1
|
Shen Q, Murakami K, Sotov V, Butler M, Ohashi PS, Reedijk M. Inhibition of Notch enhances efficacy of immune checkpoint blockade in triple-negative breast cancer. SCIENCE ADVANCES 2024; 10:eado8275. [PMID: 39475614 PMCID: PMC11524187 DOI: 10.1126/sciadv.ado8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Aberrant Notch, which is a defining feature of triple-negative breast cancer (TNBC) cells, regulates intercellular communication in the tumor immune microenvironment (TIME). This includes tumor-associated macrophage (TAM) recruitment through Notch-dependent cytokine secretion, contributing to an immunosuppressive TIME. Despite the low response rate of TNBC to immune checkpoint blockade (ICB), here, we report that inhibition of Notch-driven cytokine-mediated programs reduces TAMs and induces responsiveness to sequentially delivered ICB. This is characterized by the emergence of GrB+ cytotoxic T lymphocytes (CTLs) in the primary tumor. A more impressive effect of sequential treatment is observed in the lung where TAM depletion and increased CTLs are accompanied by near-complete abolition of metastases. This is due to (i) therapeutic reduction in Notch-dependent, prometastatic circulating factors released by the primary tumor, and (ii) elevated PD ligand 1 (PD-L1) in lung metastases, rendering them profoundly sensitive to ICB. These findings highlight the potential of combination cytokine inhibition and ICB as an immunotherapeutic strategy in TNBC.
Collapse
Affiliation(s)
- Qiang Shen
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Kiichi Murakami
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Valentin Sotov
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Marcus Butler
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Room 7205, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
| | - Michael Reedijk
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 8-411, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
2
|
Kang JH, Uddin N, Kim S, Zhao Y, Yoo KC, Kim MJ, Hong SA, Bae S, Lee JY, Shin I, Jin YW, O'Hagan HM, Yi JM, Lee SJ. Tumor-intrinsic role of ICAM-1 in driving metastatic progression of triple-negative breast cancer through direct interaction with EGFR. Mol Cancer 2024; 23:230. [PMID: 39415210 PMCID: PMC11481280 DOI: 10.1186/s12943-024-02150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype, presents a critical challenge due to the absence of approved targeted therapies. Hence, there is an urgent need to identify effective therapeutic targets for this condition. While epidermal growth factor receptor (EGFR) is prominently expressed in TNBC and recognized as a therapeutic target, anti-EGFR therapies have yet to gain approval for breast cancer treatment due to their associated side effects and limited efficacy. Here, we discovered that intercellular adhesion molecule-1 (ICAM-1) exhibits elevated expression levels in metastatic breast cancer and serves as a pivotal binding adaptor for EGFR activation, playing a crucial role in malignant progression. The activation of EGFR by tumor-expressed ICAM-1 initiates biased signaling within the JAK1/STAT3 pathway, consequently driving epithelial-to-mesenchymal transition and facilitating heightened metastasis without influencing tumor growth. Remarkably, ICAM-1-neutralizing antibody treatment significantly suppressed cancer metastasis in a breast cancer orthotopic xenograft mouse model. In conclusion, our identification of ICAM-1 as a novel tumor intrinsic regulator of EGFR activation offers valuable insights for the development of TNBC-specific anti-EGFR therapies.
Collapse
Affiliation(s)
- Jae-Hyeok Kang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Nizam Uddin
- Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Seungmo Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Yi Zhao
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Ki-Chun Yoo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Min-Jung Kim
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea
| | - Sung-Ah Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jeong-Yeon Lee
- Department of Pathology, College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Incheol Shin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Young Woo Jin
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea
| | - Heather M O'Hagan
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Joo Mi Yi
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Bloomington, IN, 47405, USA.
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea.
| | - Su-Jae Lee
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea.
| |
Collapse
|
3
|
Jia Y, Zhang J, Shi Y, Dong G, Guo X, Tong Z. PD-1 inhibitor sintilimab treated patients with metastatic triple-negative breast cancer. Front Cell Dev Biol 2024; 12:1430310. [PMID: 39469113 PMCID: PMC11513371 DOI: 10.3389/fcell.2024.1430310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is a highly challenging subtype due to a unique tumor microenvironment. Several evidence (IMpassion130 trial and KEYNOTE-355 trial) supported the therapeutic effect of the immune checkpoint inhibitor in TNBC. However, the efficacy and safety of the PD-1 inhibitor sintilimab in breast cancer (BC) has not been well-investigated. So the real-world data on sintilimab-treated patients with metastatic BC were collected and analyzed in this study. Methods The patients were eligible according to the requirements included: ages between 18 years and 75 years; recurrent or metastatic TNBC; measurable disease based on RECIST v1.1; no limitation on the prior systemic treatments; and ECOG performance status of 0-1. Patients received sintilimab 200 mg intravenously every 3 weeks until unacceptable toxicity or disease progression. Results From 1 June 2019 to 1 October 2022, 40 female patients (median age, 55.5 years) with metastatic TNBC (mTNBC) were enrolled into the study. The median prior lines of systemic therapy for mTNBC was three (range, 1-8), with 60% of cases receiving at least three lines of therapy for metastatic disease. The visceral or brain metastasis was detected in 40.4% or 9.6% of patients, respectively. The median duration of response was 2.8 months (range, 0.7-21.0), and the median number of sintilimab doses administered was 4 (range, 1-30). The ORR and DCR were 22.5% and 72.5%, separately. The median PFS was 3.5 months (range, 1.4-21.0), with a 6-month PFS rate of 15.0% (6/40). The median OS was 52.5 months (range, 9.0-247.0) as of data cut-off. Common adverse effects were acceptable, and fatigue, skin rash, and pruritus were the frequent toxicity observed. Two cases of grade 3 curable adverse events were considered to be treatment-related. PD-L1-positive tumor was found in 40% cases (4/10) of mTNBC. Although statistical difference was not reached, the trend was obvious. Patients with PD-L1-positive tumor gained better treatment response, while the TMB-high carrier received more benefits of PFS and OS. Conclusion In our study, preliminary evidence provided the anticancer activity and acceptable adverse effects of sintilimab administered every 3 weeks to pretreated patients with mTNBC. Sintilimab showed its efficacy and safety of immunotherapy for patients with advanced TNBC.
