1
|
Kurup AJ, Bailet F, Fürthauer M. Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry. Nat Commun 2024; 15:6547. [PMID: 39095343 PMCID: PMC11297164 DOI: 10.1038/s41467-024-50868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Myosin1D (Myo1D) has recently emerged as a conserved regulator of animal Left-Right (LR) asymmetry that governs the morphogenesis of the vertebrate central LR Organizer (LRO). In addition to Myo1D, the zebrafish genome encodes the closely related Myo1G. Here we show that while Myo1G also controls LR asymmetry, it does so through an entirely different mechanism. Myo1G promotes the Nodal-mediated transfer of laterality information from the LRO to target tissues. At the cellular level, Myo1G is associated with endosomes positive for the TGFβ signaling adapter SARA. myo1g mutants have fewer SARA-positive Activin receptor endosomes and a reduced responsiveness to Nodal ligands that results in a delay of left-sided Nodal propagation and tissue-specific laterality defects in organs that are most distant from the LRO. Additionally, Myo1G promotes signaling by different Nodal ligands in specific biological contexts. Our findings therefore identify Myo1G as a context-dependent regulator of the Nodal signaling pathway.
Collapse
|
2
|
Tang S, Chen F, Zhang J, Chang F, Lv Z, Li K, Li S, Hu Y, Yeh S. LncRNA-SERB promotes vasculogenic mimicry (VM) formation and tumor metastasis in renal cell carcinoma. J Biol Chem 2024; 300:107297. [PMID: 38641065 PMCID: PMC11126803 DOI: 10.1016/j.jbc.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 04/21/2024] Open
Abstract
A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERβ can affect the VM formation in RCC, it is unclear which factor could upregulate ERβ. This is the first study to show LncRNA-SERB can be the upstream regulator of ERβ to control RCC progression. Mechanistically, LncRNA-SERB may increase ERβ via binding to the promoter area, and ERβ functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERβ/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/genetics
- Animals
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Gene Expression Regulation, Neoplastic
- Estrogen Receptor beta/metabolism
- Estrogen Receptor beta/genetics
- Cell Line, Tumor
- Zinc Finger E-box-Binding Homeobox 1/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Neoplasm Metastasis
- Mice, Nude
- Male
- Female
- Neoplasm Invasiveness
Collapse
Affiliation(s)
- Shuai Tang
- College of Medicine, Nankai University, Tianjin, China; Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China; Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Fangmin Chen
- College of Medicine, Nankai University, Tianjin, China; Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Jianghui Zhang
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Fan Chang
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Zheng Lv
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Kai Li
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Song Li
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yixi Hu
- Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Shuyuan Yeh
- Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA; The Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Dutriaux A, Diazzi S, Bresesti C, Hardouin S, Deshayes F, Collignon J, Flagiello D. LADON, a Natural Antisense Transcript of NODAL, Promotes Tumour Progression and Metastasis in Melanoma. Noncoding RNA 2023; 9:71. [PMID: 37987367 PMCID: PMC10661258 DOI: 10.3390/ncrna9060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
The TGFβ family member NODAL, repeatedly required during embryonic development, has also been associated with tumour progression. Our aim was to clarify the controversy surrounding its involvement in melanoma tumour progression. We found that the deletion of the NODAL exon 2 in a metastatic melanoma cell line impairs its ability to form tumours and colonize distant tissues. However, we show that this phenotype does not result from the absence of NODAL, but from a defect in the expression of a natural antisense transcript of NODAL, here called LADON. We show that LADON expression is specifically activated in metastatic melanoma cell lines, that its transcript is packaged in exosomes secreted by melanoma cells, and that, via its differential impact on the expression of oncogenes and tumour suppressors, it promotes the mesenchymal to amoeboid transition that is critical for melanoma cell invasiveness. LADON is, therefore, a new player in the regulatory network governing tumour progression in melanoma and possibly in other types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Jérôme Collignon
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France; (A.D.); (S.D.)
| | - Domenico Flagiello
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France; (A.D.); (S.D.)
| |
Collapse
|
4
|
Gupta J, Tayyib NA, Jalil AT, Hlail SH, Zabibah RS, Vokhidov UN, Alsaikhan F, Ramaiah P, Chinnasamy L, Kadhim MM. Angiogenesis and prostate cancer: MicroRNAs comes into view. Pathol Res Pract 2023; 248:154591. [PMID: 37343381 DOI: 10.1016/j.prp.2023.154591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/23/2023]
Abstract
Angiogenesis, the formation of new blood vessels, is an important stage in the growth of cancer. Extracellular matrix, endothelial cells, and soluble substances must be carefully coordinated during the multistep procedure of angiogenesis. Inducers and inhibitors have been found to control pretty much every phase. In addition to benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and angiogenesis have a critical role in the initiation and progression of prostate cancer. MicroRNA (miRNA) is endogenous, short, non-coding RNA molecules of almost 22 nucleotides play a role in regulating cellular processes and regulating several genes' expression. Through controlling endothelial migration, differentiation, death, and cell proliferation, miRNAs have a significant function in angiogenesis. A number of pathological and physiological processes, particularly prostate cancer's emergence, depend on the regulation of angiogenesis. Investigating the functions played with miRNAs in angiogenesis is crucial because it might result in the creation of novel prostate cancer therapies that entail regulating angiogenesis. The function of several miRNAs and its targeting genes engaged in cancer of the prostate angiogenesis will be reviewed in this review in light of the most recent developments. The potential clinical utility of miRNAs potentially a novel therapeutic targets will also be explored, as well as their capacity to control prostate cancer angiogenesis and the underlying mechanisms.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India.
