1
|
Targeting of Glucose Transport and the NAD Pathway in Neuroendocrine Tumor (NET) Cells Reveals New Treatment Options. Cancers (Basel) 2023; 15:cancers15051415. [PMID: 36900207 PMCID: PMC10001048 DOI: 10.3390/cancers15051415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: the potency of drugs that interfere with glucose metabolism, i.e., glucose transporters (GLUT) and nicotinamide phosphoribosyltransferase (NAMPT) was analyzed in neuroendocrine tumor (NET, BON-1, and QPG-1 cells) and small cell lung cancer (SCLC, GLC-2, and GLC-36 cells) tumor cell lines. (2) Methods: the proliferation and survival rate of tumor cells was significantly affected by the GLUT-inhibitors fasentin and WZB1127, as well as by the NAMPT inhibitors GMX1778 and STF-31. (3) Results: none of the NET cell lines that were treated with NAMPT inhibitors could be rescued with nicotinic acid (usage of the Preiss-Handler salvage pathway), although NAPRT expression could be detected in two NET cell lines. We finally analyzed the specificity of GMX1778 and STF-31 in NET cells in glucose uptake experiments. As previously shown for STF-31 in a panel NET-excluding tumor cell lines, both drugs specifically inhibited glucose uptake at higher (50 μM), but not at lower (5 μM) concentrations. (4) Conclusions: our data suggest that GLUT and especially NAMPT inhibitors are potential candidates for the treatment of NET tumors.
Collapse
|
2
|
Escobar KM, Vicente-Villardon JL, Villacís Gonzalez RE, Castillo Cordova PH, Sánchez Rodríguez JM, De la Cruz-Velez M, Siteneski A. Neuroendocrine Tumors: An Analysis of Prevalence, Incidence, and Survival in a Hospital-Based Study in Ecuador. Healthcare (Basel) 2022; 10:1569. [PMID: 36011226 PMCID: PMC9408119 DOI: 10.3390/healthcare10081569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroendocrine tumors (NETs) represent a heterogeneous malignancy group of neoplasms, with a limited amount of data from Latin America. Thus, this observational study aimed to provide data about the prevalence, incidence, and survival rates for NET in Ecuadorian hospitals. The study was conducted using data from the Society for the Fight Against Cancer (SOLCA). We evaluated patients with NETs (2000−2020) using the HJ-Biplot method and Cox proportional hazards. Annual age-adjusted incidence and limited-duration prevalence in multivariable analyses as well as hazard ratios (HRs) for mortality and survival were obtained. In the years 2000−2020, the age-adjusted incidence rate increased by 9-fold in the stomach and by 7-fold in the breast. The incidence rates were 1.38 per 100,000 persons in the lung and at 1.79 per 100,000 persons in gastroenteropancreatic sites (rectum, stomach, and pancreas). The prevalence increased from 0.0027% in 2000 to 0.0736% in 2019 and 0.0245% in 2020. Overall survival was worse for metastatic NETs (HR, 4.061; 95% CI, 1.932−8.540; p < 0.001) and advanced local NETs (HR, 2.348; 95% CI, 1.007−5.475 p < 0.048) than for localized NETs. In conclusion, the NET incidence increased in the last 20 years and survival decreased over time, especially for metastatic tumors in the pancreas and the nostril.
