a Mathematical-Based Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 936:11-29. [PMID: 27739041 DOI: 10.1007/978-3-319-42023-3_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This chapter explores the use of mathematical models as promising and powerful tools to understand the complexity of tumors and their, frequently, hypoxic environment. We focus on gliomas, which are primary brain tumors derived from glial cells, mainly astrocytes and/or oligodendrocytes. A variety of mathematical models, based on ordinary and/or partial differential equations, have been developed both at the micro and macroscopic levels. The aim here is to describe in a quantitative way key physiopathological mechanisms relevant in these types of malignancies and to suggest optimal therapeutical strategies. More specifically, we consider novel therapies targeting thromboembolic phenomena to decrease cell invasion in high grade glioma or to delay the malignant transformation in low grade gliomas. This study has been the basis of a multidisciplinary collaboration involving, among others, neuro-oncologists, radiation oncologists, pathologists, cancer biologists, surgeons and mathematicians.
Collapse
Affiliation(s)
- Alicia Martı Nez-González
- Mathematical Oncology Laboratory (MôLAB), University of Castilla-La Mancha, Castilla-La Mancha, Spain
| | - Gabriel F Calvo
- Mathematical Oncology Laboratory (MôLAB), University of Castilla-La Mancha, Castilla-La Mancha, Spain
| | - Jose M Ayuso
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Ignacio Ochoa
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Luis J Fernández
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Víctor M Pérez-García
- Mathematical Oncology Laboratory (MôLAB), University of Castilla-La Mancha, Castilla-La Mancha, Spain.
| |
Collapse
|
50
|
Xie D, Kim S, Kohli V, Banerjee A, Yu M, Enriquez JS, Luci JJ, Que EL. Hypoxia-Responsive 19F MRI Probes with Improved Redox Properties and Biocompatibility. Inorg Chem 2017; 56:6429-6437. [PMID: 28537705 DOI: 10.1021/acs.inorgchem.7b00500] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
19F magnetic resonance imaging (MRI), an emerging modality in biomedical imaging, has shown promise for in vitro and in vivo preclinical studies. Here we present a series of fluorinated Cu(II)ATSM derivatives for potential use as 19F magnetic resonance agents for sensing cellular hypoxia. The synthesized complexes feature a hypoxia-targeting Cu2+ coordination core, nine equivalent fluorine atoms connected via a variable-length poly(ethylene glycol) linker. Introduction of the fluorine moiety maintains the planar coordination geometry of the Cu2+ center, while the linker length modulates the Cu2+/+ reduction potential, 19F NMR relaxation properties, and lipophilicity. In particular, the 19F NMR relaxation properties were quantitatively evaluated by the Solomon-Bloembergen model, revealing a regular pattern of relaxation enhancement tuned by the distance between Cu2+ and F atoms. Finally, the potential utility of these complexes for sensing reductive environments was demonstrated using both 19F MR phantom imaging and 19F NMR, including experiments in intact live cells.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Seyong Kim
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Vikraant Kohli
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Arnab Banerjee
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Meng Yu
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - José S Enriquez
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Jeffrey J Luci
- Department of Neuroscience, The University of Texas at Austin , Austin, Texas 78712, United States.,Imaging Research Center, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|