1
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Arachidonic acid metabolism as a novel pathogenic factor in gastrointestinal cancers. Mol Cell Biochem 2024:10.1007/s11010-024-05057-2. [PMID: 38963615 DOI: 10.1007/s11010-024-05057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Gastrointestinal (GI) cancers are a major global health burden, representing 20% of all cancer diagnoses and 22.5% of global cancer-related deaths. Their aggressive nature and resistance to treatment pose a significant challenge, with late-stage survival rates below 15% at five years. Therefore, there is an urgent need to delve deeper into the mechanisms of gastrointestinal cancer progression and optimize treatment strategies. Increasing evidence highlights the active involvement of abnormal arachidonic acid (AA) metabolism in various cancers. AA is a fatty acid mainly metabolized into diverse bioactive compounds by three enzymes: cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. Abnormal AA metabolism and altered levels of its metabolites may play a pivotal role in the development of GI cancers. However, the underlying mechanisms remain unclear. This review highlights a unique perspective by focusing on the abnormal metabolism of AA and its involvement in GI cancers. We summarize the latest advancements in understanding AA metabolism in GI cancers, outlining changes in AA levels and their potential role in liver, colorectal, pancreatic, esophageal, gastric, and gallbladder cancers. Moreover, we also explore the potential of targeting abnormal AA metabolism for future therapies, considering the current need to explore AA metabolism in GI cancers and outlining promising avenues for further research. Ultimately, such investigations aim to improve treatment options for patients with GI cancers and pave the way for better cancer management in this area.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Yang J, Li Y, Han X, Li T, Li D, Liu Q, Yan L, Li F, Pei X, Feng Y, Lin Z, Fu Z, Wang C, Sun Q, Li C. Targeting estrogen mediated CYP4F2/CYP4F11-20-HETE metabolic disorder decelerates tumorigenesis in ER+ breast cancer. Biochem Biophys Rep 2024; 38:101706. [PMID: 38646426 PMCID: PMC11033080 DOI: 10.1016/j.bbrep.2024.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose As the most common subset of breast cancer (BC), estrogen receptor positive (ER+) BC accounting for 80% of cases, has become a global public health concern. The female hormone estrogen (E2) unequivocally drives ER + breast malignancies. The reasons that estrogen affects BC development has long been considered, yet further study remains to be conducted of the molecular events in the E2-estrogen receptor α (ERα) signaling pathway in ER + BC progression, especially lipid metabolism, so providing more options for tailored and individualized therapy. Our aim is to find out new targets and clinical biomarkers for ER + breast cancer treatment from the perspective of lipid metabolism. Methods Lipid metabolomics profiling was used to examine the membrane phospholipid stimulated by E2. Clinical BC samples were used to assess the association of CYP4F2, CYP4F11 expression with clinicopathological characteristics and patient outcomes. Some inhibitors of main enzymes in AA metabolism were used combined with E2 to assess roles of CYP4F2/CYP4F11 in the progression of ER + BC. CYP4F2, CYP4F11 overexpression and knockdown BC cell lines were employed to examine the effects of CYP4F2, CYP4F11 on cellular proliferation, apoptosis and tumor growth. Western blotting, qPCR, Immunohistochemical staining and flow cytometry were also conducted to determine the underlying mechanisms related to CYP4F2, CYP4F11 function. Results The activation of the CYP450 signaling pathway in arachidonic acid metabolism contributed to ER + BC tumorigenesis. In ER + BC, CYP4F2 and CYP4F11 overexpression induced by E2 could promote cancer cell proliferation and resistance to apoptosis by producing the metabolite 20-HETE and activating the antiapoptotic protein Bcl-2. CYP4F2 and CYP4F11 elevation correlates with poorer overall survival and disease-free survival in ER + BC patients. Conclusion CYP4F2, CYP4F11 and their metabolite 20-HETE could serve as effective prognostic markers and attractive therapeutic targets for novel anticancer drug development about ER + BC.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Qiao Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Lizhong Yan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Fei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Zhenkun Fu
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, 150081, PR China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
3
|
El-Ghiaty MA, Alqahtani MA, El-Mahrouk SR, Isse FA, Alammari AH, El-Kadi AOS. Alteration of Hepatic Cytochrome P450 Expression and Arachidonic Acid Metabolism by Arsenic Trioxide (ATO) in C57BL/6 Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04225-1. [PMID: 38758479 DOI: 10.1007/s12011-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
The success of arsenic trioxide (ATO) in acute promyelocytic leukemia has driven a plethora studies to investigate its efficacy in other malignancies. However, the inherent toxicity of ATO limits the expansion of its clinical applications. Such toxicity may be linked to ATO-induced metabolic derangements of endogenous substrates. Therefore, the primary objective of this study was to investigate the effect of ATO on the hepatic formation of arachidonic acid (AA) metabolites, hydroxyeicosatetraenoic acids (HETEs), as well as their most notable producing machinery, cytochrome P450 (CYP) enzymes. For this purpose, C57BL/6 mice were intraperitoneally injected with 8 mg/kg ATO for 6 and 24 h. Total RNA was extracted from harvested liver tissues for qPCR analysis of target genes. Hepatic microsomal proteins underwent incubation with AA, followed by identification/quantification of the produced HETEs. ATO downregulated Cyp2e1, while induced Cyp2j9 and most of Cyp4a and Cyp4f, and this has resulted in a significant increase in 17(S)-HETE and 18(R)-HETE, while significantly decreased 18(S)-HETE. Additionally, ATO induced Cyp4a10, Cyp4a14, Cyp4f13, Cyp4f16, and Cyp4f18, resulting in a significant elevation in 20-HETE formation. In conclusion, ATO altered hepatic AA metabolites formation through modulating the underlying network of CYP enzymes. Modifying the homeostatic production of bioactive AA metabolites, such as HETEs, may entail toxic events that can, at least partly, explain ATO-induced hepatotoxicity. Such modification can also compromise the overall body tolerability to ATO treatment in cancer patients.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Jiang S, Han S, Wang DW. The involvement of soluble epoxide hydrolase in the development of cardiovascular diseases through epoxyeicosatrienoic acids. Front Pharmacol 2024; 15:1358256. [PMID: 38628644 PMCID: PMC11019020 DOI: 10.3389/fphar.2024.1358256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Arachidonic acid (AA) has three main metabolic pathways: the cycloxygenases (COXs) pathway, the lipoxygenases (LOXs) pathway, and the cytochrome P450s (CYPs) pathway. AA produces epoxyeicosatrienoic acids (EETs) through the CYPs pathway. EETs are very unstable in vivo and can be degraded in seconds to minutes. EETs have multiple degradation pathways, but are mainly degraded in the presence of soluble epoxide hydrolase (sEH). sEH is an enzyme of bifunctional nature, and current research focuses on the activity of its C-terminal epoxide hydrolase (sEH-H), which hydrolyzes the EETs to the corresponding inactive or low activity diol. Previous studies have reported that EETs have cardiovascular protective effects, and the activity of sEH-H plays a role by degrading EETs and inhibiting their protective effects. The activity of sEH-H plays a different role in different cells, such as inhibiting endothelial cell proliferation and migration, but promoting vascular smooth muscle cell proliferation and migration. Therefore, it is of interest whether the activity of sEH-H is involved in the initiation and progression of cardiovascular diseases by affecting the function of different cells through EETs.
Collapse
Affiliation(s)
- Shan Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Siyi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
5
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
6
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
7
|
Rao ZZ, Tang ZW, Wen J. Advances in drug resistance of triple negative breast cancer caused by pregnane X receptor. World J Clin Oncol 2023; 14:335-342. [PMID: 37771631 PMCID: PMC10523191 DOI: 10.5306/wjco.v14.i9.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Triple-negative breast cancer (TNBC), refers breast cancer negative for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, characterized by high drug resistance, high metastasis and high recurrence, treatment of which is a difficult problem in the clinical treatment of breast cancer. In order to better treat TNBC clinically, it is a very urgent task to explore the mechanism of TNBC resistance in basic breast cancer research. Pregnane X receptor (PXR) is a nuclear receptor whose main biological function is to participate in the metabolism, transport and clearance of allobiological agents in PXR. PXR plays an important role in drug metabolism and clearance, and PXR is highly expressed in tumor tissues of TNBC patients, which is related to the prognosis of breast cancer patients. This reviews synthesized the important role of PXR in the process of high drug resistance to TNBC chemotherapeutic drugs and related research progress.