Collapse
Affiliation(s)
- Yan Jia
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jie Zhang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yehui Shi
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Guolei Dong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaojing Guo
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
4
|
Im SA, Cortes J, Cescon DW, Yusof MM, Iwata H, Masuda N, Takano T, Huang CS, Chung CF, Tsugawa K, Park YH, Matsumoto K, Inoue K, Kwong A, Loi S, Fu W, Pan W, Karantza V, Rugo HS, Schmid P. Results from the randomized KEYNOTE-355 study of pembrolizumab plus chemotherapy for Asian patients with advanced TNBC. NPJ Breast Cancer 2024; 10:79. [PMID: 39266535 PMCID: PMC11393332 DOI: 10.1038/s41523-024-00679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/19/2024] [Indexed: 09/14/2024] Open
Abstract
In the phase 3 KEYNOTE-355 study (NCT02819518), pembrolizumab plus chemotherapy demonstrated statistically significant and clinically meaningful improvements in progression-free survival (PFS) and overall survival (OS) versus placebo plus chemotherapy among patients with previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (TNBC) and programmed cell death ligand 1 (PD-L1) combined positive score (CPS) ≥ 10 tumors. We analyzed outcomes for the subgroup of patients enrolled in Asia in KEYNOTE-355. Patients received pembrolizumab 200 mg or placebo (2:1 randomization) every 3 weeks for 35 cycles plus investigator's choice chemotherapy. Primary endpoints were PFS per Response Evaluation Criteria in Solid Tumors version 1.1 and OS. Among patients enrolled in Hong Kong, Japan, Korea, Malaysia and Taiwan (pembrolizumab plus chemotherapy, n = 113; placebo plus chemotherapy, n = 47), 117 (73.1%) had PD-L1 CPS ≥ 1 and 56 (35.0%) had PD-L1 CPS ≥ 10. Median time from randomization to data cutoff (June 15, 2021) was 43.8 (range, 36.8‒53.2) months (intent-to-treat [ITT] population). Hazard ratios (HRs [95% CI]) for PFS in the CPS ≥ 10, CPS ≥ 1, and ITT populations were 0.48 (0.24‒0.98), 0.58 (0.37‒0.91), and 0.66 (0.44‒0.99), respectively. Corresponding HRs (95% CI) for OS were 0.54 (0.28‒1.04), 0.62 (0.40‒0.97), and 0.57 (0.39‒0.84). Grade 3/4 treatment-related adverse events (AEs) occurred in 77.9% versus 78.7% of patients with pembrolizumab plus chemotherapy versus placebo plus chemotherapy. No grade 5 AEs occurred. Clinically meaningful improvement in PFS and OS with manageable toxicity were observed with pembrolizumab plus chemotherapy versus placebo plus chemotherapy in patients enrolled in Asia with previously untreated, inoperable or metastatic TNBC.Trial registration: ClinicalTrials.gov, NCT02819518.