Collapse
Affiliation(s)
- Karime Montes Escobar
- Department of Mathematics and Statistics, Institute of Basic Sciences, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Statistics Department, University of Salamanca, 37007 Salamanca, Spain
| | | | | | | | - Johanna Mabel Sánchez Rodríguez
- Facultad de Medicina, Universidad Laica Eloi Alfaro de Manabí, Manta 130203, Ecuador
- Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabi, Jipijapa 130650, Ecuador
| | - Melina De la Cruz-Velez
- Faculty of Health Sciences, Medicine Career, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Aline Siteneski
- Research Institute, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| |
Collapse
|
3
|
Yozgat A, Kekilli M, Altay M. Time to give up traditional methods for the management of gastrointestinal neuroendocrine tumours. World J Clin Cases 2021; 9:8627-8646. [PMID: 34734042 PMCID: PMC8546836 DOI: 10.12998/wjcc.v9.i29.8627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine tumors (NETs) are a rare and heterogeneous disease group and constitute 0.5% of all malignancies. The annual incidence of NETs is increasing worldwide. The reason for the increase in the incidence of NETs is the detection of benign lesions, incidental detection due to the highest use of endoscopic and imaging procedures, and higher recognition rates of pathologists. There have been exciting developments regarding NET biology in recent years. Among these, first of all, somatostatin receptors and downstream pathways in neuroendocrine cells have been found to be important regulatory mechanisms for protein synthesis, hormone secretion, and proliferation. Subsequently, activation of the mammalian target of rapamycin pathway was found to be an important mechanism in angiogenesis and tumor survival and cell metabolism. Finally, the importance of proangiogenic factors (platelet-derived growth factor, vascular endothelial growth factor, fibroblastic growth factor, angiopoietin, and semaphorins) in the progression of NET has been determined. Using the combination of biomarkers and imaging methods allows early evaluation of the appropriateness of treatment and response to treatment.
Collapse
Affiliation(s)
- Ahmet Yozgat
- Department of Gastroenterology, Ufuk University, Ankara, 06510, Turkey
| | - Murat Kekilli
- Department of Gastroenterology, Gazi University, Ankara 06560, Turkey
| | - Mustafa Altay
- Department of Endocrinology and Metabolism, University of Health Sciences Turkey, Keçiören Health Administration and Research Center, Ankara 06190, Turkey
| |
Collapse
|
4
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Capodanno Y, Buishand FO, Pang LY, Kirpensteijn J, Mol JA, Argyle DJ. Notch pathway inhibition targets chemoresistant insulinoma cancer stem cells. Endocr Relat Cancer 2018; 25:131-144. [PMID: 29175872 DOI: 10.1530/erc-17-0415] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
Insulinomas (INS) are the most common neuroendocrine pancreatic tumours in humans and dogs. The long-term prognosis for malignant INS is still poor due to a low success rate of the current treatment modalities, particularly chemotherapy. A better understanding of the molecular processes underlying the development and progression of INS is required to develop novel targeted therapies. Cancer stem cells (CSCs) are thought to be critical for the engraftment and chemoresistance of many tumours, including INS. This study was aimed to characterise and target INS CSCs in order to develop novel targeted therapies. Highly invasive and tumourigenic human and canine INS CSC-like cells were successfully isolated. These cells expressed stem cell markers (OCT4, SOX9, SOX2, CD133 and CD34), exhibited greater resistance to 5-fluorouracil (5-FU) and demonstrated a more invasive and tumourigenic phenotype in vivo compared to bulk INS cells. Here, we demonstrated that Notch-signalling-related genes (NOTCH2 and HES1) were overexpressed in INS CSC-like cells. Protein analysis showed an active NOTCH2-HES1 signalling in INS cell lines, especially in cells resistant to 5-FU. Inhibition of the Notch pathway, using a gamma secretase inhibitor (GSI), enhanced the sensitivity of INS CSC-like cells to 5-FU. When used in combination GSI and 5-FU, the clonogenicity in vitro and the tumourigenicity in vivo of INS CSC-like cells were significantly reduced. These findings suggested that the combined strategy of Notch signalling inhibition and 5-FU synergistically attenuated enriched INS CSC populations, providing a rationale for future therapeutic exploitation.