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla 51001, Babylon, Iraq.
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ulug'bek N Vokhidov
- Department of ENT Diseases, Head of the Department of Quality Education, Tashkent State Dental Institute, Tashkent, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| |
Collapse
|
5
|
Wu T, Wan J, Qu X, Xia K, Wang F, Zhang Z, Yang M, Wu X, Gao R, Yuan X, Fang L, Chen C, Yin L. Nodal promotes colorectal cancer survival and metastasis through regulating SCD1-mediated ferroptosis resistance. Cell Death Dis 2023; 14:229. [PMID: 37002201 PMCID: PMC10066180 DOI: 10.1038/s41419-023-05756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Re-expression of an embryonic morphogen, Nodal, has been seen in several types of malignant tumours. By far, studies about Nodal's role in colorectal cancer (CRC) remain limited. Ferroptosis is essential for CRC progression, which is caused by cellular redox imbalance and characterized by lipid peroxidation. Herein, we observed that Nodal enhanced CRC cell's proliferative rate, motility, invasiveness, and epithelial-mesenchymal transition (EMT) in vivo and in vitro. Notably, Nodal overexpression induced monounsaturated fatty acids synthesis and increased the lipid unsaturation level. Nodal knockdown resulted in increased CRC cell lipid peroxidation. Stearoyl-coenzyme A desaturase 1 (SCD1) inhibition at least partially abolished the resistance of Nodal-overexpressing cells to RSL3-induced ferroptosis. Mechanistically, SCD1 was transcriptionally up-regulated by Smad2/3 pathway activation in response to Nodal overexpression. Significant Nodal and SCD1 up-regulation were observed in CRC tissues and were associated with CRC metastasis and poor clinical outcomes. Furthermore, bovine serum albumin nanoparticles/si-Nodal nanocomplexes targeting Nodal had anti-tumour effects on CRC progression and metastasis. This research elucidated the role of Nodal in CRC development and revealed a potential gene-based therapeutic strategy targeting Nodal for improving CRC treatment.
Collapse
Affiliation(s)
- Tianqi Wu
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Xiao Qu
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Kai Xia
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fangtao Wang
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zichao Zhang
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Muqing Yang
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaocai Wu
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Renyuan Gao
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaoqi Yuan
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chunqiu Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Lu Yin
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
6
|
Lavia P, Sciamanna I, Spadafora C. An Epigenetic LINE-1-Based Mechanism in Cancer. Int J Mol Sci 2022; 23:14610. [PMID: 36498938 PMCID: PMC9738484 DOI: 10.3390/ijms232314610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
In the last fifty years, large efforts have been deployed in basic research, clinical oncology, and clinical trials, yielding an enormous amount of information regarding the molecular mechanisms of cancer and the design of effective therapies. The knowledge that has accumulated underpins the complexity, multifactoriality, and heterogeneity of cancer, disclosing novel landscapes in cancer biology with a key role of genome plasticity. Here, we propose that cancer onset and progression are determined by a stress-responsive epigenetic mechanism, resulting from the convergence of upregulation of LINE-1 (long interspersed nuclear element 1), the largest family of human retrotransposons, genome damage, nuclear lamina fragmentation, chromatin remodeling, genome reprogramming, and autophagy activation. The upregulated expression of LINE-1 retrotransposons and their protein products plays a key role in these processes, yielding an increased plasticity of the nuclear architecture with the ensuing reprogramming of global gene expression, including the reactivation of embryonic transcription profiles. Cancer phenotypes would thus emerge as a consequence of the unscheduled reactivation of embryonic gene expression patterns in an inappropriate context, triggering de-differentiation and aberrant proliferation in differentiated cells. Depending on the intensity of the stressing stimuli and the level of LINE-1 response, diverse degrees of malignity would be generated.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Sciamanna
- Center for Animal Research and Welfare (BENA), ISS Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
| |
Collapse
|
7
|
Bauer‐Büntzel C, Kück F, Kretschmer L. Left‐sided excess in the laterality of cutaneous melanocytic nevi and melanomas. J Dtsch Dermatol Ges 2022; 20:1315-1323. [DOI: 10.1111/ddg.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Christoph Bauer‐Büntzel
- Department of Dermatology Venereology and Allergology University Medical Center Göttingen Germany
- Department of Nephrology and Hypertension Center for Internal Medicine and Medical Clinic III Klinikum Fulda Fulda Germany
| | - Fabian Kück
- Department of Medical Statistics Core Facility Medical Biometry and Statistical Bioinformatics University Medical Center Göttingen Germany
| | - Lutz Kretschmer
- Department of Dermatology Venereology and Allergology University Medical Center Göttingen Germany
| |
Collapse
|
8
|