Collapse
Affiliation(s)
- Seock-Ah Im
- Seoul National University Hospital, Seoul National University College of Medicine, Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Madrid and Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - David W Cescon
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mastura Md Yusof
- Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Hiroji Iwata
- Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Norikazu Masuda
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshimi Takano
- The Cancer Institute Hospital of JFCR, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Chiun-Sheng Huang
- National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Feng Chung
- Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | | | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | - Ava Kwong
- Division of Breast Surgery, The University of Hong Kong, Queen Mary and Tung Wah Hospital, Hong Kong, China
- The University of Hong Kong-ShenZhen Hospital, Shenzhen, China
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Australia
| | - Wei Fu
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | - Hope S Rugo
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, London, UK
| |
Collapse
|
5
|
Li J, Dong P, Wang X, Zhang J, Zhao M, Shen H, Cai L, He J, Han M, Miao J, Liu H, Yang W, Han X, Liu Y. Artificial intelligence enhances whole-slide interpretation of PD-L1 CPS in triple-negative breast cancer: A multi-institutional ring study. Histopathology 2024; 85:451-467. [PMID: 38747491 DOI: 10.1111/his.15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 04/21/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND AND AIMS Evaluation of the programmed cell death ligand-1 (PD-L1) combined positive score (CPS) is vital to predict the efficacy of the immunotherapy in triple-negative breast cancer (TNBC), but pathologists show substantial variability in the consistency and accuracy of the interpretation. It is of great importance to establish an objective and effective method which is highly repeatable. METHODS We proposed a model in a deep learning-based framework, which at the patch level incorporated cell analysis and tissue region analysis, followed by the whole-slide level fusion of patch results. Three rounds of ring studies (RSs) were conducted. Twenty-one pathologists of different levels from four institutions evaluated the PD-L1 CPS in TNBC specimens as continuous scores by visual assessment and our artificial intelligence (AI)-assisted method. RESULTS In the visual assessment, the interpretation results of PD-L1 (Dako 22C3) CPS by different levels of pathologists have significant differences and showed weak consistency. Using AI-assisted interpretation, there were no significant differences between all pathologists (P = 0.43), and the intraclass correlation coefficient (ICC) value was increased from 0.618 [95% confidence interval (CI) = 0.524-0.719] to 0.931 (95% CI = 0.902-0.955). The accuracy of interpretation result is further improved to 0.919 (95% CI = 0.886-0.947). Acceptance of AI results by junior pathologists was the highest among all levels, and 80% of the AI results were accepted overall. CONCLUSION With the help of the AI-assisted diagnostic method, different levels of pathologists achieved excellent consistency and repeatability in the interpretation of PD-L1 (Dako 22C3) CPS. Our AI-assisted diagnostic approach was proved to strengthen the consistency and repeatability in clinical practice.
Collapse
Affiliation(s)
- Jinze Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pei Dong
- AI Lab, Tencent, Shenzhen, Guangdong, China
| | - Xinran Wang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Zhang
- AI Lab, Tencent, Shenzhen, Guangdong, China
| | - Meng Zhao
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | - Lijing Cai
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiankun He
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mengxue Han
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiaxian Miao
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongbo Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Yang
- AI Lab, Tencent, Shenzhen, Guangdong, China
| | - Xiao Han
- AI Lab, Tencent, Shenzhen, Guangdong, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Chen Q, Xiao H, Hu L, Huang Y, Cao Z, Shuai X, Su Z. 19F MRI/CEUS Dual Imaging-Guided Sonodynamic Therapy Enhances Immune Checkpoint Blockade in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401182. [PMID: 39051482 PMCID: PMC11423248 DOI: 10.1002/advs.202401182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Treatment of highly aggressive triple-negative breast cancer (TNBC) in the clinic is challenging. Here, a liposome nanodrug (LP@PFH@HMME) integrating imaging agents and therapeutic agents for bimodal imaging-guided sonodynamic therapy (SDT) is developed, which boosted immunogenicity to enable potent immunotherapy via immune checkpoint blockade (ICB) in TNBC. In the acidic tumor microenvironment (TME), LP@PFH@HMME undergoes "nano-to-micro" transformation due to a pH-responsive lipid fusion, which makes droplets much more sensitive to ultrasound (US) in contrast-enhanced ultrasound (CEUS) and SDT studies. The nanodrug demonstrates robust bimodal imaging ability through fluorine-19 magnetic resonance imaging (19F MRI) and CEUS bimodal imaging, and it exhibits excellent solubility in aqueous solution with relatively high 19F content and desirable long transverse relaxation time (T2 = 1.072 s), making it suitable for high-performance 19F MRI, in addition to effective accumulation of nanodrugs after tail vein injection. Thus, 19F MRI/CEUS dual imaging is achievable to show adequate time points for US irradiation of tumor sites to induce highly effective SDT, which produces abundant reactive oxygen species (ROS) triggering immunogenic cell death (ICD) to assist ICB-based immunotherapy. The combination treatment design of sonodynamic therapy with immunotherapy effectively inhibited TNBC growth and recurrence, highlighting the promise of multifunctional nanodrugs in treating TNBC.