Collapse
Affiliation(s)
- Y Capodanno
- Royal (Dick) School of Veterinary Studies and The Roslin InstituteUniversity of Edinburgh, Midlothian, UK
| | - F O Buishand
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - L Y Pang
- Royal (Dick) School of Veterinary Studies and The Roslin InstituteUniversity of Edinburgh, Midlothian, UK
| | | | - J A Mol
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - D J Argyle
- Royal (Dick) School of Veterinary Studies and The Roslin InstituteUniversity of Edinburgh, Midlothian, UK
| |
Collapse
|
6
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
7
|
Schimmack S, Lawrence B, Kenney B, Schmitz-Winnenthal H, Modlin IM, Kidd M. Minichromosome Maintenance Expression Defines Slow-Growing Gastroenteropancreatic Neuroendocrine Neoplasms. Transl Oncol 2016; 9:411-418. [PMID: 27751345 PMCID: PMC5067926 DOI: 10.1016/j.tranon.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Small intestinal neuroendocrine neoplasm (SI-NEN) proliferation is quantified by Ki67 measurements which capture G1-G2M phases of the cell cycle. G0 and early G1 phases, typical of slow-growing cells, can be detected by minichromosome maintenance protein (MCM) expression. We hypothesized that these replication licensing markers may provide clinically relevant information to augment Ki67 in low-grade neuroendocrine neoplasia. METHODS: Immunohistochemical staining (IHC), Western blot analysis, quantitative polymerase chain reaction, and copy number variations of MCM2, MCM3, and Ki67 were undertaken in SI-NENs (n = 22). MCM and Ki67 expression was compared by Kaplan-Meier survival analysis (tissue microarray, independent set [n = 55]). Forty-three pancreatic NENs and 14 normal tissues were included as controls. RESULTS: In SI-NENs, MCM2 (mean: 21.2%: range: 16%-25%) and MCM3 (28.7%: 22%-34%) were detected in significantly more cells than Ki67 (2.3%: 0%-7%, P < .01). MCM2 mRNA correlated with Ki67 IHC (P < .05). MCM3 protein expression was higher in metastases (38-fold) than in normal small intestine (P = .06) and was largely absent in normal neuroendocrine cells. There was considerable variation at the MCM copy number level (0-4 copies). MCM3 expression in proliferating cells significantly predicted overall survival (P < .002). Combinations of Ki67 and MCM2/3 in algorithms differentiated low and higher proliferative lesions (overall survival: 12 vs 6.1 years, P = .06). MCM expression was not informative in pancreatic NENs. CONCLUSION: MCMs are expressed in a higher proportion of NEN cells than Ki67 in slow-growing small intestinal lesions and correlate with survival. Assessment can be used to augment Ki67 to improve prognostic classification in these low-grade tumors.
Collapse
Affiliation(s)
- Simon Schimmack
- Gastrointestinal Pathobiology Research Group, Department of Gastrointestinal Surgery, Yale University School of Medicine, PO Box 208602, New Haven, CT, USA; University Hospital of General, Visceral and Transplantation-Surgery of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Ben Lawrence
- Gastrointestinal Pathobiology Research Group, Department of Gastrointestinal Surgery, Yale University School of Medicine, PO Box 208602, New Haven, CT, USA.
| | - Barton Kenney
- Department of Pathology, Division of Gastrointestinal and Hepatic Pathology, Yale University School of Medicine, PO Box 208023, New Haven, CT, USA.
| | - Hubertus Schmitz-Winnenthal
- University Hospital of General, Visceral and Transplantation-Surgery of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Irvin M Modlin
- Gastrointestinal Pathobiology Research Group, Department of Gastrointestinal Surgery, Yale University School of Medicine, PO Box 208602, New Haven, CT, USA.
| | - Mark Kidd
- Gastrointestinal Pathobiology Research Group, Department of Gastrointestinal Surgery, Yale University School of Medicine, PO Box 208602, New Haven, CT, USA.