Collapse
Affiliation(s)
- Zhou-Zhou Rao
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410003, Hunan Province, China
| | - Zhong-Wen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
8
|
Ghimire B, Pour SK, Middleton E, Campbell RA, Nies MA, Aghazadeh-Habashi A. Renin-Angiotensin System Components and Arachidonic Acid Metabolites as Biomarkers of COVID-19. Biomedicines 2023; 11:2118. [PMID: 37626615 PMCID: PMC10452267 DOI: 10.3390/biomedicines11082118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Through the ACE2, a main enzyme of the renin-angiotensin system (RAS), SARS-CoV-2 gains access into the cell, resulting in different complications which may extend beyond the RAS and impact the Arachidonic Acid (ArA) pathway. The contribution of the RAS through ArA pathways metabolites in the pathogenesis of COVID-19 is unknown. We investigated whether RAS components and ArA metabolites can be considered biomarkers of COVID-19. We measured the plasma levels of RAS and ArA metabolites using an LC-MS/MS. Results indicate that Ang 1-7 levels were significantly lower, whereas Ang II levels were higher in the COVID-19 patients than in healthy control individuals. The ratio of Ang 1-7/Ang II as an indicator of the RAS classical and protective arms balance was dramatically lower in COVID-19 patients. There was no significant increase in inflammatory 19-HETE and 20-HETE levels. The concentration of EETs was significantly increased in COVID-19 patients, whereas the DHETs concentration was repressed. Their plasma levels were correlated with Ang II concentration in COVID-19 patients. In conclusion, evaluating the RAS and ArA pathway biomarkers could provide helpful information for the early detection of high-risk groups, avoid delayed medical attention, facilitate resource allocation, and improve patient clinical outcomes to prevent long COVID incidence.
Collapse
Affiliation(s)
- Biwash Ghimire
- College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (B.G.)
| | - Sana Khajeh Pour
- College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (B.G.)
| | - Elizabeth Middleton
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert A. Campbell
- Department of Internal Medicine, Division ofHematology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mary A. Nies
- College of Health, School of Nursing, Idaho State University, Pocatello, ID 83209, USA
| | | |
Collapse
|
9
|
Jia W, Chen S, Wei R, Yang X, Zhang M, Qian Y, Liu H, Lei D. CYP4F12 is a potential biomarker and inhibits cell migration of head and neck squamous cell carcinoma via EMT pathway. Sci Rep 2023; 13:10956. [PMID: 37414830 PMCID: PMC10326030 DOI: 10.1038/s41598-023-37950-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) is the most common malignant tumor of head and neck. Due to the insidious nature of HNSC and the lack of effective early diagnostic indicators, the development of novel biomarkers to improve patient prognosis is particularly urgent. In this study, we explored and validated the correlation between cytochrome P450 family 4 subfamily F member 12 (CYP4F12) expression levels and HNSC progression using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and collected patient samples. We analyzed the association of CYP4F12 expression with clinicopathological features, immune correlation and prognosis. Finally, we analyzed the correlation between CYP4F12 and pathways, and verified by experiments. The results showed that CYP4F12 was low expressed in tumor tissues, participated in a variety of phenotypic changes of HNSC and affected immune cell infiltration. Pathway analysis indicated that CYP4F12 may play a key role in tumor cell migration and apoptosis. Experimental results showed that over-expression of CYP4F12 inhibited cell migration and enhanced the adhesion between cells and matrix by inhibiting epithelial-mesenchymal transition (EMT) pathway in HNSC cells. In conclusion, our study provided insights into the role of CYP4F12 in HNSC and revealed that CYP4F12 may be a potential therapeutic target for HNSC.
Collapse
Affiliation(s)
- Wenming Jia
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Shuai Chen
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Ran Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Xiaoqi Yang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Minfa Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Ye Qian
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Heng Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China.
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China.
| |
Collapse
|
10
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
12
|
Peng L, Song Z, Zhao C, Abuduwufuer K, Wang Y, Wen Z, Ni L, Li C, Yu Y, Zhu Y, Jiang H, Shen J, Jiang X, Chen C, Zhang X, Wang DW. Increased Soluble Epoxide Hydrolase Activity Positively Correlates with Mortality in Heart Failure Patients with Preserved Ejection Fraction: Evidence from Metabolomics. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:34-49. [PMID: 36939801 PMCID: PMC9883375 DOI: 10.1007/s43657-022-00069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) have pleiotropic endogenous cardiovascular protective effects and can be hydrolyzed to the corresponding dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). Heart failure with preserved ejection fraction (HFpEF) has shown an increased prevalence and worse prognosis over the decades. However, the role of sEH activity in HFpEF remains unclear. We enrolled 500 patients with HFpEF and 500 healthy controls between February 2010 and March 2016. Eight types of sEH-related eicosanoids were measured according to target metabolomics, and their correlation with clinical endpoints was also analyzed. The primary endpoint was cardiac mortality, and the secondary endpoint was a composite of cardiac events, including heart failure (HF) readmission, cardiogenic hospitalization, and all-cause mortality. Furthermore, the effect of sEH inhibitors on cardiac diastolic function in HFpEF was investigated in vivo and in vitro. Patients with HFpEF showed significantly enhanced EET degradation by the sEH enzyme compared with healthy controls. More importantly, sEH activity was positively correlated with cardiac mortality in patients with HFpEF, especially in older patients with arrhythmia. A consistent result was obtained in the multiple adjusted models. Decreased sEH activity by the sEH inhibitor showed a significant effective effect on the improvement of cardiac diastolic function by ameliorating lipid disorders in cardiomyocytes of HFpEF mouse model. This study demonstrated that increased sEH activity was associated with cardiac mortality in patients with HFpEF and suggested that sEH inhibition could be a promising therapeutic strategy to improve diastolic cardiac function. Clinical trial identifier: NCT03461107 (https://clinicaltrials.gov). Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00069-8.
Collapse
Affiliation(s)
- Liyuan Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030 China
| | - Ziping Song
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030 China
| | - Chengcheng Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030 China
| | - Kudusi Abuduwufuer
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030 China
| | - Yanwen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030 China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030 China
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030 China
| | - Chenze Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030 China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Center for Cardiovascular Diseases, Department of Physiology and Pathophysiology, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jinshan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiangrui Jiang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Center for Cardiovascular Diseases, Department of Physiology and Pathophysiology, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070 China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
13
|
Zhu P, Liu W, Zhang X, Li M, Liu G, Yu Y, Li Z, Li X, Du J, Wang X, Grueter CC, Li M, Zhou X. Correlated evolution of social organization and lifespan in mammals. Nat Commun 2023; 14:372. [PMID: 36720880 PMCID: PMC9889386 DOI: 10.1038/s41467-023-35869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
Discerning the relationship between sociality and longevity would permit a deeper understanding of how animal life history evolved. Here, we perform a phylogenetic comparative analysis of ~1000 mammalian species on three states of social organization (solitary, pair-living, and group-living) and longevity. We show that group-living species generally live longer than solitary species, and that the transition rate from a short-lived state to a long-lived state is higher in group-living than non-group-living species, altogether supporting the correlated evolution of social organization and longevity. The comparative brain transcriptomes of 94 mammalian species identify 31 genes, hormones and immunity-related pathways broadly involved in the association between social organization and longevity. Further selection features reveal twenty overlapping pathways under selection for both social organization and longevity. These results underscore a molecular basis for the influence of the social organization on longevity.
Collapse
Affiliation(s)
- Pingfen Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Weiqiang Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Yang Yu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zihao Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanjing Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,International Center of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, 671003, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.
| |
Collapse
|
14
|
Sun L, Zhang J, Niu C, Deering-Rice CE, Hughen RW, Lamb JG, Rose K, Chase KM, Almestica-Roberts M, Walter M, Schmidt EW, Light AR, Olivera BM, Reilly CA. CYP1B1-derived epoxides modulate the TRPA1 channel in chronic pain. Acta Pharm Sin B 2023; 13:68-81. [PMID: 36815047 PMCID: PMC9939319 DOI: 10.1016/j.apsb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Changshan Niu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katherine Rose
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M. Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Markel Walter
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA,Corresponding author. Tel.: +1 8015815236.
| |
Collapse
|
15
|
Crosstalk between Depression and Breast Cancer via Hepatic Epoxide Metabolism: A Central Comorbidity Mechanism. Molecules 2022; 27:molecules27217269. [PMID: 36364213 PMCID: PMC9655600 DOI: 10.3390/molecules27217269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Breast cancer (BC) is a serious global challenge, and depression is one of the risk factors and comorbidities of BC. Recently, the research on the comorbidity of BC and depression has focused on the dysfunction of the hypothalamic–pituitary–adrenal axis and the persistent stimulation of the inflammatory response. However, the further mechanisms for comorbidity remain unclear. Epoxide metabolism has been shown to have a regulatory function in the comorbid mechanism with scattered reports. Hence, this article reviews the role of epoxide metabolism in depression and BC. The comprehensive review discloses the imbalance in epoxide metabolism and its downstream effect shared by BC and depression, including overexpression of inflammation, upregulation of toxic diols, and disturbed lipid metabolism. These downstream effects are mainly involved in the construction of the breast malignancy microenvironment through liver regulation. This finding provides new clues on the mechanism of BC and depression comorbidity, suggesting in particular a potential relationship between the liver and BC, and provides potential evidence of comorbidity for subsequent studies on the pathological mechanism.