Collapse
Affiliation(s)
- Qiu Chen
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Hong Xiao
- Department of Medical UltrasonicThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Lijun Hu
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Yongquan Huang
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Zhong Cao
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
- Shenzhen International Institute for Biomedical ResearchLonghua DistrictShenzhenGuangdong518116P. R. China
| | - Xintao Shuai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Zhongzhen Su
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| |
Collapse
|
7
|
Fan X, Qi A, Zhang M, Jia Y, Li S, Han D, Liu Y. Expression and clinical significance of CLDN7 and its immune-related cells in breast cancer. Diagn Pathol 2024; 19:113. [PMID: 39175074 PMCID: PMC11340154 DOI: 10.1186/s13000-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND CLDN is a core component of tight junctions (TJs). Abnormal expressions of CLDNs are commonly detected in various types of tumors. CLDNs are of interest as a potential therapeutic target. CLDNs are closely associated with most cancers of epithelial origin, especially when CLDN7 promotes cancer cell metastasis, such as in gastric, cervical, and ovarian cancers.Its expression and prognosis in breast cancer (BC) remain unknown.The purpose of this study was to investigate the expression pattern of CLDN7 and related immune factors in BC and shed light on a better therapeutic avenue for BC patients. METHOD The cBioPortal, GEPIA, and TCGA databases were used to comprehensively assess the expression of CLDN7 in BC. The Kaplan-Meier Plotter (KMP) database was applied to examine the relationship among the CLDN7 overexpression (OE), prognosis, and overall survival (OS) of BC patients. Immunohistochemical staining was performed on 92 BC tissue samples and 20 benign breast tumors to verify the expression level of CLDN-7 protein and its correlation with clinicopathological features and prognosis. TIMER2.0 was used to analyze the correlation between the CLDN7 OE and immune gene activation using BC-related transcriptomic data. Enrichment analyses of CLDN7-related immune pathways were conducted using online databases. The risk of expression of CLDN7-related immune genes was assessed and differentially expressed (DE) genes were included in the construction of the risk prognosis nomogram. RESULTS Both database analysis and clinical sample validation results showed that CLDN7 was significantly overexpressed (OE) in BC, and the OE was correlated with poor DFS in BC patients (p < 0.05). TIMER2.0 analysis indicated that CLDN7 OE was negatively associated with the activation of B-cells, CD4+ T-cells, and CD8+ T-cells but positively with the M0 macrophages. Pathway enrichment analysis suggested that CLDN7-related immune factors were mostly involved in the NF-κB and T-cell receptor (TCR) signaling pathways. Univariate Cox regression was used to analyze the correlation between 52 CLDN7 related genes and OS, and 22 genes that are related to prognosis were identified. Prognostic genes were included in the prognostic nomogram of BC with a C-index of 0.76 to predict the 3-year and 5-year OS probabilities of BC individuals. CONCLUSIONS These findings provide evidence for the role of CLDN7-linked tumor immunity, suggesting that CLDN7 might be a potential immunotherapeutic target for BC, and its association with immune markers could shed light on the better prognosis of BC.
Collapse
Affiliation(s)
- Xiaojie Fan
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Aifeng Qi
- Shijiazhuang Hospital of Traditional Chinese Medicine, No.233, zhongshan Road, Shijiazhuang, 050011, PR China
| | - Meng Zhang
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Ying Jia
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Shi Li
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Dandan Han
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Yueping Liu
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China.
| |
Collapse
|
8
|
Gao W, Wang Y, Wang P, Kan W, Wang M, Li H, Wang X, Yuan P, Ma Y, Zhang J, Tian G, Zhang G. Biosynthetic MnSe nanobomb with low Mn content activates the cGAS-STING pathway and induces immunogenic cell death to enhance antitumour immunity. Acta Biomater 2024; 184:383-396. [PMID: 38936753 DOI: 10.1016/j.actbio.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Triple-negative breast cancer (TNBC) is a relatively "cold" tumour with low immunogenicity compared to other tumour types. Especially, the immune checkpoint inhibitors to treat metastatic TNBC only shows the modest immune response rates. Here, we used Chlorella vulgaris as a bioreactor to synthesize an efficient nanobomb (Bio-MnSe) aimed at eliciting systemic anti-tumour immune response. Despite possessing extremely low Mn content, Bio-MnSe effectively produced more ROS and activated stronger cGAS-STING signal pathway compared to pure Se nanoparticles and free Mn2+ ions, promoting the infiltration of natural killer (NK) cells, cytotoxic T lymphocytes (CTLs) in tumour, effectively turning "cold" tumour into "hot" tumour, and achieving strong antitumour immunotherapy. Additionally, the use of αPD-L1 as an immune checkpoint antagonist further increased the anti-tumour immune response of Bio-MnSe, resulting in enhanced anti-tumour effects. Doxorubicin (Dox), an immunogenic cell death (ICD) inducer, was combined with Bio-MnSe to form Bio-MnSe@Dox. This Bio-MnSe@Dox not only directly damaged tumour cells and induced tumour ICD but also promoted dendritic cell maturation, cytotoxic T lymphocyte infiltration, and NK cell recruitment, synergistically intensifying anti-tumour immune responses and suppressing tumour relapse and lung metastasis. Collectively, our findings propose an effective strategy for transforming 'cold' tumours to 'hot' ones, thereby advancing the development of anti-tumour immune drugs. STATEMENT OF SIGNIFICANCE: A biogenic MnSe (Bio-MnSe) nanocomposite was synthesized using Chlorella vulgaris as a bioreactor for enhanced immunotherapy of TNBC. Bio-MnSe demonstrated a stronger ability to activate the cGAS-STING signalling pathway and generate more ROS compared to pure Se nanoparticles and free Mn2+ ions. Apoptotic cells induced by Bio-MnSe released a significant amount of interferon, leading to the activation of T and natural killer (NK) cells, ultimately transforming immunologically 'cold' breast tumours to 'hot' tumours and enhancing the tumour's response to immune checkpoint inhibitors. The combination of Bio-MnSe with Dox or αPD-L1 further enhanced the anti-tumour immune response, fostering dendritic cell maturation, infiltration of cytotoxic T lymphocytes, and recruitment of NK cells, thereby enhancing the anti-tumour immunotherapy of TNBC.