Bauer‐Büntzel C, Kück F, Kretschmer L. Linksüberhang in der Verteilung von melanozytären Nävi und Melanomen. J Dtsch Dermatol Ges 2022; 20:1315-1324. [DOI: 10.1111/ddg.14864_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Christoph Bauer‐Büntzel
- Klinik für Dermatologie Venerologie und Allergologie Universitätsmedizin Göttingen
- Medizinische Klinik III (Nephrologie) Klinikum Fulda
| | - Fabian Kück
- Institut für Medizinische Statistik Serviceeinheit Medizinische Biometrie und Statistische Bioinformatik Universitätsmedizin Göttingen
| | - Lutz Kretschmer
- Klinik für Dermatologie Venerologie und Allergologie Universitätsmedizin Göttingen
| |
Collapse
|
9
|
Recurrent NOMO1 Gene Deletion Is a Potential Clinical Marker in Early-Onset Colorectal Cancer and Is Involved in the Regulation of Cell Migration. Cancers (Basel) 2022; 14:cancers14164029. [PMID: 36011023 PMCID: PMC9406593 DOI: 10.3390/cancers14164029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The incidence of EOCRC (age < 50 years at diagnosis) with unknown causes is rising worldwide, necessitating the mechanistical analysis of its molecular basis. The NOMO1 gene is deleted in a high number of EOCRC tumors compared to LOCRC. In this work, we aimed to test the NOMO1 gene mutational profile in EOCRC tumors and to characterize the effect of NOMO1 loss in different CRISPR/cas9-edited cell lines, as well as in murine models. Here, we show that the NOMO1 gene can be inactivated not only by deletion but also by pathogenic mutations in EOCRC. Our results indicate that NOMO1 loss could be a passenger mutation in the development of EOCRC, although it contributes significantly to colon cancer cell migration. Abstract The incidence of early-onset colorectal cancer (EOCRC; age younger than 50 years) has been progressively increasing over the last decades globally, with causes unexplained. A distinct molecular feature of EOCRC is that compared with cases of late-onset colorectal cancer, in EOCRC cases, there is a higher incidence of Nodal Modulator 1 (NOMO1) somatic deletions. However, the mechanisms of NOMO1 in early-onset colorectal carcinogenesis are currently unknown. In this study, we show that in 30% of EOCRCs with heterozygous deletion of NOMO1, there were pathogenic mutations in this gene, suggesting that NOMO1 can be inactivated by deletion or mutation in EOCRC. To study the role of NOMO1 in EOCRC, CRISPR/cas9 technology was employed to generate NOMO1 knockout HCT-116 (EOCRC) and HS-5 (bone marrow) cell lines. NOMO1 loss in these cell lines did not perturb Nodal pathway signaling nor cell proliferation. Expression microarrays, RNA sequencing, and protein expression analysis by LC–IMS/MS showed that NOMO1 inactivation deregulates other signaling pathways independent of the Nodal pathway, such as epithelial–mesenchymal transition and cell migration. Significantly, NOMO1 loss increased the migration capacity of CRC cells. Additionally, a gut-specific conditional NOMO1 KO mouse model revealed no subsequent tumor development in mice. Overall, these findings suggest that NOMO1 could play a secondary role in early-onset colorectal carcinogenesis because its loss increases the migration capacity of CRC cells. Therefore, further study is warranted to explore other signalling pathways deregulated by NOMO1 loss that may play a significant role in the pathogenesis of the disease.
Collapse
|
10
|
Untiveros G, Dezi L, Gillette M, Sidor J, Strizzi L. Normal Skin Cells Increase Aggressiveness of Cutaneous Melanoma by Promoting Epithelial-to-Mesenchymal Transition via Nodal and Wnt Activity. Int J Mol Sci 2021; 22:11719. [PMID: 34769150 PMCID: PMC8583838 DOI: 10.3390/ijms222111719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Melanoma is a lethal form of skin cancer triggered by genetic and environmental factors. Excision of early-stage, poorly aggressive melanoma often leads to a successful outcome; however, left undiagnosed these lesions can progress to metastatic disease. This research investigates whether the exposure of poorly aggressive melanoma to certain normal skin cells can explain how non-metastatic melanoma becomes more aggressive while still confined to the skin. To this end, we used a serial co-culture approach to sequentially expose cells from two different, poorly aggressive human melanoma cell lines against normal cells of the skin beginning with normal melanocytes, then epidermal keratinocytes, and finally dermal fibroblasts. Protein extraction of melanoma cells occurred at each step of the co-culture sequence for western blot (WB) analysis. In addition, morphological and functional changes were assessed to detect differences between the serially co-cultured melanoma cells and non-co-cultured cells. Results show that the co-cultured melanoma cells assumed a more mesenchymal morphology and displayed a significant increase in proliferation and invasiveness compared to control or reference cells. WB analysis of protein from the co-cultured melanoma cells showed increased expression of Snail and decreased levels of E-cadherin suggesting that epithelial-to-mesenchymal transition (EMT) is occurring in these co-cultured cells. Additional WB analysis showed increased levels of Nodal protein and signaling and signs of increased Wnt activity in the co-cultured melanoma cells compared to reference cells. These data suggest that interaction between poorly aggressive melanoma cells with normal cells of the skin may regulate the transition from localized, poorly aggressive melanoma to invasive, metastatic disease via Nodal and/or Wnt induced EMT.