Collapse
|
16
|
Contursi A, Tacconelli S, Hofling U, Bruno A, Dovizio M, Ballerini P, Patrignani P. Biology and pharmacology of platelet-type 12-lipoxygenase in platelets, cancer cells, and their crosstalk. Biochem Pharmacol 2022; 205:115252. [PMID: 36130648 DOI: 10.1016/j.bcp.2022.115252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
Platelet-type lipoxygenase (pl12-LOX), encoded by ALOX12, catalyzes the production of the lipid mediator 12S-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12S-HpETE), which is quickly reduced by cellular peroxidases to form 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12S-HETE). Platelets express high levels of pl12-LOX and generate considerable amounts of 12S-HETE from arachidonic acid (AA; C20:4, n-6). The development of sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods has allowed the accurate quantification of 12S-HETE in biological samples. Moreover, advances in the knowledge of the mechanism of action of 12S-HETE have been achieved. The orphan G-protein-coupled receptor 31 (GPR31) has been identified as the high-affinity 12S-HETE receptor. Moreover, upon platelet activation, 12S-HETE is produced, and significant amounts are found esterified to membrane phospholipids (PLs), such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), promoting thrombin generation. Platelets play many roles in cancer metastasis. Among them, the platelets' ability to interact with cancer cells and transfer platelet molecules by the release of extracellular vesicles (EVs) is noteworthy. Recently, it was found that platelets induce epithelial-mesenchymal transition(EMT) in cancer cells, a phenomenon known to confer high-grade malignancy, through the transfer of pl12-LOX contained in platelet-derived EVs. These cancer cells now generate 12-HETE, considered a key modulator of cancer metastasis. Interestingly, 12-HETE was mainly found esterified in plasmalogen phospholipids of cancer cells. This review summarizes the current knowledge on the regulation and functions of pl12-LOX in platelets and cancer cells and their crosstalk.Novel approaches to preventing cancer and metastasis by the pharmacological inhibition of pl12-LOX and the internalization of mEVs are discussed.
Collapse
Affiliation(s)
- Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Ulrika Hofling
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
17
|
Rottlerin promotes anti-metastatic events by ameliorating pharmacological parameters of paclitaxel: An in-vivo investigation in the orthotopic mouse model of breast cancer. Chem Biol Interact 2022; 366:110109. [PMID: 35995259 DOI: 10.1016/j.cbi.2022.110109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Despite substantial breakthroughs in cancer research, there is hardly any specific therapy available to date that can alleviate triple-negative breast cancer (TNBC). Paclitaxel is the first-line chemotherapy option, but its treatment is often associated with early discontinuation of therapy due to the development of resistance and/or precipitation of severe side effects. In the quest to establish a suitable combination therapy with a low dose of paclitaxel, we explored rottlerin (a pure and characterized phytoconstituent from Mallotus philippensis) because of its multifaceted pharmacological actions against cancer. The study was performed to assess the therapeutic effects of rottlerin (5-20 mg/kg) with a low dose of paclitaxel (5 mg/kg) using a highly aggressive mouse mammary carcinoma model. Rottlerin augmented the paclitaxel effect by reducing tumor burden as well as metastatic lung nodules formation. Rottlerin in combination with paclitaxel remarkably altered the expression of vital epithelial-mesenchymal transition (EMT) markers such as E-cadherin, Snail 1, & Vimentin and thus improved the anti-metastatic efficacy of paclitaxel. Significant attenuation of anti-apoptotic protein (Bcl-2) along with amplification of pro-apoptotic (cleaved PARP) marker confers that rottlerin could ameliorate the pro-apoptotic potential of paclitaxel. In this study, a rational combination of rottlerin and paclitaxel treatment curtailed CYP2J2 expression and epoxyeicosatrienoic acids (EETs) levels, responsible for restrain tumor growth and metastasis. Additionally, rottlerin lessened paclitaxel treatment-mediated hematological alterations and prevented paclitaxel treatment-linked key serum biochemical changes related to organ toxicities. These rottlerin treatment-mediated protective changes are closely associated with the lower paclitaxel accumulation in the corresponding tissues. Rottlerin caused significant pharmacokinetic interaction with paclitaxel to boost the plasma level of paclitaxel in a typical mouse model and possibly helpful towards the use of a low dose of paclitaxel in combination. Overall, it can be stated that rottlerin has significant potential to augment the anti-metastatic efficacy of paclitaxel via impeding EMT activation along with attenuating its treatment-associated toxicological alterations. Hence, rottlerin has significant potential to explore further as a suitable neoadjuvant therapy with paclitaxel against TNBC.
Collapse
|
18
|
Eicosanoid production by macrophages during inflammation depends on the M1/M2 phenotype. Prostaglandins Other Lipid Mediat 2022; 160:106635. [PMID: 35307567 DOI: 10.1016/j.prostaglandins.2022.106635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
Macrophages are important in inflammation, and are involved in many physiological and pathological processes. Additionally, macrophages are important producers of eicosanoids, lipids that influence the inflammatory response. Our study aimed to explore the role of eicosanoids in the inflammatory response by studying the production of eicosanoids by macrophages on different stages of inflammation. Murine peritoneal macrophages (MPMs) were obtained at different stages of inflammation, which were then cultured in vitro with polyunsaturated fatty acids. Eicosanoids in MPMs were then detected by liquid chromatography-mass spectrometry. The metabolites derived from the cyclooxygenase (COX) pathway were increased, whereas those from the lipoxygenase (LOX) pathway were reduced. Additionally, the ratio of arachidonic acid (AA)-derived and eicosapentaenoic acid (EPA)-derived eicosanoids was dependent on the stage of inflammation. Moreover, the composition of macrophages with different phenotypes changed. To clarify the relationship between the phenotypes of macrophages and eicosanoids metabolism, we detected the eicosanoids in M1 and M2 differentiated THP-1 cells. Overall, M1 preferred AA, whereas M2 preferred EPA as substrate, which was related to the expression of COX and LOX. In conclusion, this study demonstrates that the difference in macrophage eicosanoids metabolism during the inflammatory response is related to the macrophage polarisation.
Collapse
|
19
|
Hashchyshyn V, Tymochko-Voloshyn R, Paraniak N, Vovkanych L, Hlozhyk I, Trach V, Muzyka F, Serafyn Y, Prystupa E, Boretsky Y. Regeneration of Skeletal Muscle Fibers and Regulation of Myosatellitocytes Metabolism. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Montecillo-Aguado M, Tirado-Rodriguez B, Antonio-Andres G, Morales-Martinez M, Tong Z, Yang J, Hammock BD, Hernandez-Pando R, Huerta-Yepez S. Omega-6 Polyunsaturated Fatty Acids Enhance Tumor Aggressiveness in Experimental Lung Cancer Model: Important Role of Oxylipins. Int J Mol Sci 2022; 23:6179. [PMID: 35682855 PMCID: PMC9181584 DOI: 10.3390/ijms23116179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer death worldwide; it is often diagnosed at an advanced stage and bears poor prognosis. It has been shown that diet is an important environmental factor that contributes to the risk and mortality of several types of cancers. Intake of ω-3 and ω-6 PUFAs plays an important role in cancer risk and progression. Current Western populations have high consumption of ω-6 PUFAs with a ratio of ω-6/ω-3 PUFAs at 15:1 to 16.7:1 This high consumption of ω-6 PUFAs is related to increased cancer risk and progression. However, whether a diet rich in ω-6 PUFAs can contribute to tumor aggressiveness has not been well investigated. We used a murine model of pulmonary squamous cell carcinoma to study the aggressiveness of tumors in mice fed with a diet rich in ω-6 PUFAs and its relationship with oxylipins. Our results shown that the mice fed a diet rich in ω-6 showed a marked increase in proliferation, angiogenesis and pro-inflammatory markers and decreased expression of pro-apoptotic proteins in their tumors. Oxylipin profiling revealed an upregulation of various pro-tumoral oxylipins including PGs, HETEs, DiHETrEs and HODEs. These results demonstrate for the first time that high intake of ω-6 PUFAs in the diet enhances the malignancy of tumor cells by histological changes on tumor dedifferentiation and increases cell proliferation, angiogenesis, pro-inflammatory oxylipins and molecular aggressiveness targets such as NF-κB p65, YY1, COX-2 and TGF-β.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Gabriela Antonio-Andres
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Mario Morales-Martinez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Zhen Tong
- Molecular Toxicology Interdepartmental Program and Environmental Health Sciences, University of California, Los Angeles, CA 90095, USA;
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jun Yang
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Bruce D. Hammock
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Science and Nutrition, Salvador Zubiran (INCNSZ), Mexico City 14080, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Iyer MR, Kundu B, Wood CM. Soluble epoxide hydrolase inhibitors: an overview and patent review from the last decade. Expert Opin Ther Pat 2022; 32:629-647. [PMID: 35410559 DOI: 10.1080/13543776.2022.2054329] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Biological effects mediated by the CYP450 arm of arachidonate cascade implicate the enzyme-soluble epoxide hydrolase (sEH) in hydrolyzing anti-inflammatory epoxy fatty acids to pro-inflammatory diols. Hence, inhibiting the sEH offers a therapeutic approach to treating inflammatory diseases. Over three decades of work has shown the role of sEH inhibitors (sEHis) in treating various disorders in rodents and larger veterinary subjects. Novel chemical strategies to enhance the efficacy of sEHi have now appeared. AREAS COVERED A comprehensive review of patent literature related to soluble epoxide hydrolase inhibitors in the last decade (2010-2021) is provided. EXPERT OPINION Soluble epoxide hydrolase (sEH) is an important enzyme that metabolizes the bioactive epoxy fatty acids (EFAs) in the arachidonic acid signaling pathway and converts them to vicinal diols, which appear to be pro-inflammatory. Inhibition of sEH hence offers a mechanism to increase in vivo epoxyeicosanoid levels and resolve pro-inflammatory pathways in disease states. Significant efforts in the field have led to potent single target as well as multi-target inhibitors with promising in vitro and widely encompassing in vivo activities. Successful clinical translation of compounds targeting sEH inhibition will further validate the promised therapeutic potential of this pathway in treating human diseases.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Casey M Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| |