| |
Collapse
|
8
|
Crona J, Skogseid B. GEP- NETS UPDATE: Genetics of neuroendocrine tumors. Eur J Endocrinol 2016; 174:R275-90. [PMID: 27165966 DOI: 10.1530/eje-15-0972] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022]
Abstract
Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms, arising from neuroendocrine cells that are dispersed throughout the body. Around 20% of NETs occur in the context of a genetic syndrome. Today there are at least ten recognized NET syndromes. This includes the classical syndromes: multiple endocrine neoplasias types 1 and 2, and von Hippel-Lindau and neurofibromatosis type 1. Additional susceptibility genes associated with a smaller fraction of NETs have also been identified. Recognizing genetic susceptibility has proved essential both to provide genetic counseling and to give the best preventive care. In this review we will also discuss the knowledge of somatic genetic alterations in NETs. At least 24 genes have been implicated as drivers of neuroendocrine tumorigenesis, and the overall rates of genomic instability are relatively low. Genetic intra-tumoral, as well as inter-tumoral heterogeneity in the same patient, have also been identified. Together these data point towards the common pathways in NET evolution, separating early from late disease drivers. Although knowledge of specific mutations in NETs has limited impact on actual patient management, we predict that in the near future genomic profiling of tumors will be included in the clinical arsenal for diagnostics, prognostics and therapeutic decisions.
Collapse
Affiliation(s)
- Joakim Crona
- Department of Medical SciencesUppsala University, Rudbecklaboratoriet, Dag hammarskjölds väg 20, 75185 Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical SciencesUppsala University, Rudbecklaboratoriet, Dag hammarskjölds väg 20, 75185 Uppsala, Sweden
| |
Collapse
|
9
|
Buishand FO, Arkesteijn GJA, Feenstra LR, Oorsprong CWD, Mestemaker M, Starke A, Speel EJM, Kirpensteijn J, Mol JA. Identification of CD90 as Putative Cancer Stem Cell Marker and Therapeutic Target in Insulinomas. Stem Cells Dev 2016; 25:826-35. [PMID: 27049037 DOI: 10.1089/scd.2016.0032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The long-term prognosis after surgical resection of malignant insulinoma (INS) is poor. Novel adjuvant therapies, specifically targeting cancer stem cells (CSCs), are warranted. Therefore, the goal of this study was to characterize and target putative INS CSCs. Using fluorescence-activated cell sorting, human INS cell line CM and pancreatic carcinoid cell line BON1 were screened for the presence of stem cell-associated markers. CD90, CD166, and GD2 were identified as potential CSC markers. Only CD90(+) INS cells had an increased tumor-initiating potential in athymic nude mice. Anti-CD90 monoclonal antibodies decreased the viability and metastatic potential of injected cells in a zebrafish embryo INS xenograft model. Primary INS stained positive for CD90 by immunohistochemistry, however also intratumoral fibroblasts and vascular endothelium showed positive staining. The results of this study suggest that anti-CD90 monoclonals form a potential novel adjuvant therapeutic modality by targeting either INS cells directly, or by targeting the INS microenvironment.
Collapse
Affiliation(s)
- Floryne O Buishand
- 1 Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University , Utrecht, The Netherlands
| | - Ger J A Arkesteijn
- 2 Flow Cytometry Unit, Faculty of Veterinary Medicine, Division of Immunology, Utrecht University , Utrecht, The Netherlands
| | - Laurien R Feenstra
- 1 Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University , Utrecht, The Netherlands
| | - Claire W D Oorsprong
- 1 Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University , Utrecht, The Netherlands
| | - Margiet Mestemaker
- 1 Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University , Utrecht, The Netherlands
| | - Achim Starke
- 3 Department of Surgery, Lukas Krankenhaus GmbH, Neuss and Insulinoma and GEP-NET Tumor Center Neuss-Dusseldorf , Neuss, Germany
| | - Ernst-Jan M Speel
- 4 Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Jolle Kirpensteijn
- 1 Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University , Utrecht, The Netherlands
| | - Jan A Mol
- 1 Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University , Utrecht, The Netherlands
| |
Collapse
|
10
|