Collapse
Affiliation(s)
- Gustavo Untiveros
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Lindsay Dezi
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Megan Gillette
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (M.G.); (J.S.)
| | - Julia Sidor
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (M.G.); (J.S.)
| | - Luigi Strizzi
- Department of Pathology, College of Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
11
|
Boustan A, Mosaffa F, Jahangiri R, Heidarian-Miri H, Dahmardeh-Ghalehno A, Jamialahmadi K. Role of SALL4 and Nodal in the prognosis and tamoxifen resistance of estrogen receptor-positive breast cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:109-119. [PMID: 34476264 PMCID: PMC8340312 DOI: 10.22099/mbrc.2021.39878.1597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the discovery of a number of different mechanisms underlying tamoxifen resistance, its molecular pathway is not completely clear. The upregulation of SALL4 and Nodal has been reported in breast cancer. Nevertheless, their role in tamoxifen resistance has not been investigated. In the present study, we compared Nodal and SALL4 expression in 72 tamoxifen sensitive (TAMS) and tamoxifen-resistant (TAMR) patients. Afterward, the correlation of expression data with clinicopathological features and survival of patients was studied. Results showed that both SALL4 and Nodal were significantly upregulated in TAMR compared to TAMS patients. Besides, there was a positive association between Nodal and SALL4 expression. Furthermore, we evaluated their correlation with the expression of Oct4, Nanog and Sox2 stemness markers. The results demonstrated that in most tissue samples there was a positive correlation between Nodal and SALL4 expression with these stemness markers. Besides, the overexpression of SALL4 and Nodal significantly correlated with the N stage. Moreover, the overexpression of SALL4 was associated with extracapsular invasion and lymphatic invasion. High level expressions of SALL4 and Nodal had a significant association with worse disease-free survival (DFS) rates. In addition, increased level of Nodal expression provides a superior predictor factor for DFS. The multivariate Cox regression analysis also revealed that for DFS, perineural invasion (PNI) was independently an unfavorable prognostic value. These findings suggest that the high expression of SALL4 and Nodal could contribute to tamoxifen resistance and worse survival rates in tamoxifen-treated ER+ breast cancer patients.
Collapse
Affiliation(s)
- Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Jahangiri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Heidarian-Miri
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asefeh Dahmardeh-Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Catara G, Spano D. Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Front Oncol 2021; 11:689131. [PMID: 34381714 PMCID: PMC8352560 DOI: 10.3389/fonc.2021.689131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is an urgent public health issue with a very huge number of cases all over the world expected to increase by 2040. Despite improved diagnosis and therapeutic protocols, it remains the main leading cause of death in the world. Cancer stem cells (CSCs) constitute a tumor subpopulation defined by ability to self-renewal and to generate the heterogeneous and differentiated cell lineages that form the tumor bulk. These cells represent a major concern in cancer treatment due to resistance to conventional protocols of radiotherapy, chemotherapy and molecular targeted therapy. In fact, although partial or complete tumor regression can be achieved in patients, these responses are often followed by cancer relapse due to the expansion of CSCs population. The aberrant activation of developmental and oncogenic signaling pathways plays a relevant role in promoting CSCs therapy resistance. Although several targeted approaches relying on monotherapy have been developed to affect these pathways, they have shown limited efficacy. Therefore, an urgent need to design alternative combinatorial strategies to replace conventional regimens exists. This review summarizes the preclinical studies which provide a proof of concept of therapeutic efficacy of combinatorial approaches targeting the CSCs.
Collapse
Affiliation(s)
- Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
13
|
Cave DD, Hernando-Momblona X, Sevillano M, Minchiotti G, Lonardo E. Nodal-induced L1CAM/CXCR4 subpopulation sustains tumor growth and metastasis in colorectal cancer derived organoids. Am J Cancer Res 2021; 11:5686-5699. [PMID: 33897875 PMCID: PMC8058729 DOI: 10.7150/thno.54027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) is currently the third leading cause for cancer-related mortality. Cancer stem cells have been implicated in colorectal tumor growth, but their specific role in tumor biology, including metastasis, is still uncertain. Methods: Increased expression of L1CAM, CXCR4 and NODAL was identified in tumor section of patients with CRC and in patients-derived-organoids (PDOs). The expression of L1CAM, CXCR4 and NODAL was evaluated using quantitative real-time PCR, western blotting, immunofluorescence, immunohistochemistry and flow cytometry. The effects of the L1CAM, CXCR4 and NODAL on tumor growth, proliferation, migration, invasion, colony-formation ability, metastasis and chemoresistance were investigated both in vitro and in vivo. Results: We found that human colorectal cancer tissue contains cancer stem cells defined by L1CAMhigh/CXCR4high expression that is activated by Nodal in hypoxic microenvironment. This L1CAMhigh/CXCR4high population is tumorigenic, highly resistant to standard chemotherapy, and determines the metastatic phenotype of the individual tumor. Depletion of the L1CAMhigh/CXCR4high population drastically reduces the tumorigenic potential and the metastatic phenotype of colorectal tumors. Conclusion: In conclusion, we demonstrated that a subpopulation of migrating L1CAMhigh/CXCR4high is essential for tumor progression. Together, these findings suggest that strategies aimed at modulating the Nodal signaling could have important clinical applications to inhibit colorectal cancer-derived metastasis.