Collapse
|
22
|
Liang X, Luo X, Lin H, Han F, Qin JG, Chen L, Xu C, Li E. Effects and Mechanism of Different Phospholipid Diets on Ovary Development in Female Broodstock Pacific White Shrimp, Litopenaeus vannamei. Front Nutr 2022; 9:830934. [PMID: 35252307 PMCID: PMC8894211 DOI: 10.3389/fnut.2022.830934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/19/2022] [Indexed: 01/15/2023] Open
Abstract
Research on nutrition and feed development for the broodstock of the Pacific white shrimp, Litopenaeus vannamei, is rare, and a poor broodstock quality is a critical factor restricting the seed supply in shrimp farming. As an essential nutrient for the gonadal development of L. vannamei, one control diet (no phospholipid) and three typical phospholipids (soybean lecithin, egg yolk lecithin, and krill oil) were evaluated in a semipurified diet of 4% phospholipid for a 28-day trial (initial weight 34.7 ± 4.2 g). Dietary phospholipid supplementation significantly promoted the ovarian maturation of female L. vannamei. Compared with soybean lecithin and egg yolk lecithin, krill oil showed the best positive results. Shrimp fed with a diet krill oil has obtained a significantly higher gonadosomatic index, yolk particle deposition, lipid accumulation, and estrogen secretion than from other sources. Ovary lipidomic analysis showed that the krill oil enriched the lipid composition of the ovary. The “glycerophospholipid metabolism” and “sphingolipid metabolism” pathways were significantly varied via topological pathway analysis. Genes and hub genes, with significantly different expression levels, were significantly enriched in the “fatty acid metabolism pathway,” “glycerophospholipid metabolism,” and “arachidonic acid metabolism” pathways by transcriptomic analysis. Correlation analysis of the transcriptome and lipidomics showed that the differential gene “hormone-sensitive lipase-like” (HSL) was positively correlated with various lipids [triglycerides (TG), phosphatidic acid (PA), phosphatidylserine (P), phosphatidylethanolamine (PE), glucosylceramide (GlcCer), phosphatidylglycerol (PG), and phosphatidylinositol (PI)] but was negatively correlated with diacylglycerol (DG), lysophosphatidylethanolamine (LPE), and sphingomyelin (SM). In conclusion, the dietary phospholipids, especially krill oil as a phospholipid source, can promote the development of L. vannamei ovaries by increasing the accumulation of nutrients such as triglycerides and sterols, and the secretion of estrogen or related hormones, such as estradiol and methylfarneside, by affecting the metabolism of glycerol phospholipids and some key fatty acids.
Collapse
Affiliation(s)
- Xiaolong Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Xiaolong Luo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| |
Collapse
|
23
|
Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222413571. [PMID: 34948368 PMCID: PMC8703661 DOI: 10.3390/ijms222413571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined based on the absence of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. Currently, chemotherapy is the major therapeutic approach for TNBC patients; however, poor prognosis after a standard chemotherapy regimen is still commonplace due to drug resistance. Abnormal tumor metabolism and infiltrated immune or stromal cells in the tumor microenvironment (TME) may orchestrate mammary tumor growth and metastasis or give rise to new subsets of cancer cells resistant to drug treatment. The immunosuppressive mechanisms established in the TME make cancer cell clones invulnerable to immune recognition and killing, and turn immune cells into tumor-supporting cells, hence allowing cancer growth and dissemination. Phytochemicals with the potential to change the tumor metabolism or reprogram the TME may provide opportunities to suppress cancer metastasis and/or overcome chemoresistance. Furthermore, phytochemical intervention that reprograms the TME away from favoring immunoevasion and instead towards immunosurveillance may prevent TNBC metastasis and help improve the efficacy of combination therapies as phyto-adjuvants to combat drug-resistant TNBC. In this review, we summarize current findings on selected bioactive plant-derived natural products in preclinical mouse models and/or clinical trials with focus on their immunomodulatory mechanisms in the TME and their roles in regulating tumor metabolism for TNBC prevention or therapy.
Collapse
|
24
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Su KH, Wu CT, Lin SW, Mori S, Liu WM, Yang HC. Calculation of CYP450 protein-ligand binding and dissociation free energy paths. J Chem Phys 2021; 155:025101. [PMID: 34266281 DOI: 10.1063/5.0046169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The function of an enzyme depends on its dynamic structure, and the catalytic mechanism has long been an active focus of research. The principle for interpreting protein selectivity and fidelity stems from optimization of the active site upon protein-substrate complexation, i.e., a lock-and-key configuration, on which most protein-substrate molecule binding recognition, and hence drug discovery, relies. Yet another thought has been to incorporate the protein folding interior tunnels for stereo- and regio-selectivity along the protein-substrate or protein-ligand/inhibitor binding process. Free energy calculations provide valuable information for molecular recognition and protein-ligand binding dynamics and kinetics. In this study, we focused on the kinetics of cytochrome P450 proteins (CYP450s) and the protein interior tunnel structure-dynamics relationship in terms of the substrate binding and leaving mechanism. A case in point is given by the prostaglandin H2 (PGH2) homologous isomerase of prostacyclin synthase. To calculate the reactant and product traversing the tunnels to and from the heme site, the free energy paths and tunnel potentials of mean force are constructed from steered molecular dynamics simulations and adaptive basing force umbrella sampling simulations. We explore the binding tunnels and critical residue lining characteristics for the ligand traverse and the underlying mechanism of CYP450 activity. Our theoretical analysis provides insights into the decisive role of the substrate tunnel binding process of the CYP450 mechanism and may be useful in drug design and protein engineering contexts.
Collapse
Affiliation(s)
- Kuan-Hsuan Su
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chin-Teng Wu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Shang-Wei Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Seiji Mori
- Institute of Quantum Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
26
|
Jara-Gutiérrez Á, Baladrón V. The Role of Prostaglandins in Different Types of Cancer. Cells 2021; 10:cells10061487. [PMID: 34199169 PMCID: PMC8231512 DOI: 10.3390/cells10061487] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
The prostaglandins constitute a family of lipids of 20 carbon atoms that derive from polyunsaturated fatty acids such as arachidonic acid. Traditionally, prostaglandins have been linked to inflammation, female reproductive cycle, vasodilation, or bronchodilator/bronchoconstriction. Recent studies have highlighted the involvement of these lipids in cancer. In this review, existing information on the prostaglandins associated with different types of cancer and the advances related to the potential use of them in neoplasm therapies have been analyzed. We can conclude that the effect of prostaglandins depends on multiple factors, such as the target tissue, their plasma concentration, and the prostaglandin subtype, among others. Prostaglandin D2 (PGD2) seems to hinder tumor progression, while prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2α) seem to provide greater tumor progression and aggressiveness. However, more studies are needed to determine the role of prostaglandin I2 (PGI2) and prostaglandin J2 (PGJ2) in cancer due to the conflicting data obtained. On the other hand, the use of different NSAIDs (non-steroidal anti-inflammatory drugs), especially those selective of COX-2 (cyclooxygenase 2), could have a crucial role in the fight against different neoplasms, either as prophylaxis or as an adjuvant treatment. In addition, multiple targets, related to the action of prostaglandins on the intracellular signaling pathways that are involved in cancer, have been discovered. Thus, in depth research about the prostaglandins involved in different cancer and the different targets modulated by them, as well as their role in the tumor microenvironment and the immune response, is necessary to obtain better therapeutic tools to fight cancer.
Collapse
|
27
|
Tiwari S, Yang J, Morisseau C, Durbin-Johnson B, Hammock BD, Gomes AV. Ibuprofen alters epoxide hydrolase activity and epoxy-oxylipin metabolites associated with different metabolic pathways in murine livers. Sci Rep 2021; 11:7042. [PMID: 33782432 PMCID: PMC8007717 DOI: 10.1038/s41598-021-86284-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/11/2021] [Indexed: 11/09/2022] Open
Abstract
Over the last decade oxylipins have become more recognized for their involvement in several diseases. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are known to inhibit cyclooxygenase (COX) enzymes, but how NSAIDs affect oxylipins, in addition to COX products, in animal tissues is not well understood. Oxylipins in livers from male and female mice treated with 100 mg/kg/day of ibuprofen for 7 days were investigated. The results showed that ibuprofen treated male livers contained 7 times more altered oxylipins than ibuprofen treated female livers. In male and female livers some prostaglandins were altered, while diols, hydroxy fatty acids and epoxides were significantly altered in male livers. Some soluble epoxide hydrolase (sEH) products, such as 9,10-DiHODE were found to be decreased, while sEH substrates (such as 9(10)-EpODE and 5(6)-EpETrE) were found to be increased in male livers treated with ibuprofen, but not in ibuprofen treated female livers. The enzymatic activities of sEH and microsomal epoxide hydrolase (mEH) were elevated by ibuprofen in both males and females. Analyzing the influence of sex on the effect of ibuprofen on oxylipins and COX products showed that approximately 27% of oxylipins detected were influenced by sex. The results reveal that ibuprofen disturbs not only the COX pathway, but also the CYP450 and lipoxygenase pathways in male mice, suggesting that ibuprofen is likely to generate sex related differences in biologically active oxylipins. Increased sEH activity after ibuprofen treatment is likely to be one of the mechanisms by which the liver reduces the higher levels of EpODEs and EpETrEs.