Collapse
Affiliation(s)
- Wenjuan Gao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Yue Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Peng Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Wenjie Kan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Miaomiao Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Huimin Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Xiaofei Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Pengjun Yuan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Yuhan Ma
- College of Horticulture, Anhui Agriculture University, Hefei 230031, PR China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
9
|
Zahraeifard S, Xiao Z, So JY, Ahad A, Montoya S, Park WY, Sornapudi T, Andohkow T, Read A, Kedei N, Koparde V, Yang H, Lee M, Wong N, Cam M, Wang K, Ruppin E, Luo J, Hollander C, Yang L. Loss of tumor suppressors promotes inflammatory tumor microenvironment and enhances LAG3+T cell mediated immune suppression. Nat Commun 2024; 15:5873. [PMID: 38997291 PMCID: PMC11245525 DOI: 10.1038/s41467-024-50262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Low response rate, treatment relapse, and resistance remain key challenges for cancer treatment with immune checkpoint blockade (ICB). Here we report that loss of specific tumor suppressors (TS) induces an inflammatory response and promotes an immune suppressive tumor microenvironment. Importantly, low expression of these TSs is associated with a higher expression of immune checkpoint inhibitory mediators. Here we identify, by using in vivo CRISPR/Cas9 based loss-of-function screening, that NF1, TSC1, and TGF-β RII as TSs regulating immune composition. Loss of each of these three TSs leads to alterations in chromatin accessibility and enhances IL6-JAK3-STAT3/6 inflammatory pathways. This results in an immune suppressive landscape, characterized by increased numbers of LAG3+ CD8 and CD4 T cells. ICB targeting LAG3 and PD-L1 simultaneously inhibits metastatic progression in preclinical triple negative breast cancer (TNBC) mouse models of NF1-, TSC1- or TGF-β RII- deficient tumors. Our study thus reveals a role of TSs in regulating metastasis via non-cell-autonomous modulation of the immune compartment and provides proof-of-principle for ICB targeting LAG3 for patients with NF1-, TSC1- or TGF-β RII-inactivated cancers.
Collapse
Affiliation(s)
- Sara Zahraeifard
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhiguang Xiao
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jae Young So
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abdul Ahad
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Selina Montoya
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Woo Yong Park
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Trinadharao Sornapudi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiffany Andohkow
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nathan Wong
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Maggie Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kun Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christine Hollander
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Kuryk L, Mathlouthi S, Wieczorek M, Gad B, Rinner B, Malfanti A, Mastrotto F, Salmaso S, Caliceti P, Garofalo M. Priming with oncolytic adenovirus followed by anti-PD-1 and paclitaxel treatment leads to improved anti-cancer efficacy in the 3D TNBC model. Eur J Pharm Biopharm 2024; 199:114300. [PMID: 38697488 DOI: 10.1016/j.ejpb.2024.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is considered one of the most incurable malignancies due to its clinical characteristics, including high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Therefore, it remains a critical unmet medical need. On the other hand, poor delivery efficiency continues to reduce the efficacy of anti-cancer therapeutics developed against solid tumours using various strategies, such as genetically engineered oncolytic vectors used as nanocarriers. The study was designed to evaluate the anti-tumour efficacy of a novel combinatorial therapy based on oncolytic adenovirus AdV5/3-D24-ICOSL-CD40L with an anti-PD-1 (pembrolizumab) and paclitaxel (PTX). Here, we first tested the antineoplastic effect in two-dimensional (2D) and three-dimensional (3D) breast cancer models in MDA-MB-231, MDA-MB-468 and MCF-7 cells. Then, to further evaluate the efficacy of combinatorial therapy, including immunological aspects, we established a three-dimensional (3D) co-culture model based on MDA-MB-231 cells with peripheral blood mononuclear cells (PBMCs) to create an integrated system that more closely mimics the complexity of the tumour microenvironment and interacts with the immune system. Treatment with OV as a priming agent, followed by pembrolizumab and then paclitaxel, was the most effective in reducing the tumour volume in TNBC co-cultured spheroids. Further, T-cell phenotyping analyses revealed significantly increased infiltration of CD8+, CD4+ T and Tregs cells. Moreover, the observed anti-tumour effects positively correlated with the level of CD4+ T cell infiltrates, suggesting the development of anti-cancer immunity. Our study demonstrated that combining different immunotherapeutic agents (virus, pembrolizumab) with PTX reduced the tumour volume of the TNBC co-cultured spheroids compared to relevant controls. Importantly, sequential administration of the investigational agents (priming with the vector) further enhanced the anti-cancer efficacy in 3D culture over other groups tested. Taken together, these results support further evaluation of the virus in combination with anti-PD-1 and PTX for the treatment of triple-negative breast cancer patients. Importantly, further studies with in vivo models should be conducted to better understand the translational aspects of tested therapy.