Collapse
|
14
|
Dzobo K, Ganz C, Thomford NE, Senthebane DA. Cancer Stem Cell Markers in Relation to Patient Survival Outcomes: Lessons for Integrative Diagnostics and Next-Generation Anticancer Drug Development. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:81-92. [PMID: 33170084 DOI: 10.1089/omi.2020.0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid tumors display a complex biology that requires a multipronged treatment strategy. Most anticancer interventions, including chemotherapy, are currently unable to prevent treatment resistance and relapse. In general, therapeutics target cancer cells and overlook the tumor microenvironment (TME) and the presence of cancer stem cells (CSCs) with self-renewal and tumorigenic abilities. CSCs have been postulated to play key roles in tumor initiation, progression, therapy resistance, and metastasis. Hence, CSC markers have been suggested as diagnostics to forecast cancer prognosis as well as molecular targets for new-generation cancer treatments, especially in resistant disease. We report here original findings on expression and prognostic significance of CSC markers in several cancers. We examined and compared the transcriptional expression of CSC markers (ABCB1, ABCG2, ALDH1A1, CD24, CD44, CD90, CD133, CXCR4, EPCAM, ICAM1, and NES) in tumor tissues versus the adjacent normal tissues using publicly available databases, The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis. We found that CSC transcriptional markers were, to a large extent, expressed in higher abundance in solid tumors such as colon, lung, pancreatic, and esophageal cancers. On the other hand, no CSC marker in our analysis was expressed in the same pattern in all cancers, while individual CSC marker expression, alone, was not significantly associated with overall patient survival. Innovation in next-generation cancer therapeutics and diagnostics ought to combine CSC markers as well as integrative diagnostics that pool knowledge from CSCs and other TME components and cancer cells.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
16
|
Li Y, Zhong W, Zhu M, Li M, Yang Z. miR-185 inhibits prostate cancer angiogenesis induced by the nodal/ALK4 pathway. BMC Urol 2020; 20:49. [PMID: 32366240 PMCID: PMC7197131 DOI: 10.1186/s12894-020-00617-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Inhibition of angiogenesis in prostatic cancer could be a brand-new method to suppress tumour progression. Nodal/ALK4 has been associated with vascularization in many cancers. However, the relationship between and role of Nodal/ALK4 and miR-185 in human prostatic cancer is still unknown. Methods Prostatic cancer DU145 cells and LNCaP cells were used to investigate the angiogenic effect induced by Nodal and the anti-angiogenic roles of miR-185. Colony formation assay, MTT assay, transwell assay and tube formation assay were used to explore cell proliferation, migration and tube-forming ability, respectively. A luciferase reporter assay confirmed the binding relationship between miR-185 and ALK4. The expression levels of miR-185, ALK4 and VEGF were detected by qRT-PCR and Western blotting. The effects of miR-185 and Nodal in prostate cancer were also investigated in animal experiments. Results VEGF expression was increased in DU145 cells and LNCaP cells after Nodal incubation, and Nodal activated the proliferation ability of prostatic cancer cells and the migration and tube-forming ability of human umbilical vein endothelial cells (HUVECs), which were all inhibited by treatment with the Nodal inhibitor SB431524. Bioinformatics analysis and luciferase assay were used to verify miR-185 as a target of ALK4. Prostatic cancer cell proliferation was inhibited by overexpression of miR-185, which was shown to regulate the migration and angiogenesis of HUVECs by targeting ALK4 for suppression. miR-185 also showed a significant inverse correlation with Nodal treatment and reversed the angiogenic effects induced by Nodal. More importantly, for the first time, xenograft experiments indicated that overexpression of miR-185 suppressed tumour development. Conclusion The Nodal/ALK4 pathway is important in the angiogenesis of prostate cancer and can be inhibited by targeting miR-185 to downregulate ALK4. These findings provide a new perspective on the mechanism of prostate cancer formation.
Collapse
Affiliation(s)
- Youkong Li
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, No.60 Jingzhong Road, Jingzhou District, Jingzhou, 434020, Hubei Province, People's Republic of China.
| | - Wen Zhong
- Department of Endocrine, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou, 434020, Hubei Province, People's Republic of China
| | - Min Zhu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, No.60 Jingzhong Road, Jingzhou District, Jingzhou, 434020, Hubei Province, People's Republic of China
| | - Mengbo Li
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, No.60 Jingzhong Road, Jingzhou District, Jingzhou, 434020, Hubei Province, People's Republic of China
| | - Zhenwei Yang
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, No.60 Jingzhong Road, Jingzhou District, Jingzhou, 434020, Hubei Province, People's Republic of China
| |
Collapse
|
17
|
Xu X, Zhou X, Gao C, Cao L, Zhang Y, Hu X, Cui Y. Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals. Biol Chem 2020; 400:777-785. [PMID: 30699065 DOI: 10.1515/hsz-2018-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Understanding the mechanisms responsible for the malignancy of NSCLC cells is important for therapy and drug development. Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. We found that Nodal can trigger the proliferation of NSCLC cells and decrease the sensitivity to doxorubicin (Dox) and cisplatin (CDDP) treatment. Targeted inhibition of Nodal can suppress the proliferation of NSCLC cells. Among the measured cytokines, Nodal can increase the expression of interleukin-6 (IL-6) and vascular endothelial growth factor A (VEGFA) in NSCLC cells. Inhibition of IL-6, while not VEGFA, attenuated Nodal induced cell proliferation, suggesting the essential roles of IL-6 in Nodal induced malignancy of NSCLC cells. Nodal can trigger the phosphorylation, nuclear translocation and transcriptional activities of p65, the key signal transducer of NF-κB. This was due to the fact that Nodal can increase the phosphorylation of IKKβ/IκBα. The inhibitor of IKKβ abolished Nodal induced activation of p65 and expression of IL-6. Collectively, we found that Nodal can increase the proliferation and decrease chemosensitivity of NSCLC cells via regulation of NF-κB/IL-6 signals. It indicated that Nodal might be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Ye Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xue Hu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| |