Collapse
Affiliation(s)
- Shuchita Tiwari
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | | | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA. .,Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
28
|
Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 2021; 10:antiox10020313. [PMID: 33669824 PMCID: PMC7923022 DOI: 10.3390/antiox10020313] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are a chemically defined group of reactive molecules derived from molecular oxygen. ROS are involved in a plethora of processes in cells in all domains of life, ranging from bacteria, plants and animals, including humans. The importance of ROS for macrophage-mediated immunity is unquestioned. Their functions comprise direct antimicrobial activity against bacteria and parasites as well as redox-regulation of immune signaling and induction of inflammasome activation. However, only a few studies have performed in-depth ROS analyses and even fewer have identified the precise redox-regulated target molecules. In this review, we will give a brief introduction to ROS and their sources in macrophages, summarize the versatile roles of ROS in direct and indirect antimicrobial immune defense, and provide an overview of commonly used ROS probes, scavengers and inhibitors.
Collapse
|
29
|
Eicosanoids. Essays Biochem 2021; 64:423-441. [PMID: 32808658 DOI: 10.1042/ebc20190083] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023]
Abstract
This article describes the pathways of eicosanoid synthesis, eicosanoid receptors, the action of eicosanoids in different physiological systems, the roles of eicosanoids in selected diseases, and the major inhibitors of eicosanoid synthesis and action. Eicosanoids are oxidised derivatives of 20-carbon polyunsaturated fatty acids (PUFAs) formed by the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (cytP450) pathways. Arachidonic acid (ARA) is the usual substrate for eicosanoid synthesis. The COX pathways form prostaglandins (PGs) and thromboxanes (TXs), the LOX pathways form leukotrienes (LTs) and lipoxins (LXs), and the cytP450 pathways form various epoxy, hydroxy and dihydroxy derivatives. Eicosanoids are highly bioactive acting on many cell types through cell membrane G-protein coupled receptors, although some eicosanoids are also ligands for nuclear receptors. Because they are rapidly catabolised, eicosanoids mainly act locally to the site of their production. Many eicosanoids have multiple, sometimes pleiotropic, effects on inflammation and immunity. The most widely studied is PGE2. Many eicosanoids have roles in the regulation of the vascular, renal, gastrointestinal and female reproductive systems. Despite their vital role in physiology, eicosanoids are often associated with disease, including inflammatory disease and cancer. Inhibitors have been developed that interfere with the synthesis or action of various eicosanoids and some of these are used in disease treatment, especially for inflammation.
Collapse
|
30
|
Liu MS, Zhao H, Xu CX, Xie PB, Wang W, Yang YY, Lee WH, Jin Y, Zhou HQ. Clinical significance of EPHX2 deregulation in prostate cancer. Asian J Androl 2021; 23:109-115. [PMID: 32687069 PMCID: PMC7831821 DOI: 10.4103/aja.aja_34_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The arachidonic acid (AA) metabolic pathway participates in various physiological processes as well as in the development of malignancies. We analyzed genomic alterations in AA metabolic enzymes in the Cancer Genome Atlas (TCGA) prostate cancer (PCa) dataset and found that the gene encoding soluble epoxide hydrolase (EPHX2) is frequently deleted in PCa. EPHX2 mRNA and protein expression in PCa was examined in multiple datasets by differential gene expression analysis and in a tissue microarray by immunohistochemistry. The expression data were analyzed in conjunction with clinicopathological variables. Both the mRNA and protein expression levels of EPHX2 were significantly decreased in tumors compared with normal prostate tissues and were inversely correlated with the Gleason grade and disease-free survival time. Furthermore, EPHX2 mRNA expression was significantly decreased in metastatic and recurrent PCa compared with localized and primary PCa, respectively. In addition, EPHX2 protein expression correlated negatively with Ki67 expression. In conclusion, EPHX2 deregulation is significantly correlated with the clinical characteristics of PCa progression and may serve as a prognostic marker for PCa.
Collapse
Affiliation(s)
- Ming-Sheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Hui Zhao
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650332, China
| | - Chen-Xiang Xu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Ping-Bo Xie
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Ying-Yu Yang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Wen-Hui Lee
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo 0379, Norway
| | - Hong-Qing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| |
Collapse
|
31
|
Luo Y, Liu JY. Pleiotropic Functions of Cytochrome P450 Monooxygenase-Derived Eicosanoids in Cancer. Front Pharmacol 2020; 11:580897. [PMID: 33192522 PMCID: PMC7658919 DOI: 10.3389/fphar.2020.580897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Eicosanoids are a class of functionally bioactive lipid mediators derived from the metabolism of long-chain polyunsaturated fatty acids (PUFAs) mediated by multiple enzymes of three main branches, including cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450s (CYPs). Recently, the role of eicosanoids derived by COXs and LOXs pathways in the control of physiological and pathological processes associated with cancer has been well documented. However, the role of CYPs-mediated eicosanoids, such as epoxyeicosatrienoic acids (EETs), epoxyoctadecenoic acids (EpOMEs), epoxyeicosatetraenoic acids (EpETEs), and epoxydocosapentaenoic acids (EDPs), as well as hydroxyeicosatetraenoic acids (HETEs), in tumorigenesis and cancer progression have not been fully elucidated yet. Here we summarized the association of polymorphisms of CYP monooxygenases with cancers and the pleiotropic functions of CYP monooxygenase-mediated eicosanoids (EETs, EpOMEs, EpETE, EDPs, and 20-HETE) in the tumorigenesis and metastasis of multiple cancers, including but not limited to colon, liver, kidney, breast and prostate cancers, which hopefully provides valuable insights into cancer therapeutics. We believe that manipulation of CYPs with or without supplement of ω-3 PUFAs to regulate eicosanoid profile is a promising strategy to prevent and/or treat cancers.
Collapse
Affiliation(s)
- Ying Luo
- Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Jun-Yan Liu
- Center for Novel Target & Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Lu J, Chen A, Ma X, Shang X, Zhang Y, Guo Y, Liu M, Wang X. Generation and Characterization of Cytochrome P450 2J3/10 CRISPR/Cas9 Knockout Rat Model. Drug Metab Dispos 2020; 48:1129-1136. [DOI: 10.1124/dmd.120.000114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
|
33
|
Smith PG, Roque D, Ching MM, Fulton A, Rao G, Reader JC. The Role of Eicosanoids in Gynecological Malignancies. Front Pharmacol 2020; 11:1233. [PMID: 32982722 PMCID: PMC7479818 DOI: 10.3389/fphar.2020.01233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.
Collapse
Affiliation(s)
- Paige G. Smith
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dana Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Fulton
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Gautam Rao
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
34
|
Luo B, Chen C, Wu X, Yan D, Chen F, Yu X, Yuan J. Cytochrome P450 2U1 Is a Novel Independent Prognostic Biomarker in Breast Cancer Patients. Front Oncol 2020; 10:1379. [PMID: 32850442 PMCID: PMC7419690 DOI: 10.3389/fonc.2020.01379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The susceptibility of breast cancer is largely affected by the metabolic capacity of breast tissue. This ability depends in part on the expression profile of cytochrome P450 (CYPs). CYPs are a superfamily of enzymes with related catalysis to endogenous and exogenous bioactive substances, including xenobiotic metabolism, drugs, and some endogenous substances metabolism which activate cells and stimulate cell signaling pathways, such as arachidonic acid metabolism, steroid metabolism, fatty acid metabolism. Interestingly, CYP was electively expressed in different tumors, and mediated the metabolic activation of multiple carcinogens and participated in the activation and deactivation of tumor therapeutic drugs. However, the biological action of cytochrome P450 2U1 (CYP2U1) in breast carcinoma is little understood so far. Methods: To investigate the biological value of CYP2U1 in breast carcinoma, we performed immunohistochemical (IHC) analysis and survival analysis based on clinico-pathological data of breast cancer. Results: IHC analysis showed that the abundance of CYP2U1 protein was inversely proportional to the state of estrogen receptor(ER) (P < 0.05), and the lower the degree of tumor differentiation, the higher the protein abundance (P < 0.001). Additionally, compared with luminal tumors, the CYP2U1 protein content was more abundant in triple negative breast cancer (P < 0.05). Importantly, survival analysis showed that higher CYP2U1 protein levels predicted poor 5-year overall survival rate (P < 0.01), 5-year disease-free survival rate (P < 0.05), and 5-year metastatic-free survival rate (P < 0.01) for the entire enrolled breast cancer patients. Conclusions: CYP2U1 is generally closely related to the clinicopathological characteristics and is also an adverse prognostic factor for breast carcinoma patients, indicating that CYP2U1 is engaged in the malignant progression of breast carcinoma.