Crona J, Norlén O, Antonodimitrakis P, Welin S, Stålberg P, Eriksson B. Multiple and Secondary Hormone Secretion in Patients With Metastatic Pancreatic Neuroendocrine Tumours. J Clin Endocrinol Metab 2016; 101:445-52. [PMID: 26672633 DOI: 10.1210/jc.2015-2436] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT As a group, neuroendocrine tumors (NETs) secrete many different peptide hormones, yet heretofore each NET patient is typically thought to produce at most one hormone that causes a distinct hormonal syndrome. A minority of patients have multiple hormones at diagnosis and may also develop secondary hormone secretion at a later stage. OBJECTIVES The objectives of the study were to determine the frequency and to describe the impact of multiple and secondary hormone secretion in sporadic gasteroenteropancreatic NET patients. DESIGN, SETTING, AND PARTICIPANTS This was a retrospective analysis of patients (n = 972) with gasteroenteropancreatic NET treated at Uppsala University Hospital, Uppsala, Sweden. Patients with the secretion of multiple hormones at diagnosis and/or those developing secondary hormone secretion during the disease course were identified and studied in further detail. RESULTS In pancreatic NETs (PNETs), a total of 19 of 323 patients (6%) had secretion of multiple hormones at diagnosis, and 14 of 323 (4%) had secondary changes during the disease course. These phenomena occurred exclusively in patients with an advanced disease stage, and secondary hormones were detected in a close time span with progressive disease. Patients with secondary insulin hypersecretion had increased morbidity as well as reduced survival (P < .002). In contrast, multiple and secondary hormone secretion was rarely seen in NETs of the small intestine with 0 and 1 of 603 cases, respectively. CONCLUSION Diversity of PNET hormone secretion either at diagnosis or during the disease course occurred in a minority of patients (9.3%). These phenomena had a major impact on patient outcome both through increased morbidity and mortality. Our results support that patients with metastatic PNETs should be monitored for clinical symptoms of secondary hormone secretion during the disease course.
Collapse
Affiliation(s)
- Joakim Crona
- Departments of Medical Sciences (J.C., P.A., S.W., B.E.) and Surgical Sciences (O.N., P.S.), Uppsala University, 75185 Uppsala, Sweden
| | - Olov Norlén
- Departments of Medical Sciences (J.C., P.A., S.W., B.E.) and Surgical Sciences (O.N., P.S.), Uppsala University, 75185 Uppsala, Sweden
| | - Pantelis Antonodimitrakis
- Departments of Medical Sciences (J.C., P.A., S.W., B.E.) and Surgical Sciences (O.N., P.S.), Uppsala University, 75185 Uppsala, Sweden
| | - Staffan Welin
- Departments of Medical Sciences (J.C., P.A., S.W., B.E.) and Surgical Sciences (O.N., P.S.), Uppsala University, 75185 Uppsala, Sweden
| | - Peter Stålberg
- Departments of Medical Sciences (J.C., P.A., S.W., B.E.) and Surgical Sciences (O.N., P.S.), Uppsala University, 75185 Uppsala, Sweden
| | - Barbro Eriksson
- Departments of Medical Sciences (J.C., P.A., S.W., B.E.) and Surgical Sciences (O.N., P.S.), Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
11
|
Perkins J, Boland P, Cohen SJ, Olszanski AJ, Zhou Y, Engstrom P, Astsaturov I. Successful imatinib therapy for neuroendocrine carcinoma with activating Kit mutation: a case study. J Natl Compr Canc Netw 2015; 12:847-52. [PMID: 24925195 DOI: 10.6004/jnccn.2014.0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuroendocrine tumors (NET) and gastrointestinal stromal tumors (GIST) are believed to originate from the cells of Cajal that are randomly dispersed along the aerodigestive tract. Despite their distinct morphologic appearance, NET and GIST may share oncogenic mechanisms. Often presenting in the metastatic setting, treatment options for patients with NET are limited. This case report presents a patient with refractory metastatic NET that did not respond conventional chemotherapy. The patient was treated with a KIF11 inhibitor in a phase I clinical trial and experienced a prolonged and clinically meaningful partial response. On progression at 20 months, the patient's tumor was sequenced to reveal a KIT exon 11 mutation. Institution of imatinib therapy achieved a rapid and sustained antitumor effect with profound clinical benefit. Despite previously reported KIT expression in NET, this is the first documented case of an activating KIT mutation in NET and of successful treatment with both a KIF11 inhibitor and imatinib, each of which was elucidated through molecular profiling of the patient's tumor. Imatinib may be a valuable therapy in NET harboring activating KIT mutations.