Collapse
|
18
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
19
|
Guo Q, Li VZ, Nichol JN, Huang F, Yang W, Preston SEJ, Talat Z, Lefrère H, Yu H, Zhang G, Basik M, Gonçalves C, Zhan Y, Plourde D, Su J, Torres J, Marques M, Habyan SA, Bijian K, Amant F, Witcher M, Behbod F, McCaffrey L, Alaoui-Jamali M, Giannakopoulos NV, Brackstone M, Postovit LM, Del Rincón SV, Miller WH. MNK1/NODAL Signaling Promotes Invasive Progression of Breast Ductal Carcinoma In Situ. Cancer Res 2019; 79:1646-1657. [PMID: 30659022 PMCID: PMC6513674 DOI: 10.1158/0008-5472.can-18-1602] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/02/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
The mechanisms by which breast cancers progress from relatively indolent ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) are not well understood. However, this process is critical to the acquisition of metastatic potential. MAPK-interacting serine/threonine-protein kinase 1 (MNK1) signaling can promote cell invasion. NODAL, a morphogen essential for embryogenic patterning, is often reexpressed in breast cancer. Here we describe a MNK1/NODAL signaling axis that promotes DCIS progression to IDC. We generated MNK1 knockout (KO) or constitutively active MNK1 (caMNK1)-expressing human MCF-10A-derived DCIS cell lines, which were orthotopically injected into the mammary glands of mice. Loss of MNK1 repressed NODAL expression, inhibited DCIS to IDC conversion, and decreased tumor relapse and metastasis. Conversely, caMNK1 induced NODAL expression and promoted IDC. The MNK1/NODAL axis promoted cancer stem cell properties and invasion in vitro. The MNK1/2 inhibitor SEL201 blocked DCIS progression to invasive disease in vivo. In clinical samples, IDC and DCIS with microinvasion expressed higher levels of phospho-MNK1 and NODAL versus low-grade (invasion-free) DCIS. Cumulatively, our data support further development of MNK1 inhibitors as therapeutics for preventing invasive disease. SIGNIFICANCE: These findings provide new mechanistic insight into progression of ductal carcinoma and support clinical application of MNK1 inhibitors to delay progression of indolent ductal carcinoma in situ to invasive ductal carcinoma.
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Vivian Z Li
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jessica N Nichol
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Fan Huang
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - William Yang
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Samuel E J Preston
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Zahra Talat
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Hanne Lefrère
- Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Henry Yu
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Guihua Zhang
- Cancer Research Institute of Northern Alberta, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Basik
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Christophe Gonçalves
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Yao Zhan
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Dany Plourde
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jie Su
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jose Torres
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Maud Marques
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Sara Al Habyan
- Goodman Cancer Centre, McGill University, Montréal, Québec, Canada
| | - Krikor Bijian
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Frédéric Amant
- Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael Witcher
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Centre, Kansas City, Kansas
| | - Luke McCaffrey
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Goodman Cancer Centre, McGill University, Montréal, Québec, Canada
| | - Moulay Alaoui-Jamali
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Nadia V Giannakopoulos
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Muriel Brackstone
- Departments of Surgery and Oncology, Western University, London, Ontario, Canada
| | - Lynne-Marie Postovit
- Cancer Research Institute of Northern Alberta, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Rossy Cancer Network, McGill University, Montréal, Québec, Canada
| |
Collapse
|
20
|
The Stem Cell Phenotype of Aggressive Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11030340. [PMID: 30857267 PMCID: PMC6468512 DOI: 10.3390/cancers11030340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
Aggressive cancer cells are characterized by their capacity to proliferate indefinitely and to propagate a heterogeneous tumor comprised of subpopulations with varying degrees of metastatic propensity and drug resistance properties. Particularly daunting is the challenge we face in the field of oncology of effectively targeting heterogeneous tumor cells expressing a variety of markers, especially those associated with a stem cell phenotype. This dilemma is especially relevant in breast cancer, where therapy is based on traditional classification schemes, including histological criteria, differentiation status, and classical receptor markers. However, not all patients respond in a similar manner to standard-of-care therapy, thereby necessitating the need to identify and evaluate novel biomarkers associated with the difficult-to-target stem cell phenotype and drug resistance. Findings related to the convergence of embryonic and tumorigenic signaling pathways have identified the embryonic morphogen Nodal as a promising new oncofetal target that is reactivated only in aggressive cancers, but not in normal tissues. The work presented in this paper confirms previous studies demonstrating the importance of Nodal as a cancer stem cell molecule associated with aggressive breast cancer, and advances the field by providing new findings showing that Nodal is not targeted by standard-of-care therapy in breast cancer patients. Most noteworthy is the linkage found between Nodal expression and the drug resistance marker ATP-binding cassette member 1 (ABCA1), which may provide new insights into developing combinatorial approaches to overcome drug resistance and disease recurrence.
