1
|
Liu CH, Ho YC, Lee WC, Huang CY, Lee YK, Hsieh CB, Huang NC, Wu CC, Nguyen NUN, Hsu CC, Chen CH, Chen YC, Huang WC, Lu YY, Fang CC, Chang YC, Chang CL, Tsai MK, Wen ZH, Li CZ, Li CC, Chuang PK, Yang SM, Chu TH, Huang SC. Sodium-Glucose Co-Transporter-2 Inhibitor Empagliflozin Attenuates Sorafenib-Induced Myocardial Inflammation and Toxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:4844-4858. [PMID: 38884142 DOI: 10.1002/tox.24362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1β/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.
Collapse
Affiliation(s)
- Ching-Han Liu
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Yi Huang
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Nan-Chieh Huang
- Division of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chiu-Hua Chen
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chieh Fang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chen-Lin Chang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Kai Tsai
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiao-Zhu Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chiao-Ching Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Urology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Chung Huang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Pingtung Branch of Kaohsiung Armed Forces General Hospital, Pingtung, Taiwan
| |
Collapse
|
2
|
Nukaga S, Fujiwara-Tani R, Nishida R, Miyagawa Y, Goto K, Kawahara I, Nakashima C, Fujii K, Ogata R, Ohmori H, Kuniyasu H. Caprylic Acid Inhibits High Mobility Group Box-1-Induced Mitochondrial Damage in Myocardial Tubes. Int J Mol Sci 2024; 25:8081. [PMID: 39125651 PMCID: PMC11311531 DOI: 10.3390/ijms25158081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Myocardial damage significantly impacts the prognosis of patients with cancer; however, the mechanisms of myocardial damage induced by cancer and its treatment remain unknown. We previously reported that medium-chain fatty acids (MCFAs) improve cancer-induced myocardial damage but did not evaluate the differences in effect according to MCFA type. Therefore, this study investigated the role of inflammatory cytokines in cancer-induced myocardial damage and the effects of three types of MCFAs (caprylic acid [C8], capric acid [C10], and lauric acid [C12]). In a mouse model, the C8 diet showed a greater effect on improving myocardial damage compared with C10 and C12 diets. Myocardial tubes differentiated from H9C2 cardiomyoblasts demonstrated increased mitochondrial oxidative stress, decreased membrane potential and mitochondrial volume, and inhibited myocardial tube differentiation following treatment with high-mobility group box-1 (HMGB1) but not interleukin-6 and tumor necrosis factor-α cytokines. However, HMGB1 treatment combined with C8 improved HMGB1-induced mitochondrial damage, enhanced autophagy, and increased mitochondrial biogenesis and maturation. However, these effects were only partial when combined with beta-hydroxybutyrate, a C8 metabolite. Thus, HMGB1 may play an important role in cancer-related myocardial damage. C8 counteracts HMGB1's effects and improves cancer-related myocardial damage. Further clinical studies are required to investigate the effects of C8.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 22K17655 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (S.N.); (R.N.); (Y.M.); (K.G.); (I.K.); (C.N.); (K.F.); (R.O.); (H.O.)
| | | | | | | | | | | | | | | | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (S.N.); (R.N.); (Y.M.); (K.G.); (I.K.); (C.N.); (K.F.); (R.O.); (H.O.)
| |
Collapse
|
3
|
Goto K, Fujiwara-Tani R, Nukaga S, Miyagawa Y, Kawahara I, Nishida R, Ikemoto A, Sasaki R, Ogata R, Kishi S, Luo Y, Fujii K, Ohmori H, Kuniyasu H. Berberine Improves Cancer-Derived Myocardial Impairment in Experimental Cachexia Models by Targeting High-Mobility Group Box-1. Int J Mol Sci 2024; 25:4735. [PMID: 38731953 PMCID: PMC11084938 DOI: 10.3390/ijms25094735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.
Collapse
Grants
- 22K17655 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Shingo Kishi
- Pathology Laboratory, Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan;
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (K.G.); (S.N.); (Y.M.); (I.K.); (R.N.); (A.I.); (R.S.); (R.O.); (Y.L.); (K.F.); (H.O.)