Collapse
Affiliation(s)
- Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland.
| | - Sara Mathlouthi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8036 Graz, Austria
| | - Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy.
| |
Collapse
|
11
|
Hu H, Zhu H, Zhan W, Hao B, Yan T, Zhang J, Wang S, Xu X, Zhang T. Integration of multiomics analyses reveals unique insights into CD24-mediated immunosuppressive tumor microenvironment of breast cancer. Inflamm Res 2024; 73:1047-1068. [PMID: 38622285 DOI: 10.1007/s00011-024-01882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Tumor immunotherapy brings new light and vitality to breast cancer patients, but low response rate and limitations of therapeutic targets become major obstacles to its clinical application. Recent studies have shown that CD24 is involved in an important process of tumor immune regulation in breast cancer and is a promising target for immunotherapy. METHODS In this study, singleR was used to annotate each cell subpopulation after t-distributed stochastic neighbor embedding (t-SNE) methods. Pseudo-time trace analysis and cell communication were analyzed by Monocle2 package and CellChat, respectively. A prognostic model based on CD24-related genes was constructed using several machine learning methods. Multiple quantitative immunofluorescence (MQIF) was used to evaluate the spatial relationship between CD24+PANCK+cells and exhausted CD8+T cells. RESULTS Based on the scRNA-seq analysis, 1488 CD24-related differential genes were identified, and a risk model consisting of 15 prognostic characteristic genes was constructed by combining the bulk RNA-seq data. Patients were divided into high- and low-risk groups based on the median risk score. Immune landscape analysis showed that the low-risk group showed higher infiltration of immune-promoting cells and stronger immune reactivity. The results of cell communication demonstrated a strong interaction between CD24+epithelial cells and CD8+T cells. Subsequent MQIF demonstrated a strong interaction between CD24+PANCK+ and exhausted CD8+T cells with FOXP3+ in breast cancer. Additionally, CD24+PANCK+ and CD8+FOXP3+T cells were positively associated with lower survival rates. CONCLUSION This study highlights the importance of CD24+breast cancer cells in clinical prognosis and immunosuppressive microenvironment, which may provide a new direction for improving patient outcomes.
Collapse
Affiliation(s)
- Haihong Hu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Zhu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Wendi Zhan
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Bo Hao
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ting Yan
- Department of Breast and Thyroid Surgery, The First Affiliated HospitalH, engyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jingdi Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Wang
- Department of Medical Oncology,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuefeng Xu
- Department of Function, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Phase I Clinical Trial Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
12
|
Akshatha CR, Halanaik D, Nachiappa Ganesh R, Kishore N, Ganesan P, Kayal S, Kumar H, Dubashi B. Assessment of novel prognostic biomarkers to predict pathological complete response in patients with non-metastatic triple-negative breast cancer using a window of opportunity design. Ther Adv Med Oncol 2024; 16:17588359241248329. [PMID: 38800567 PMCID: PMC11127577 DOI: 10.1177/17588359241248329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) includes approximately 20% of all breast cancer and is characterized by its aggressive nature, high recurrence rates, and visceral metastasis. Pathological complete response (pCR) is an established surrogate endpoint for survival. The window of opportunity studies provide valuable information on the disease biology prior to definitive treatment. Objectives To study the association of dynamic change in pathological, imagining, and genomic biomarkers that can prognosticate pCR. The study aims to develop a composite prognostic score. Design Clinical, interventional, and prognostic biomarker study using the novel window of opportunity design. Methods The study aims to enroll 80 treatment-naïve, pathologically confirmed TNBC patients, administering a single dose of paclitaxel and carboplatin during the window period before neoadjuvant chemotherapy (NACT). Tumor tissue will be obtained through a tru-cut biopsy, and positron emission tomography and computed tomography scans will be performed for each patient at two time points aiming to evaluate biomarker alterations. This will be followed by the administration of standard dose-dense NACT containing anthracyclines and taxanes, with the study culminating in surgery to assess pCR. Results The study would develop a composite prognostic risk score derived from the dynamic change in the Ki-67, tumor-infiltrating lymphocytes, Standardized Uptake Value (SUV max), Standardized Uptake Value for lean body mass (SUL max), and gene expression level pre- and post-intervention during the window period prior to the start of definitive treatment. This outcome will aid in categorizing the disease biology into risk categories. Trial registration The current study is approved by the Institutional Ethics Committee [Ethics: Protocol. no. JIP/IEC/2020/019]. This study was registered with ClinicalTrials.gov [CTRI Registration: CTRI/2022/06/043109]. Conclusion The validated biomarker score will help to personalize NACT protocols in patients in TNBC planned for definitive treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Smita Kayal
- Department of Medical Oncology, JIPMER, Puducherry, India
| | | | - Biswajit Dubashi
- Department of Medical Oncology, JIPMER, Dhanvantri Nagar, Puducherry 605006, India
| |
Collapse
|
13
|