Collapse
Affiliation(s)
- James Perkins
- From the Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Division of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York; and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Patrick Boland
- From the Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Division of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York; and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Steven J Cohen
- From the Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Division of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York; and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anthony J Olszanski
- From the Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Division of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York; and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- From the Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Division of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York; and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Paul Engstrom
- From the Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Division of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York; and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Igor Astsaturov
- From the Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Division of Medical Oncology, Roswell Park Cancer Institute, Buffalo, New York; and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
De Dosso S, Grande E, Barriuso J, Castellano D, Tabernero J, Capdevila J. The targeted therapy revolution in neuroendocrine tumors: in search of biomarkers for patient selection and response evaluation. Cancer Metastasis Rev 2014; 32:465-77. [PMID: 23589060 DOI: 10.1007/s10555-013-9421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The molecular events of tumorigenesis in neuroendocrine tumors are poorly understood. Understanding of the molecular alterations will lead to the identification of molecular markers, providing new targets for therapeutics. The purpose of this review was to critically analyze the genetic abnormalities in neuroendocrine tumors, with the aim of identifying biomarkers that indicate a response to agents developed against these targets and to serve as an understanding for the combinations of different active compounds. Human epidermal growth factor receptor 1/2 (EGFR and HER2), vascular endothelial growth factor receptors, hepatocyte growth factor receptor (c-Met), platelet-derived growth factor receptor, insulin-like growth factor, phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, and heat shock proteins are all interesting candidate biomarkers with involvement in carcinogenesis and tumor evolution of several neoplasms, including neuroendocrine tumors. Some of them have already been evaluated both as targets and also as biomarkers in clinical trials conducted in advanced neuroendocrine tumor settings, and others should encourage further investigations into innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Sara De Dosso
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Krausch M, Kroepil F, Lehwald N, Lachenmayer A, Schott M, Anlauf M, Cupisti K, Knoefel WT, Raffel A. Notch 1 tumor expression is lacking in highly proliferative pancreatic neuroendocrine tumors. Endocrine 2013; 44:182-6. [PMID: 23225326 DOI: 10.1007/s12020-012-9850-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/28/2012] [Indexed: 12/22/2022]
Abstract
To date, very little is known about the development of benign organic hyperinsulinism and its metastatic potential. Typical morphologic, biochemical, or genetic differentiations for benign or malign tumor course of insulinomas do not exist. As signaling pathways may affect pancreatic cancer development and the maintenance of the neoplastic phenotype, the purpose of this study was to examine the role of Notch1 expression in organic hyperinsulinism. We examined 32 well-differentiated pancreatic endocrine tumors (wd PET); 11 wd PET of unknown behavior (wd PET ub); and 15 wd pancreatic endocrine cancer (wd PEC) for Notch1 expression by immunohistochemistry. Demographic data, clinical data, and follow-up of all patients were analyzed. Islets of the Langerhans show the strongest Notch1 staining in nearly 90 %. Positive Notch1 staining was absent in the acinar of the pancreas. In patients with a wd PET more than every second tumor (56.3 %/n = 18/32) demonstrated a negative Notch1 staining. The other 14 patients were positive for Notch1. Tumors of unknown behavior (wd PET ub) and malignant insulinomas had no signs of Notch expression in contrast to benign insulinomas. Considering the clinical and histomorphological tumor behavior, no correlation between Notch1 expression and clinical data was found. The missing Notch expression in the malignant tumor course might be used as a potential predictive marker, but further studies are needed to investigate the underlying molecular mechanism.
Collapse
Affiliation(s)
- Markus Krausch
- Department of General, Visceral and Pediatric Surgery, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|