| |
Collapse
|
4
|
Fujii K, Fujiwara-Tani R, Nukaga S, Ohmori H, Luo Y, Nishida R, Sasaki T, Miyagawa Y, Nakashima C, Kawahara I, Ogata R, Ikemoto A, Sasaki R, Kuniyasu H. Involvement of Ferroptosis Induction and Oxidative Phosphorylation Inhibition in the Anticancer-Drug-Induced Myocardial Injury: Ameliorative Role of Pterostilbene. Int J Mol Sci 2024; 25:3015. [PMID: 38474261 DOI: 10.3390/ijms25053015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with cancer die from cardiac dysfunction second only to the disease itself. Cardiotoxicity caused by anticancer drugs has been emphasized as a possible cause; however, the details remain unclear. To investigate this mechanism, we treated rat cardiomyoblast H9c2 cells with sunitinib, lapatinib, 5-fluorouracil, and cisplatin to examine their effects. All anticancer drugs increased ROS, lipid peroxide, and iron (II) levels in the mitochondria and decreased glutathione peroxidase-4 levels and the GSH/GSSG ratio. Against this background, mitochondrial iron (II) accumulates through the unregulated expression of haem oxygenase-1 and ferrochelatase. Anticancer-drug-induced cell death was suppressed by N-acetylcysteine, deferoxamine, and ferrostatin, indicating ferroptosis. Anticancer drug treatment impairs mitochondrial DNA and inhibits oxidative phosphorylation in H9c2 cells. Similar results were observed in the hearts of cancer-free rats treated with anticancer drugs in vitro. In contrast, treatment with pterostilbene inhibited the induction of ferroptosis and rescued the energy restriction induced by anticancer drugs both in vitro and in vivo. These findings suggest that induction of ferroptosis and inhibition of oxidative phosphorylation are mechanisms by which anticancer drugs cause myocardial damage. As pterostilbene ameliorates these mechanisms, it is expected to have significant clinical applications.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| |
Collapse
|
5
|
Bacova BS, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines 2022; 10:2819. [PMID: 36359339 PMCID: PMC9687767 DOI: 10.3390/biomedicines10112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2023] Open
Abstract
This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.
Collapse
Affiliation(s)
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| |
Collapse
|
6
|
Saha S, Singh PK, Roy P, Kakar SS. Cardiac Cachexia: Unaddressed Aspect in Cancer Patients. Cells 2022; 11:cells11060990. [PMID: 35326441 PMCID: PMC8947289 DOI: 10.3390/cells11060990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor-derived cachectic factors such as proinflammatory cytokines and neuromodulators not only affect skeletal muscle but also affect other organs, including the heart, in the form of cardiac muscle atrophy, fibrosis, and eventual cardiac dysfunction, resulting in poor quality of life and reduced survival. This article reviews the holistic approaches of existing diagnostic, pathophysiological, and multimodal therapeutic interventions targeting the molecular mechanisms that are responsible for cancer-induced cardiac cachexia. The major drivers of cardiac muscle wasting in cancer patients are autophagy activation by the cytokine-NFkB, TGF β-SMAD3, and angiotensin II-SOCE-STIM-Ca2+ pathways. A lack of diagnostic markers and standard treatment protocols hinder the early diagnosis of cardiac dysfunction and the initiation of preventive measures. However, some novel therapeutic strategies, including the use of Withaferin A, have shown promising results in experimental models, but Withaferin A’s effectiveness in human remains to be verified. The combined efforts of cardiologists and oncologists would help to identify cost effective and feasible solutions to restore cardiac function and to increase the survival potential of cancer patients.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (S.S.); (P.K.S.)
| | - Praveen Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (S.S.); (P.K.S.)
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India;
| | - Sham S. Kakar
- Department of Physiology and Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
- Correspondence: ; Tel.: +1-(502)-852-0812
| |
Collapse
|
7
|
Sugimoto A, Fukuoka T, Nagahara H, Shibutani M, Iseki Y, Sasaki M, Okazaki Y, Maeda K, Ohira M. The impact of the surgical Apgar score on oncological outcomes in patients with colorectal cancer: a propensity score-matched study. World J Surg Oncol 2022; 20:75. [PMID: 35272672 PMCID: PMC8908623 DOI: 10.1186/s12957-022-02545-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The surgical Apgar score (SAS) predicts postoperative complications (POCs) following gastrointestinal surgery. Recently, the SAS was reported to be a predictor of not only POCs but also prognosis. However, the impact of the SAS on oncological outcomes in patients with colorectal cancer (CRC) has not been fully examined. The present study therefore explored the oncological significance of the SAS in patients with CRC, using a propensity score matching (PSM) method. METHODS We retrospectively analyzed 639 patients who underwent radical surgery for CRC. The SAS was calculated based on three intraoperative parameters: estimated blood loss, lowest mean arterial pressure, and lowest heart rate. All patients were classified into 2 groups based on the SAS (≤6 and >6). The association of the SAS with the recurrence-free survival (RFS), overall survival (OS), and cancer-specific survival (CSS) was analyzed. RESULTS After PSM, each group included 156 patients. Univariate analyses revealed that a lower SAS (≤6) was significantly associated with a worse OS and CSS. A multivariate analysis revealed that the age ≥75 years old, ASA-Physical Status ≥3, SAS ≤6, histologically undifferentiated tumor type, and an advanced pStage were independent factors for the OS, and open surgery, a SAS ≤6, histologically undifferentiated tumor type and advanced pStage were independent factors for the CSS. CONCLUSIONS A lower SAS (≤6) was an independent prognostic factor for not only the OS but also the CSS in patients with CRC, suggesting that the SAS might be a useful biomarker predicting oncological outcomes in patients with CRC.