Yu K, Xu C, Wang F, Wang H. Identification of the new molecular subtypes related to inflammation in breast cancer. Medicine (Baltimore) 2024; 103:e38146. [PMID: 38728446 PMCID: PMC11081544 DOI: 10.1097/md.0000000000038146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer is a prevalent ailment among women, and the inflammatory response plays a crucial role in the management and prediction of breast cancer (BRCA). However, the new subtypes based on inflammation in BRCA research are still undefined. The databases including The Cancer Genome Atlas and gene expression omnibus were utilized to gather clinical data and somatic mutation information for approximately 1069 BRCA patients. Through Consensus Clustering, novel subtypes linked to inflammation were identified. A comparative analysis was conducted on the prognosis, and immune cell infiltration, and somatic mutation of the new subtypes. Additionally, an investigation into drug therapy and immunotherapy was conducted to distinguish high-risk individuals from low-risk ones. The findings of this investigation proposed the categorization of BRCA into innovative subtypes predicated on the inflammatory response and 6 key genes were a meaningful approach. Specifically, the low-, medium-, and high-inflammation subtypes exhibited varying degrees of association with clinicopathological features, tumor microenvironment, and prognosis. Notably, the high-inflammation subtype was characterized by a strong correlation with immunosuppressive microenvironments and a higher frequency of somatic mutations, which was an indication of poorer health. This study revealed that a brand-new classification could throw new light on the effective prognosis. The integration of multiple key genes was a new characterization that could promote more immunotherapy strategies and contribute to predicting the efficacy of the chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ke Yu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Breast and Thyroid Surgery, Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Chi Xu
- Department of Breast and Thyroid Surgery, Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province, China
- Department of Gastroenterology, Affiliated of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hua Wang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Breast and Thyroid Surgery, Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
14
|
Sun Q, Li Y, Shen W, Shang W, Xu Y, Yang J, Chen J, Gao W, Wu Q, Xu F, Yang Y, Yin D. Breaking-Down Tumoral Physical Barrier by Remotely Unwrapping Metal-Polyphenol-Packaged Hyaluronidase for Optimizing Photothermal/Photodynamic Therapy-Induced Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310673. [PMID: 38284224 DOI: 10.1002/adma.202310673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The therapy of solid tumors is often hindered by the compact and rigid tumoral extracellular matrix (TECM). Precise reduction of TECM by hyaluronidase (HAase) in combination with nanotechnology is promising for solid tumor therapeutics, yet remains an enormous challenge. Inspired by the treatment of iron poisoning, here a remotely unwrapping strategy is proposed of metal-polyphenol-packaged HAase (named PPFH) by sequentially injecting PPFH and a clinically used iron-chelator deferoxamine (DFO). The in situ dynamic disassembly of PPFH can be triggered by the intravenously injected DFO, resulting in the release, reactivation, and deep penetration of encapsulated HAase inside tumors. Such a cost-effective HAase delivery strategy memorably improves the subsequent photothermal and photodynamic therapy (PTT/PDT)-induced intratumoral infiltration of cytotoxic T lymphocyte cells and the cross-talk between tumor and tumor-draining lymph nodes (TDLN), thereby decreasing the immunosuppression and optimizing tumoricidal immune response that can efficiently protect mice from tumor growth, metastasis, and recurrence in multiple mouse cancer models. Overall, this work presents a proof-of-concept of the dynamic disassembly of metal-polyphenol nanoparticles for extracellular drug delivery as well as the modulation of TECM and immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yunlong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230021, China
| | - Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jinming Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230021, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China
| |
Collapse
|
15
|
Weng L, Zhou J, Guo S, Xu N, Ma R. The molecular subtyping and precision medicine in triple-negative breast cancer---based on Fudan TNBC classification. Cancer Cell Int 2024; 24:120. [PMID: 38555429 PMCID: PMC10981301 DOI: 10.1186/s12935-024-03261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/02/2024] [Indexed: 04/02/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is widely recognized as the most aggressive form of breast cancer, occurring more frequently in younger patients and characterized by high heterogeneity, early distant metastases and poor prognosis. Multiple treatment options have failed to achieve the expected therapeutic effects due to the lack of clear molecular targets. Based on genomics, transcriptomics and metabolomics, the multi-omics analysis further clarifies TNBC subtyping, which provides a greater understanding of tumour heterogeneity and targeted therapy sensitivity. For instance, the luminal androgen receptor subtype (LAR) exhibits responsiveness to anti-AR therapy, and the basal-like immune-suppressed subtype (BLIS) tends to benefit from poly (ADP-ribose) polymerase inhibitors (PARPis) and anti-angiogenic therapy. The efficacy of multi-dimensional combination therapy holds immense importance in guiding personalized and precision medicine for TNBC. This review offers a systematic overview of recent FuDan TNBC molecular subtyping and its role in the instruction of clinical precision therapy.
Collapse
Affiliation(s)
- Lijuan Weng
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jianliang Zhou
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shenchao Guo
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Ruishuang Ma
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
16
|
Chariou PL, Minnar CM, Tandon M, Guest MR, Chari R, Schlom J, Gameiro SR. Generation of murine tumor models refractory to αPD-1/-L1 therapies due to defects in antigen processing/presentation or IFNγ signaling using CRISPR/Cas9. PLoS One 2024; 19:e0287733. [PMID: 38427670 PMCID: PMC10906908 DOI: 10.1371/journal.pone.0287733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/12/2023] [Indexed: 03/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) targeting the programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) fails to provide clinical benefit for most cancer patients due to primary or acquired resistance. Drivers of ICB resistance include tumor antigen processing/presentation machinery (APM) and IFNγ signaling mutations. Thus, there is an unmet clinical need to develop alternative therapies for these patients. To this end, we have developed a CRISPR/Cas9 approach to generate murine tumor models refractory to PD-1/-L1 inhibition due to APM/IFNγ signaling mutations. Guide RNAs were employed to delete B2m, Jak1, or Psmb9 genes in ICB-responsive EMT6 murine tumor cells. B2m was deleted in ICB-responsive MC38 murine colon cancer cells. We report a detailed development and validation workflow including whole exome and Sanger sequencing, western blotting, and flow cytometry to assess target gene deletion. Tumor response to ICB and immune effects of gene deletion were assessed in syngeneic mice. This workflow can help accelerate the discovery and development of alternative therapies and a deeper understanding of the immune consequences of tumor mutations, with potential clinical implications.