Collapse
Affiliation(s)
- Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinxin Yu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Huang N, Wang M, Peng J, Wei H. Role of arachidonic acid-derived eicosanoids in intestinal innate immunity. Crit Rev Food Sci Nutr 2020; 61:2399-2410. [PMID: 32662287 DOI: 10.1080/10408398.2020.1777932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arachidonic acid (ARA), an n-6 essential fatty acid, plays an important role in human and animal growth and development. The ARA presents in the membrane phospholipids can be released by phospholipase A2. These free arachidonic acid molecules are then used to produce eicosanoids through three different pathways. Previous studies have demonstrated that eicosanoids have a wide range of physiological functions. Although they are generally considered to be pro-inflammatory molecules, recent advances have elucidated they have an effect on innate immunity via regulating the development, and differentiation of innate immune cells and the function of the intestinal epithelial barrier. Here, we review eicosanoids generation in intestine and their role in intestinal innate immunity, focusing on intestinal epithelial barrier, innate immune cell in lamina propria (LP) and their crosstalk.
Collapse
Affiliation(s)
- Ningning Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Miaomiao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
36
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
37
|
Wang Q, Tang Q, Zhao L, Zhang Q, Wu Y, Hu H, Liu L, Liu X, Zhu Y, Guo A, Yang X. Time serial transcriptome reveals Cyp2c29 as a key gene in hepatocellular carcinoma development. Cancer Biol Med 2020; 17:401-417. [PMID: 32587777 PMCID: PMC7309465 DOI: 10.20892/j.issn.2095-3941.2019.0335] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is a severely lethal cancer that usually originates from chronic liver injury and inflammation. Although progress on diagnosis and treatment is obvious, the cause of HCC remains unclear. In this study, we sought to determine key genes in HCC development. Methods: To identify key regulators during HCC progression, we performed transcriptome sequencing to obtain time series gene expression data from a mouse model with diethylnitrosamine-induced liver tumors and further verified gene expression and function in vitro and in vivo. Results: Among the differentially expressed genes, Cyp2c29 was continuously downregulated during HCC progression. Overexpression of Cyp2c29 suppressed NF-κB activation and proinflammatory cytokine production by increasing the production of 14,15-epoxyeicosatrienoic acid in vitro. Furthermore, overexpression of Cyp2c29 in vivo protected against liver inflammation in mouse models of liver injury induced by both acetaminophen and CCl4. Two human homologs of mouse Cyp2c29, CYP2C8 and CYP2C9, were found to be downregulated in human HCC progression, and their expression was positively correlated with overall survival in patients with HCC (significance: P = 0.046 and 0.0097, respectively). Conclusions: Collectively, through systematic analysis and verification, we determined that Cyp2c29 is a novel gene involved in liver injury and inflammation, which may be a potential biomarker for HCC prevention and prognosis determination.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Tang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lijun Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxin Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lanlan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Liu
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanhong Zhu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anyuan Guo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
38
|
Vahid F, Davoodi SH. Nutritional Factors Involved in the Etiology of Gastric Cancer: A Systematic Review. Nutr Cancer 2020; 73:376-390. [PMID: 32336147 DOI: 10.1080/01635581.2020.1756353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Since treatment options for GC are limited, the best and most effective way is to try to reduce the incidences and understanding prevention strategies. OBJECTIVE The success in prevention strategies depends on understanding etiologic mechanisms. Our goal is to identify the major nutritional risk factors for GC, and we will examine the controversial evidence. DATA SOURCES We used Pub Med, Google Scholar, Scopus, Science Direct, Elsevier, Springer, and MEDLINE databases for extracting articles. DATA EXTRACTION Human studies published in English from 1997to2018 were included. Two reviewers other than authors initially assessed abstract of 742 papers and 248papers were selected for future assessments. After full review and consideration of the inclusion and exclusion criteria, we used 85 articles. RESULTS Dietary salt is a strong independent risk for GC whereas alcohol is most likely a risk only in the presence of heavy alcohol consumption. Red meat and high-fat diet increase the risk of developing GC but fresh fruits, vegetables and certain micronutrients like selenium and vitamin C are protective. CONCLUSION Some nutrients such as selenium, vitamin C, folate, iron, and zinc are involved in the etiology of GC. On the other hand; salt, fats, alcohol, red meat, and pepper were reported to be risk factors for GC. Since the GC is a heterogeneous malignancy and multiple factors are involved in its genesis.
Collapse
Affiliation(s)
- Farhad Vahid
- Department of Nutritional Sciences, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sayed Hossein Davoodi
- Faculty of Nutrition Sciences and Food Technology, Department of Nutritional Sciences, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Clements J, Olson JM, Sanchez‐Sedillo B, Bradford B, Groves RL. Changes in emergence phenology, fatty acid composition, and xenobiotic-metabolizing enzyme expression is associated with increased insecticide resistance in the Colorado potato beetle. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21630. [PMID: 31621115 PMCID: PMC7027459 DOI: 10.1002/arch.21630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 05/31/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata) is a major agricultural pest of solanaceous crops. An effective management strategy employed by agricultural producers to control this pest species is the use of systemic insecticides. Recent emphasis has been placed on the use of neonicotinoid insecticides. Despite efforts to curb resistance development through integrated pest management approaches, resistance to neonicotinoids in L. decemlineata populations continues to increase. One contributing factor may be alterations in insect fatty acids, which have multiple metabolic functions and are associated with the synthesis of xenobiotic-metabolizing enzymes to mitigate the effects of insecticide exposure. In this study, we analyzed the fatty acid composition of L. decemlineata populations collected from an organic production field and from a commercially managed field to determine if fatty acid composition varied between the two populations. We demonstrate that a population of L. decemlineata that has a history of systemic neonicotinoid exposure (commercially managed) has a different lipid composition and differential expression of known metabolic detoxification mechanisms relative to a population that has not been exposed to neonicotinoids (organically managed). The fatty acid data indicated an upregulation of Δ6 desaturase in the commercially managed L. decemlineata population and suggest a role for eicosanoids and associated metabolic enzymes as potential modulators of insecticide resistance. We further observed a pattern of delayed emergence within the commercially managed population compared with the organically managed population. Variations in emergence timing together with specific fatty acid regulation may significantly influence the capacity of L. decemlineata to develop insecticide resistance.
Collapse
Affiliation(s)
- Justin Clements
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Jake M. Olson
- Department of Animal SciencesUniversity of Wisconsin‐MadisonMadisonWisconsin
| | | | - Benjamin Bradford
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Russell L. Groves
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| |
Collapse
|
40
|
Afshinnia F, Zeng L, Byun J, Wernisch S, Deo R, Chen J, Hamm L, Miller ER, Rhee EP, Fischer MJ, Sharma K, Feldman HI, Michailidis G, Pennathur S. Elevated lipoxygenase and cytochrome P450 products predict progression of chronic kidney disease. Nephrol Dial Transplant 2020; 35:303-312. [PMID: 30137494 PMCID: PMC7391277 DOI: 10.1093/ndt/gfy232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The clinical relevance of arachidonic acid (AA) metabolites in chronic kidney disease (CKD) progression is poorly understood. We aimed to compare the concentrations of 85 enzymatic pathway products of AA metabolism in patients with CKD who progressed to end-stage kidney disease (ESKD) versus patients who did not in a subcohort of Chronic Renal Insufficiency Cohort (CRIC) and to estimate the risk of CKD progression and major cardiovascular events by levels of AA metabolites and their link to enzymatic metabolic pathways. METHODS A total 123 patients in the CRIC study who progressed to ESKD were frequency matched with 177 nonprogressors and serum eicosanoids were quantified by mass spectrometry. We applied serum collected at patients' Year 1 visit and outcome of progression to ESKD was ascertained over the next 10 years. We used logistic regression models for risk estimation. RESULTS Baseline 15-hydroxyeicosatetraenoate (HETE) and 20-HETE levels were significantly elevated in progressors (false discovery rate Q ≤ 0.026). The median 20-HETE level was 7.6 pmol/mL [interquartile range (IQR) 4.2-14.5] in progressors and 5.4 pmol/mL (IQR 2.8-9.4) in nonprogressors (P < 0.001). In an adjusted model, only 20-HETE independently predicted CKD progression. Each 1 standard deviation increase in 20-HETE was independently associated with 1.45-fold higher odds of progression (95% confidence interval 1.07-1.95; P = 0.017). Principal components of lipoxygenase (LOX) and cytochrome P450 (CYP450) pathways were independently associated with CKD progression. CONCLUSIONS We found higher odds of CKD progression associated with higher 20-HETE, LOX and CYP450 metabolic pathways. These alterations precede CKD progression and may serve as targets for interventions aimed at halting progression.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Lixia Zeng
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Jaeman Byun
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Stefanie Wernisch
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Rajat Deo
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Chen
- Division of Nephrology and Hypertension, Tulane University, New Orleans, LA, USA
| | - Lee Hamm
- Division of Nephrology and Hypertension, Tulane University, New Orleans, LA, USA
| | - Edgar R Miller
- Department of Internal Medicine, Jones Hopkins University, Baltimore, MD, USA
| | - Eugene P Rhee
- Department of Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Fischer
- Department of Medicine, University of Illinois, Center of Innovation for Complex Chronic Healthcare, Jesse Brown VAMC, Chicago, IL, USA
| | - Kumar Sharma
- Department of Internal Medicine-Nephrology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Harold I Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
The Pharmacopea within Triatomine Salivary Glands. Trends Parasitol 2020; 36:250-265. [PMID: 32007395 DOI: 10.1016/j.pt.2019.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 12/25/2019] [Indexed: 12/30/2022]
Abstract
Triatomines are blood-feeding insects that prey on vertebrate hosts. Their saliva is largely responsible for their feeding success. The triatomine salivary content has been studied over the past decades, revealing multifunctional bioactive proteins targeting the host´s hemostasis and immune system. Recently, sequencing of salivary-gland mRNA libraries revealed increasingly complex and complete transcript databases that have been used to validate the expression of deduced proteins through proteomics. This review provides an insight into the journey of discovery and characterization of novel molecules in triatomine saliva.