Collapse
Affiliation(s)
- Atsushi Sugimoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tatsunari Fukuoka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Hisashi Nagahara
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masatsune Shibutani
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuhito Iseki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Maho Sasaki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuki Okazaki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka City General Hospital, 2-13-22 Miyakojimahondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
8
|
Wu C, Lin DW, Jiang YW, Jiang F, Wang ZX, Wang YS. Relationship Between Serum Concentration of Adrenomedullin and Myocardial Ischemic T Wave Changes in Patients With Lung Cancer. Front Cardiovasc Med 2022; 9:836993. [PMID: 35355972 PMCID: PMC8959127 DOI: 10.3389/fcvm.2022.836993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Patients with lung cancer are at increased risk for the development of cardiovascular diseases. Molecular markers for early diagnosis of cardiac ischemia are of great significance for the early prevention of cardiovascular events in patients with lung cancer. By evaluating the relationship between adrenomedullin (ADM) and myocardial ischemic T wave changes, the clinical value of circulating ADM as a predictor of myocardial ischemia in patients with lung cancer is confirmed. Methods We enrolled patients with lung cancer and healthy people from 2019 to 2021 and extracted a detailed ECG parameter. After adjustment for potential confounders, logistic regression was used to assess the association of clinical data. We performed analyses on differences in T wave between patients with lung cancer and healthy people, and the relationship between T wave and ADM among patients with lung cancer. Receiver operator characteristic (ROC) curves were drawn to confirm the diagnostic value of biomarkers. Results After adjusting for potential confounders, the incidence of T wave inversion or flattening in patients with lung cancer was higher than in healthy people (OR: 3.3228, P = 0.02). Also, further analysis of the data of lung cancer patients revealed that the ADM in lung cancer patients with T wave inversion or flat was higher than those with normal T wave (189.8 ± 51.9 vs. 131.9 ± 38.4, p < 0.001). The area under the ROC curve was 0.8137. Conclusion Among the patients with lung cancer, serum ADM concentration is associated with the incidence of the abnormal T wave. ADM might be a potentially valuable predictor for heart ischemia in patients with lung cancer.
Collapse
Affiliation(s)
- Chen Wu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da-wei Lin
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-wen Jiang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao-xia Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Chongming Branch, Shanghai, China
- Zhao-xia Wang
| | - Yao-sheng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yao-sheng Wang
| |
Collapse
|
9
|
Conceição MS, Derchain S, Vechin FC, Telles G, Maginador GF, Sarian LO, Libardi CA, Ugrinowitsch C. Maintenance of Muscle Mass and Cardiorespiratory Fitness to Cancer Patients During COVID-19 Era and After SARS-CoV-2 Vaccine. Front Physiol 2021; 12:655955. [PMID: 34248658 PMCID: PMC8267586 DOI: 10.3389/fphys.2021.655955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
There is emerging evidence that decreased muscle mass and cardiorespiratory fitness (CRF) are associated with increased risk of cancer-related mortality. This paper aimed to present recommendations to prescribe effective and safe exercise protocols to minimize losses, maintain or even improve muscle mass, strength, and CRF of the cancer patients who are undergoing or beyond treatment during the COVID-19 era. Overall, we recommend performing exercises with bodyweight, elastic bands, or suspension bands to voluntary interruption (i.e., interrupt the exercise set voluntarily, according to their perception of fatigue, before concentric muscular failure) to maintain or increase muscle strength and mass and CRF during COVID-19 physical distancing. Additionally, rest intervals between sets and exercises (i.e., long or short) should favor maintaining exercise intensities between 50 and 80% of maxHR and/or RPE of 12. In an exercise program with these characteristics, the progression of the stimulus must be carried out by increasing exercise complexity, number of sets, and weekly frequency. With feasible exercises attainable anywhere, modulating only the work-to-rest ratio and using voluntary interruption, it is possible to prescribe exercise for a wide range of patients with cancer as well as training goals. Exercise must be encouraged; however, exercise professionals must be aware of the patient's health condition even at a physical distance to provide a safe and efficient exercise program. Exercise professionals should adjust the exercise prescription throughout home confinement whenever necessary, keeping in mind that minimal exercise stimuli are beneficial to patients in poor physical condition.