Collapse
|
21
|
Dzobo K, Senthebane DA, Thomford NE, Rowe A, Dandara C, Parker MI. Not Everyone Fits the Mold: Intratumor and Intertumor Heterogeneity and Innovative Cancer Drug Design and Development. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:17-34. [PMID: 29356626 DOI: 10.1089/omi.2017.0174] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disruptive innovations in medicine are game-changing in nature and bring about radical shifts in the way we understand human diseases, their treatment, and/or prevention. Yet, disruptive innovations in cancer drug design and development are still limited. Therapies that cure all cancer patients are in short supply or do not exist at all. Chief among the causes of this predicament is drug resistance, a mechanism that is much more dynamic than previously understood. Drug resistance has limited the initial success experienced with biomarker-guided targeted therapies as well. A major contributor to drug resistance is intratumor heterogeneity. For example, within solid tumors, there are distinct subclones of cancer cells, presenting profound complexity to cancer treatment. Well-known contributors to intratumor heterogeneity are genomic instability, the microenvironment, cellular genotype, cell plasticity, and stochastic processes. This expert review explains that for oncology drug design and development to be more innovative, we need to take into account intratumor heterogeneity. Initially thought to be the preserve of cancer cells, recent evidence points to the highly heterogeneous nature and diverse locations of stromal cells, such as cancer-associated fibroblasts (CAFs) and cancer-associated macrophages (CAMs). Distinct subpopulations of CAFs and CAMs are now known to be located immediately adjacent and distant from cancer cells, with different subpopulations exerting different effects on cancer cells. Disruptive innovation and precision medicine in clinical oncology do not have to be a distant reality, but can potentially be achieved by targeting these spatially separated and exclusive cancer cell subclones and CAF subtypes. Finally, we emphasize that disruptive innovations in drug discovery and development will likely come from drugs whose effect is not necessarily tumor shrinkage.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa .,2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa .,2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Nicholas Ekow Thomford
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Arielle Rowe
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa
| | - Collet Dandara
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - M Iqbal Parker
- 2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
22
|
Li Y, Zhong W, Zhu M, Hu S, Su X. Nodal regulates bladder cancer cell migration and invasion via the ALK/Smad signaling pathway. Onco Targets Ther 2018; 11:6589-6597. [PMID: 30323631 PMCID: PMC6178944 DOI: 10.2147/ott.s177514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Bladder cancer is the most common malignant tumor of the urinary tract. We aimed to explore the biological role and molecular mechanism of Nodal in bladder cancer. Materials and methods The expression of Nodal in bladder cancer tissues and cells was determined by quantitative real-time polymerase chain reaction. The effect of silencing of Nodal on cell proliferation, clone formation, and migration and invasion was evaluated by MTT cell proliferation assay, colony formation, and transwell assays, respectively. Western blot analysis was employed to detect the expression of proliferation- and invasion-related proteins and proteins involved in ALK/Smad signaling. Results We found that the expression of Nodal was significantly increased in bladder cancer tissues and cell lines. Downregulation of Nodal effectively weakened cell proliferation, clone formation, and cell migration and invasion abilities. The protein expression levels of CDC6, E-cadherin, MMP-2, and MMP-9 were also altered by downregulation of Nodal. Knockdown of Nodal also blocked the expression of ALK4, ALK7, Smad2, and Smad4, which are involved in ALK/Smad signaling. Additionally, the ALK4/7 receptor blocker SB431542 reversed the promotive effects of Nodal overexpression on bladder cancer cell proliferation, migration, and invasion. Conclusion Our study indicated that Nodal functions as an oncogene by regulating cell proliferation, migration, and invasion in bladder cancer via the ALK/Smad signaling pathway, thereby providing novel insights into its role in bladder cancer treatment.
Collapse
Affiliation(s)
- Youkong Li
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Wen Zhong
- Department of Endocrine, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China
| | - Min Zhu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Shengguo Hu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Xiaokang Su
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| |
Collapse
|
23
|
Montague TG, Schier AF. Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife 2017; 6:28183. [PMID: 29140251 PMCID: PMC5745085 DOI: 10.7554/elife.28183] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/13/2017] [Indexed: 12/03/2022] Open
Abstract
Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta-related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. All animals begin life as just one cell – a fertilized egg. In order to make a recognizable adult, each embryo needs to make the three types of tissue that will eventually form all of the organs: endoderm, which will form the internal organs; mesoderm, which will form the muscle and bones; and ectoderm, which will generate the skin and nervous system. All vertebrates – animals with backbones like fish and humans – use the so-called Nodal signaling pathway to make the endoderm and mesoderm. Nodal is a signaling molecule that binds to receptors on the surface of cells. If Nodal binds to a receptor on a cell, it instructs that cell to become endoderm or mesoderm. As such, Nodal is critical for vertebrate life. However, there has been a 30-year debate in the field of developmental biology about whether a protein called Vg1, which has a similar molecular structure as Nodal, plays a role in the early development of vertebrates. Zebrafish are often used to study animal development, and Montague and Schier decided to test whether these fish need the gene for Vg1 (also known as Gdf3) by deleting it using a genome editing technique called CRISPR/Cas9. It turns out that female zebrafish can survive without this gene. Yet, when the offspring of these females do not inherit the instructions to make Vg1 from their mothers, they fail to form the endoderm and mesoderm. This means that the embryos do not have hearts, blood or other internal organs, and they die within three days. Two other groups of researchers have independently reported similar results. The findings reveal that Vg1 is critical for the Nodal signaling pathway to work in zebrafish. Montague and Schier then showed that, in this pathway, Nodal does not activate its receptors on its own. Instead, Nodal must interact with Vg1, and it is this Nodal-Vg1 complex that activates receptors, and instructs cells to become endoderm and mesoderm. Scientists currently use the Nodal signaling pathway to induce human embryonic stem cells growing in the laboratory to become mesoderm and endoderm. As such, these new findings could ultimately help researchers to grow tissues and organs for human patients.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
24
|
Wang X, Reyes ME, Zhang D, Funakoshi Y, Trape AP, Gong Y, Kogawa T, Eckhardt BL, Masuda H, Pirman DA, Yang P, Reuben JM, Woodward WA, Bartholomeusz C, Hortobagyi GN, Tripathy D, Ueno NT. EGFR signaling promotes inflammation and cancer stem-like activity in inflammatory breast cancer. Oncotarget 2017; 8:67904-67917. [PMID: 28978083 PMCID: PMC5620223 DOI: 10.18632/oncotarget.18958] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory breast cancer (IBC) is the most lethal and aggressive type of breast cancer, with a strong proclivity to metastasize, and IBC-specific targeted therapies have not yet been developed. Epidermal growth factor receptor (EGFR) has emerged as an important therapeutic target in IBC. However, the mechanism behind the therapeutic effect of EGFR targeted therapy is not well defined. Here, we report that EGFR regulates the IBC cell population that expresses cancer stem-like cell (CSC) markers through COX-2, a key mediator of inflammation whose expression correlates with worse outcome in IBC. The COX-2 pathway promoted IBC cell migration and invasion and the CSC marker-bearing population in vitro, and the inhibition of this pathway reduced IBC tumor growth in vivo. Mechanistically, we identified Nodal, a member of the TGFβ superfamily, as a potential driver of COX-2-regulated invasive capacity and the CSC phenotype of IBC cells. Our data indicate that the EGFR pathway regulates the expression of COX-2, which in turn regulates the expression of Nodal and the activation of Nodal signaling. Together, our findings demonstrate a novel connection between the EGFR/COX-2/Nodal signaling axis and CSC regulation in IBC, which has potential implications for new combination approaches with EGFR targeted therapy for patients with IBC.