Collapse
|
42
|
Association of CYP2J2 polymorphism with susceptibility to psoriasis in Turkish population: a case-control study. An Bras Dermatol 2020; 95:25-31. [PMID: 31902555 PMCID: PMC7058872 DOI: 10.1016/j.abd.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/19/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cytochrome P450 2J2 is mostly expressed in extrahepatic tissues; it metabolizes arachidonic acid to epoxyeicosatrienoic acids, with various cardio protective and anti-inflammatory effects. CYP2J2 polymorphism has been identified as a risk factor for cardiovascular diseases, but its association with psoriasis remains unknown. OBJECTIVE To evaluate CYP2J2 polymorphism as a risk factor for psoriasis in the Turkish population. METHODS There were 94 patients with psoriasis and 100 age- and sex-matched healthy controls included in the study. Detailed demographic and clinical characteristics were recorded, and Psoriasis Area and Severity Index (PASI) scores were calculated for psoriasis patients. Venous blood samples were collected from all the participants and CYP2J2 50G>T (rs890293) polymorphism was analyzed using polymerase chain reaction (PCR). RESULTS Both T allele and TT+GT genotype frequencies were increased in psoriasis vulgaris patients compared to the control group (p=0.024 and p=0.029 respectively, OR=2.82, 95% CI: 1.11-7.15) No association between CYP2J2 polymorphism and clinical features of psoriasis was identified. STUDY LIMITATIONS A limited number of patients were included in the study. CONCLUSION CYP2J2 50G>T (rs890293) polymorphism was associated with an increased risk for PsV in the Turkish population.
Collapse
|
43
|
Hoxha M, Zappacosta B. CYP-derived eicosanoids: Implications for rheumatoid arthritis. Prostaglandins Other Lipid Mediat 2019; 146:106405. [PMID: 31838196 DOI: 10.1016/j.prostaglandins.2019.106405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
Today the role of cytochrome P450 metabolites in inflammatory rheumatic disease, such as rheumatoid arthritis (RA) is still poorly understood. In this review we survey the current knowledge on cytochrome P450 metabolites in rheumatoid arthritis. The balance between CYP epoxygenase- and CYP ω- hydroxylase is correlated to the regulation of NF-κB. In RA patients synovial fluid there are higher levels of IL-6, which suppresses activities of CYP enzymes, such as CYP3A, CYP2C19, CYP2C9, and CYP1A2. EETs have anti-inflammatory effects, probably attributed to the PPARγ activation. EETs inhibit bone resorption and osteoclastogenesis, and can be considered as an innovative therapeutic strategy for rheumatoid arthritis. In reference to the CYP ɷ-hydroxylase pathway, 20-HETE is a pro-inflammatory mediator. While there is scarce information on the role of 20-HETE inhibitors and its antagonists in rheumatoid arthritis, the elevation of EETs levels by sEH inhibitors is a promising therapeutic strategy for rheumatoid arthritis patients. In addition, hybrid compounds, such as sEH inhibitors/FLAP inhibitors, or sEHI combined with NSAIDs/COXIBs are also important therapeutic target. However, studies investigating the effects of inflammation and rheumatic disease on CYP-mediated eicosanoid metabolism are necessary. Obtaining a better understanding of the complex role of CYP-derived eicosanoids in inflammatory rheumatic disease, such as rheumatoid arthritis will provide valuable insight for basic and clinical researchers investigation.
Collapse
Affiliation(s)
- Malvina Hoxha
- Catholic University Our Lady of Good Counsel, Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Rruga Dritan Hoxha, Tirana, Albania.
| | - Bruno Zappacosta
- Catholic University Our Lady of Good Counsel, Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Rruga Dritan Hoxha, Tirana, Albania
| |
Collapse
|
44
|
Rand AA, Rajamani A, Kodani SD, Harris TR, Schlatt L, Barnych B, Passerini AG, Hammock BD. Epoxyeicosatrienoic acid (EET)-stimulated angiogenesis is mediated by epoxy hydroxyeicosatrienoic acids (EHETs) formed from COX-2. J Lipid Res 2019; 60:1996-2005. [PMID: 31641036 DOI: 10.1194/jlr.m094219] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are formed from the metabolism of arachidonic acid by cytochrome P450s. EETs promote angiogenesis linked to tumor growth in various cancer models that is attenuated in vivo by cyclooxygenase 2 (COX-2) inhibitors. This study further defines a role for COX-2 in mediating endothelial EET metabolism promoting angiogenesis. Using human aortic endothelial cells (HAECs), we quantified 8,9-EET-induced tube formation and cell migration as indicators of angiogenic potential in the presence and absence of a COX-2 inducer [phorbol 12,13-dibutyrate (PDBu)]. The angiogenic response to 8,9-EET in the presence of PDBu was 3-fold that elicited by 8,9-EET stabilized with a soluble epoxide hydrolase inhibitor (t-TUCB). Contributing to this response was the COX-2 metabolite of 8,9-EET, the 11-hydroxy-8,9-EET (8,9,11-EHET), which exogenously enhanced angiogenic responses in HAECs at levels comparable to those elicited by vascular endothelial growth factor (VEGF). In contrast, the 15-hydroxy-8,9-EET isomer was also formed but inactive. The 8,9,11-EHET also promoted expression of the VEGF family of tyrosine kinase receptors. These results indicate that 8,9-EET-stimulated angiogenesis is enhanced by COX-2 metabolism in the endothelium through the formation of 8,9,11-EHET. This alternative pathway for the metabolism of 8,9-EET may be particularly important in regulating angiogenesis under circumstances in which COX-2 is induced, such as in cancer tumor growth and inflammation.
Collapse
Affiliation(s)
- Amy A Rand
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Anita Rajamani
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Sean D Kodani
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Todd R Harris
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Lukas Schlatt
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Bodgan Barnych
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA .,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| |
Collapse
|
45
|
Konieczka P, Barszcz M, Kowalczyk P, Szlis M, Jankowski J. The potential of acetylsalicylic acid and vitamin E in modulating inflammatory cascades in chickens under lipopolysaccharide-induced inflammation. Vet Res 2019; 50:65. [PMID: 31533824 PMCID: PMC6751615 DOI: 10.1186/s13567-019-0685-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
Distinct enzymes, including cyclooxygenase 1 and 2 (COX-1 and COX-2), lipoxygenase (LOXs), and cytochrome P450 monooxygenase (CYP450), produce different stress mediators and mediate inflammation in birds. Bioactive agents such as acetylsalicylic acid (ASA) and vitamin E (vE) may affect enzyme activities and could be used in poultry production to control the magnitude of acute phase inflammation. Here, we characterized COX, LOX, and CYP450 mRNA expression levels in chicken immune tissues in response to Escherichia coli lipopolysaccharide (LPS) challenge and investigated whether ASA and vE could alter gene expression. Additionally, for the first time in chickens, we evaluated oxygen consumption by platelet mitochondria as a biomarker of mitochondria function in response to ASA- and vE. LPS challenge compromised bird growth rates, but neither dietary ASA nor vE significantly ameliorated this effect; however, gradually increasing dietary vE levels were more effective than basal levels. ASA regulated arachidonic acid metabolism, providing an eicosanoid synthesis substrate, whereas gradually increasing vE levels evoked aspirin resistance during challenge. Gene expression in immune tissues was highly variable, indicating a complex regulatory network controlling inflammatory pathways. However, unlike COX-1, COX-2 and CYP450 exhibited increased mRNA expression in some cases, suggesting an initiation of novel anti-inflammatory and pro-resolving signals during challenge. Measuring oxygen consumption rate, we revealed that neither the ASA nor vE levels applied here exerted toxic effects on platelet mitochondria.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland. .,Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| |
Collapse
|
46
|
Li M, Li C, Liu WX, Liu C, Cui J, Li Q, Ni H, Yang Y, Wu C, Chen C, Zhen X, Zeng T, Zhao M, Chen L, Wu J, Zeng R, Chen L. Dysfunction of PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma. J Mol Cell Biol 2019; 9:489-503. [PMID: 28655161 PMCID: PMC5907842 DOI: 10.1093/jmcb/mjx021] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Little is known about how chronic inflammation contributes to the progression of hepatocellular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HCC and the molecular mechanisms at a network level, we analyzed the time-series proteomic data of woodchuck hepatitis virus/c-myc mice and age-matched wt-C57BL/6 mice using our dynamical network biomarker (DNB) model. DNB analysis indicated that the 5th month after birth of transgenic mice was the critical period of cancer initiation, just before the critical transition, which is consistent with clinical symptoms. Meanwhile, the DNB-associated network showed a drastic inversion of protein expression and coexpression levels before and after the critical transition. Two members of DNB, PLA2G6 and CYP2C44, along with their associated differentially expressed proteins, were found to induce dysfunction of arachidonic acid metabolism, further activate inflammatory responses through inflammatory mediator regulation of transient receptor potential channels, and finally lead to impairments of liver detoxification and malignant transition to cancer. As a c-Myc target, PLA2G6 positively correlated with c-Myc in expression, showing a trend from decreasing to increasing during carcinogenesis, with the minimal point at the critical transition or tipping point. Such trend of homologous PLA2G6 and c-Myc was also observed during human hepatocarcinogenesis, with the minimal point at high-grade dysplastic nodules (a stage just before the carcinogenesis). Our study implies that PLA2G6 might function as an oncogene like famous c-Myc during hepatocarcinogenesis, while downregulation of PLA2G6 and c-Myc could be a warning signal indicating imminent carcinogenesis.