Collapse
Affiliation(s)
- Miguel S Conceição
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Guilherme Telles
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Guilherme Fiori Maginador
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Luís Otávio Sarian
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Labib D, Satriano A, Dykstra S, Hansen R, Mikami Y, Guzzardi DG, Slavikova Z, Feuchter P, Flewitt J, Rivest S, Sandonato R, Lydell CP, Howarth AG, Kolman L, Clarke B, Paterson DI, Oudit GY, Pituskin E, Cheung WY, Lee J, White JA. Effect of Active Cancer on the Cardiac Phenotype: A Cardiac Magnetic Resonance Imaging-Based Study of Myocardial Tissue Health and Deformation in Patients With Chemotherapy-Naïve Cancer. J Am Heart Assoc 2021; 10:e019811. [PMID: 33878890 PMCID: PMC8200726 DOI: 10.1161/jaha.120.019811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The overlap between cancer and cardiovascular care continues to expand, with intersections emerging before, during, and following cancer therapies. To date, emphasis has been placed on how cancer therapeutics influence downstream cardiac health. However, whether active malignancy itself influences chamber volumes, function, or overall myocardial tissue health remains uncertain. We sought to perform a comprehensive cardiovascular magnetic resonance‐based evaluation of cardiac health in patients with chemotherapy‐naïve cancer with comparison with a healthy volunteer population. Methods and Results Three‐hundred and eighty‐one patients with active breast cancer or lymphoma before cardiotoxic chemotherapy exposure were recruited in addition to 102 healthy volunteers. Both cohorts underwent standardized cardiovascular magnetic resonance imaging with quantification of chamber volumes, ejection fraction, and native myocardial T1. Left ventricular mechanics were incrementally assessed using three‐dimensional myocardial deformation analysis, providing global longitudinal, circumferential, radial, and principal peak‐systolic strain amplitude and systolic strain rate. The mean age of patients with cancer was 53.8±13.4 years; 79% being women. Despite similar left ventricular ejection fraction, patients with cancer showed smaller chambers, increased strain amplitude, and systolic strain rate in both conventional and principal directions, and elevated native T1 versus sex‐matched healthy volunteers. Adjusting for age, sex, hypertension, and diabetes mellitus, the presence of cancer remained associated with these cardiovascular magnetic resonance parameters. Conclusions The presence of cancer is independently associated with alterations in cardiac chamber size, function, and objective markers of tissue health. Dedicated research is warranted to elucidate pathophysiologic mechanisms underlying these findings and to explore their relevance to the management of patients with cancer referred for cardiotoxic therapies.
Collapse
Affiliation(s)
- Dina Labib
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada.,Department of Cardiovascular Medicine Cairo University Cairo Egypt
| | - Alessandro Satriano
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Steven Dykstra
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Reis Hansen
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Yoko Mikami
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - David G Guzzardi
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Zdenka Slavikova
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Patricia Feuchter
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Jacqueline Flewitt
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Sandra Rivest
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Rosa Sandonato
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Carmen P Lydell
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada.,Department of Diagnostic Imaging Cumming School of Medicine University of Calgary Alberta Canada
| | - Andrew G Howarth
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada.,Department of Cardiac Sciences Cumming School of Medicine University of Calgary Alberta Canada
| | - Louis Kolman
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Brian Clarke
- Department of Cardiac Sciences Cumming School of Medicine University of Calgary Alberta Canada
| | - D Ian Paterson
- Department of Medicine University of Alberta Edmonton Alberta Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Alberta Canada
| | - Gavin Y Oudit
- Department of Medicine University of Alberta Edmonton Alberta Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Alberta Canada
| | - Edith Pituskin
- Department of Oncology University of Alberta Edmonton Alberta Canada
| | - Winson Y Cheung
- Departments of Medicine and Oncology Cumming School of Medicine University of Calgary Alberta Canada
| | - Joon Lee
- Department of Cardiac Sciences Cumming School of Medicine University of Calgary Alberta Canada.,Department of Community Health Sciences Cumming School of Medicine University of Calgary Alberta Canada
| | - James A White
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada.,Department of Diagnostic Imaging Cumming School of Medicine University of Calgary Alberta Canada.,Department of Cardiac Sciences Cumming School of Medicine University of Calgary Alberta Canada