Collapse
Affiliation(s)
- Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Monica E Reyes
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dongwei Zhang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yohei Funakoshi
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adriana P Trape
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Gong
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Takahiro Kogawa
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bedrich L Eckhardt
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroko Masuda
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David A Pirman
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peiying Yang
- Department of General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chandra Bartholomeusz
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Hendrix MJ, Kandela I, Mazar AP, Seftor EA, Seftor RE, Margaryan NV, Strizzi L, Murphy GF, Long GV, Scolyer RA. Targeting melanoma with front-line therapy does not abrogate Nodal-expressing tumor cells. J Transl Med 2017; 97:176-186. [PMID: 27775691 DOI: 10.1038/labinvest.2016.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 01/12/2023] Open
Abstract
Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. It is the leading cause of skin cancer deaths with a median overall survival for advanced-stage metastatic disease of <6 months. Despite advances in the field with conventional and targeted therapies, the heterogeneity of melanoma poses the greatest ongoing challenge, ultimately leading to relapse and progression to a more drug-resistant tumor in most patients. Particularly noteworthy are recent findings, indicating that these therapies exert selective pressure on tumors resulting in the activation of pathways associated with cancer stem cells that are unresponsive to current therapy. Our previous studies have shown how Nodal, an embryonic morphogen of the transforming growth factor-beta superfamily, is one of these critical factors that is reactivated in aggressive melanoma and resistant to conventional chemotherapy, such as dacarbazine. In the current study, we sought to determine whether BRAF inhibitor (BRAFi) therapy targeted Nodal-expressing tumor cells in uniquely matched unresectable stage III and IV melanoma patient samples before and after therapy that preceded their eventual death due to disease. The results demonstrate that BRAFi treatment failed to affect Nodal levels in melanoma tissues. Accompanying experiments in soft agar and in nude mice showed the advantage of using combinatorial treatment with BRAFi plus anti-Nodal monoclonal antibody to suppress tumor growth and metastasis. These data provide a promising new approach using front-line therapy combined with targeting a cancer stem cell-associated molecule-producing a more efficacious response than monotherapy.
Collapse
Affiliation(s)
- Mary Jc Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, USA.,Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Irawati Kandela
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Andrew P Mazar
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Elisabeth A Seftor
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Richard Eb Seftor
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Naira V Margaryan
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Luigi Strizzi
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pathology, Midwestern University, Downers Grove, IL, USA
| | - George F Murphy
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Georgina V Long
- Melanoma Institute Australia and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
26
|
Left-sided laterality of Merkel cell carcinoma in a German population: more than just sun exposure. J Cancer Res Clin Oncol 2016; 143:347-350. [PMID: 27778198 DOI: 10.1007/s00432-016-2293-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lateral distribution of cancer has been observed previously. Most evident is this laterality in ultraviolet (UV)-induced skin cancer, based on an unequally distributed UV exposure. OBJECTIVES The aim of this study was to explore whether patients from Germany also show asymmetrical lateral distribution of Merkel cell carcinoma (MCC). METHODS In total, 115 patients with MCC were studied for laterality of the primary tumour. Correlation of clinical variables with lateral distribution of MCC was investigated as well. RESULTS In 64/115 (55.7%) patients, primary tumours were present on the left side, in 37/115 (32.2%) on the right side, and in 14/115 (12.2%) in the midline (P < 0.0001). Excluding the latter localization occurrence of left-sided MCCs (64 of 101/63.4%) was significantly (P = 0.0072) more often observed (1.73-fold) when compared to right-sided tumours (37 of 101/36.6%). The excess of left-sided tumours was found on the head with a left-right ratio of 1.8, trunk of 8, arm of 1.2, and leg of 1.8. There was no significant association between laterality and gender, age, MCPyV status, and anatomic localization of primary tumours including the occurrence in sun-exposed sites. CONCLUSIONS Occurrence of left-sided MCCs was significantly more often observed when compared to right-sided tumours. Laterality was not associated with tumour presentation at chronically ultraviolet-exposed sites. Hence, the reason for laterality in MCC remains obscure, but likely goes beyond UV exposure.
Collapse
|