Collapse
Affiliation(s)
- Meiyi Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Xin Liu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of sciences, Beijing, China
| | - Conghui Liu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of sciences, Beijing, China
| | - Jingru Cui
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Qingrun Li
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Hong Ni
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingcheng Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Chaochao Wu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Chunlei Chen
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Xing Zhen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Mujun Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
47
|
Apaya MK, Shiau JY, Liao GS, Liang YJ, Chen CW, Yang HC, Chu CH, Yu JC, Shyur LF. Integrated omics-based pathway analyses uncover CYP epoxygenase-associated networks as theranostic targets for metastatic triple negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:187. [PMID: 31072371 PMCID: PMC6507159 DOI: 10.1186/s13046-019-1187-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Background Current prognostic tools and targeted therapeutic approaches have limited value for metastatic triple negative breast cancer (TNBC). Building upon current knowledge, we hypothesized that epoxyeicosatrienoic acids (EETs) and related CYP450 epoxygenases may have differential roles in breast cancer signaling, and better understanding of which may uncover potential directions for molecular stratification and personalized therapy for TNBC patients. Methods We analyzed the oxylipin metabolome of paired tumors and adjacent normal mammary tissues from patients with pathologically confirmed breast cancer (N = 62). We used multivariate statistical analysis to identify important metabolite contributors and to determine the predictive power of tumor tissue metabolite clustering. In vitro functional assays using a panel of breast cancer cell lines were carried out to further confirm the crucial roles of endogenous and exogenous EETs in the metastasis transformation of TNBC cells. Deregulation of associated downstream signaling networks associated with EETs/CYPs was established using transcriptomics datasets from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). Comparative TNBC proteomics using the same tissue specimens subjected to oxylipin metabolomics analysis was used as validation set. Results Metabolite-by-metabolite comparison, tumor immunoreactivity, and gene expression analyses showed that CYP epoxygenases and arachidonic acid-epoxygenation products, EET metabolites, are strongly associated with TNBC metastasis. Notably, all the 4 EET isomers (5,6-, 8,9-, 11,12-, and 14,15-EET) was observed to profoundly drive the metastasis transformation of mesenchymal-like TNBC cells among the TNBC (basal- and mesenchymal-like), HER2-overexpressing and luminal breast cancer cell lines examined. Our pathway analysis revealed that, in hormone-positive breast cancer subtype, CYP epoxygenase overexpression is more related to immune cell-associated signaling, while EET-mediated Myc, Ras, MAPK, EGFR, HIF-1α, and NOD1/2 signaling are the molecular vulnerabilities of metastatic CYP epoxygenase-overexpressing TNBC tumors. Conclusions This study suggests that categorizing breast tumors according to their EET metabolite ratio classifiers and CYP epoxygenase profiles may be useful for prognostic and therapeutic assessment. Modulation of CYP epoxygenase and EET-mediated signaling networks may offer an effective approach for personalized treatment of breast cancer, and may be an effective intervention option for metastatic TNBC patients. Electronic supplementary material The online version of this article (10.1186/s13046-019-1187-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Karmella Apaya
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan and National Chung Hsing University, Taichung, 402, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jeng-Yuan Shiau
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Guo-Shiou Liao
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yu-Jen Liang
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hong Chu
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Jyh-Cherng Yu
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan and National Chung Hsing University, Taichung, 402, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan. .,PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
48
|
Bioanalytical insights into the association between eicosanoids and pathogenesis of hepatocellular carcinoma. Cancer Metastasis Rev 2019; 37:269-277. [PMID: 29934821 DOI: 10.1007/s10555-018-9747-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been noted that inflammatory were intimately associated with the development and progression of hepatocellular carcinoma (HCC). Eicosanoids derived from arachidonic acid play crucial roles in chronic inflammation. Accordingly, there is an intricate relationship between eicosanoids and HCC, being supported by the epidemiological, clinical, and basic science studies. Herein, we intend to provide bioanalytical insights into the role of eicosanoids in HCC progression, from cell proliferation, angiogenesis migration, to apoptosis. Also, the analytical methods and biochemistry of eicosanoids are described.
Collapse
|
49
|
Ravacci GR, Ishida R, Torrinhas RS, Sala P, Machado NM, Fonseca DC, André Baptista Canuto G, Pinto E, Nascimento V, Franco Maggi Tavares M, Sakai P, Faintuch J, Santo MA, Moura EGH, Neto RA, Logullo AF, Waitzberg DL. Potential premalignant status of gastric portion excluded after Roux en-Y gastric bypass in obese women: A pilot study. Sci Rep 2019; 9:5582. [PMID: 30944407 PMCID: PMC6447527 DOI: 10.1038/s41598-019-42082-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
We evaluated whether the excluded stomach (ES) after Roux-en-Y gastric bypass (RYGB) can represent a premalignant environment. Twenty obese women were prospectively submitted to double-balloon enteroscopy (DBE) with gastric juice and biopsy collection, before and 3 months after RYGB. We then evaluated morphological and molecular changes by combining endoscopic and histopathological analyses with an integrated untargeted metabolomics and transcriptomics multiplatform. Preoperatively, 16 women already presented with gastric histopathological alterations and an increased pH (≥4.0). These gastric abnormalities worsened after RYGB. A 90-fold increase in the concentration of bile acids was found in ES fluid, which also contained other metabolites commonly found in the intestinal environment, urine, and faeces. In addition, 135 genes were differentially expressed in ES tissue. Combined analysis of metabolic and gene expression data suggested that RYGB promoted activation of biological processes involved in local inflammation, bacteria overgrowth, and cell proliferation sustained by genes involved in carcinogenesis. Accumulated fluid in the ES appears to behave as a potential premalignant environment due to worsening inflammation and changing gene expression patterns that are favorable to the development of cancer. Considering that ES may remain for the rest of the patient’s life, long-term ES monitoring is therefore recommended for patients undergoing RYGB.
Collapse
Affiliation(s)
- Graziela Rosa Ravacci
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Robson Ishida
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Suzana Torrinhas
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Priscila Sala
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Natasha Mendonça Machado
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Danielle Cristina Fonseca
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele André Baptista Canuto
- Departamento de Quimica Analitica, Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA, Brazil.,Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ernani Pinto
- Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Paulo Sakai
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Joel Faintuch
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marco Aurelio Santo
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | - Dan Linetzky Waitzberg
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
50
|
Abstract
Angiogenesis and inflammation are hallmarks of cancer. Arachidonic acid and other polyunsaturated fatty acids (PUFAs) are primarily metabolized by three distinct enzymatic systems initiated by cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes (CYP) to generate bioactive eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids. As some of the PUFA metabolites playing essential roles in inflammatory processes, these pathways have been widely studied as therapeutic targets of inflammation. Because of their anti-inflammatory effects, these pathways were also proposed as anti-cancer targets. However, although the eicosanoids were linked to endothelial cell proliferation and angiogenesis almost two decades ago, it is only recently PUFA metabolites, especially those generated by CYP enzymes and the soluble epoxide hydrolase (sEH), have been recognized as important signaling mediators in physiological and pathological angiogenesis. Despite the fact that tumor growth and invasion are heavily dependent on inner-tumor angiogenesis and influenced by vascular stability, the role played by PUFA metabolites in tumor angiogenesis and vessel integrity has been largely overlooked. This review highlights current knowledge on the function of PUFA metabolites generated by the CYP/sEH pathway in angiogenesis and vascular stability as well as their potential involvement in cancer development.
Collapse
|