| |
Collapse
|
11
|
Huot JR, Pin F, Narasimhan A, Novinger LJ, Keith AS, Zimmers TA, Willis MS, Bonetto A. ACVR2B antagonism as a countermeasure to multi-organ perturbations in metastatic colorectal cancer cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1779-1798. [PMID: 33200567 PMCID: PMC7749603 DOI: 10.1002/jcsm.12642] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. METHODS NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. RESULTS mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. CONCLUSIONS Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leah J Novinger
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Ausoni S, Azzarello G. Development of Cancer in Patients With Heart Failure: How Systemic Inflammation Can Lay the Groundwork. Front Cardiovasc Med 2020; 7:598384. [PMID: 33195486 PMCID: PMC7649135 DOI: 10.3389/fcvm.2020.598384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, cardiologists and oncologists have provided clinical and experimental evidence that cancer, and not only chemotherapeutic agents, can cause detrimental effects on heart structure and function, a consequence that has serious clinical implications for patient management. In parallel, the intriguing idea that heart failure (HF) may be an oncogenic condition has also received growing attention. A number of epidemiological and clinical studies have reported that patients with HF have a higher risk of developing cancer. Chronic low-grade systemic inflammation has been proposed as a major pathophysiological process linking the failing heart to the multi-step process of carcinogenesis. According to this view, pro-inflammatory mediators secreted by the damaged heart generate a favorable milieu that promotes tumor development and accelerates malignant transformation. HF-associated inflammation synergizes with tumor-associated inflammation, so that over time it is no longer possible to distinguish the effects of one or the other. Experimental studies have just begun to search for the molecular effectors of this process, with the ultimate goal that of identifying mechanisms suitable for anti-cancer target therapy to reduce the risk of incident cancer in patients already affected by HF. In this review we critically discuss strengths and limitations of clinical and experimental studies that support a causal relationship between HF and cancer, and focus on HF-associated inflammation, cardiokines and their endocrine functions linking one and the other disease.
Collapse
Affiliation(s)
- Simonetta Ausoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Giuseppe Azzarello
- Local Health Unit 3 Serenissima, Department of Medical Oncology, Mirano Hospital, Venice, Italy
| |
Collapse
|
13
|
da Fonseca GWP, Farkas J, Dora E, von Haehling S, Lainscak M. Cancer Cachexia and Related Metabolic Dysfunction. Int J Mol Sci 2020; 21:ijms21072321. [PMID: 32230855 PMCID: PMC7177950 DOI: 10.3390/ijms21072321] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex multifactorial syndrome marked by a continuous depletion of skeletal muscle mass associated, in some cases, with a reduction in fat mass. It is irreversible by nutritional support alone and affects up to 74% of patients with cancer-dependent on the underlying type of cancer-and is associated with physical function impairment, reduced response to cancer-related therapy, and higher mortality. Organs, like muscle, adipose tissue, and liver, play an important role in the progression of cancer cachexia by exacerbating the pro- and anti-inflammatory response initially activated by the tumor and the immune system of the host. Moreover, this metabolic dysfunction is produced by alterations in glucose, lipids, and protein metabolism that, when maintained chronically, may lead to the loss of skeletal muscle and adipose tissue. Although a couple of drugs have yielded positive results in increasing lean body mass with limited impact on physical function, a single therapy has not lead to effective treatment of this condition. Therefore, a multimodal intervention, including pharmacological agents, nutritional support, and physical exercise, may be a reasonable approach for future studies to better understand and prevent the wasting of body compartments in patients with cancer cachexia.
Collapse
Affiliation(s)
- Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo SP 05403-900, Brazil or
- Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), DE-37075 Goettingen, Germany
| | - Jerneja Farkas
- Research Unit, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
- National Institute of Public Health, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Eva Dora
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), DE-37075 Goettingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Goettingen, DE-37099 Goettingen, Germany
- Correspondence: (S.v.H.); (M.L.); Tel.: +49-551-3920-911 (S.v.H.); +386-251-23-733 (M.L.); Fax: +49-551-3920-918 (S.v.H.); Fax: +386-252-11-007 (M.L.)
| | - Mitja Lainscak
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
- Correspondence: (S.v.H.); (M.L.); Tel.: +49-551-3920-911 (S.v.H.); +386-251-23-733 (M.L.); Fax: +49-551-3920-918 (S.v.H.); Fax: +386-252-11-007 (M.L.)
| |
Collapse
|