Collapse
Affiliation(s)
- Paul L. Chariou
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Christine M. Minnar
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mayank Tandon
- National Cancer Institute, CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States of America
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Mary R. Guest
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Sofia R. Gameiro
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
17
|
Luo W, Zhou Y, Wang J, Wang K, Lin Q, Li Y, Xie Y, Li M, Wang J, Xiong L. YTHDF1's Regulatory Involvement in Breast Cancer Prognosis, Immunity, and the ceRNA Network. Int J Mol Sci 2024; 25:1879. [PMID: 38339157 PMCID: PMC10856278 DOI: 10.3390/ijms25031879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), an m6A reader, has a role in the development and progression of breast cancer as well as the immunological microenvironment. The networks of competing endogenous RNA in cancer have received much attention in research. In tumor gene therapy, the regulatory networks of m6A and competing endogenous RNA are increasingly emerging as a new route. We evaluated the relationship between the YTHDF1 expression, overall survival, and clinicopathology of breast cancer using TCGA, PrognoScan, and other datasets. We used Western blot to demonstrate that YTHDF1 is substantially expressed in breast cancer tissues. Furthermore, we explored YTHDF1's functions in the tumor mutational burden, microsatellite instability, and tumor microenvironment. Our findings indicate that YTHDF1 is a critical component of the m6A regulatory proteins in breast cancer and may have a particular function in the immunological microenvironment. Crucially, we investigated the relationship between YTHDF1 and the associated competitive endogenous RNA regulatory networks, innovatively creating three such networks (Dehydrogenase/Reductase 4-Antisense RNA 1-miR-378g-YTHDF1, HLA Complex Group 9-miR-378g-YTHDF1, Taurine Up-regulated 1-miR-378g-YTHDF1). Furthermore, we showed that miR-378g could inhibit the expression of YTHDF1, and that miR-378g/YTHDF1 could impact MDA-MB-231 proliferation. We speculate that YTHDF1 may serve as a biomarker for poor prognosis and differential diagnosis, impact the growth of breast cancer cells via the ceRNA network axis, and be a target for immunotherapy against breast cancer.
Collapse
Affiliation(s)
- Wenting Luo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Youjia Zhou
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Jiayang Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qing Lin
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Yuqiu Li
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Yujie Xie
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Miao Li
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Wang
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian Province University, Xiamen 361023, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian Province University, Xiamen 361023, China
| |
Collapse
|
18
|
Al-Awadhi A, Alnaqbi S, Albawardi A. Long-Lasting Complete Remission in a Patient With Metastatic Metaplastic Breast Cancer Treated With Immune Checkpoint Inhibitor and Chemotherapy: A Case Report and a Review of the Literature. Cureus 2024; 16:e53419. [PMID: 38314378 PMCID: PMC10834218 DOI: 10.7759/cureus.53419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
Metaplastic breast cancer (MpBC) is a rare form of breast cancer known for suboptimal response to chemotherapy, high recurrence rate, poor prognosis, and limited treatment options. Recent studies have reported that MpBC has high expression of programmed death ligand 1 and tumor-infiltrating lymphocytes, indicating the potential effectiveness of immunotherapy (IO) in MpBC. In addition, several reports have demonstrated the activity of IO in MpBC. In this case report, we present a case of recurrent MpBC that achieved durable, rapid, complete remission with atezolizumab (anti-PD-L1) and nab-paclitaxel with a continued response even after discontinued therapy.
Collapse
Affiliation(s)
| | - Safia Alnaqbi
- Department of Medical Oncology, Tawam Hospital, Al Ain, ARE
| | - Alia Albawardi
- Department of Pathology, United Arab Emirates University, Al Ain, ARE
| |
Collapse
|
19
|
Sun Q, Yang J, Wu Q, Shen W, Yang Y, Yin D. Targeting Lysosome for Enhanced Cancer Photodynamic/Photothermal Therapy in a "One Stone Two Birds" Pattern. ACS APPLIED MATERIALS & INTERFACES 2024; 16:127-141. [PMID: 38118049 DOI: 10.1021/acsami.3c13162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Highly immunogenic programmed death of tumor cells, such as immunogenic cell death (ICD) and pyroptosis, strengthens antitumor responses and thus represents a promising target for cancer immunotherapy. However, the development of ICD and pyroptosis inducers remains challenging, and their efficiency is typically compromised by self-protective autophagy. Here, we report a potent ICD and pyroptosis-inducing strategy by coupling combined photodynamic/photothermal therapy (PTT/PDT) to biological processes in cancer cells. For this purpose, we rationally synthesize a lysosomal-targeting boron-dipyrromethene dimer (BDPd) with intense NIR absorption/emission, high reactive oxygen species (ROS) yield, and photothermal abilities, which can be self-assembled with Pluronic F127, producing lysosomal-acting nanomicelles (BDPd NPs) to facilitate cancer cell internalization of BDPd and generation of intracellular ROS. Owing to the favorable lysosomal-targeting ability of the morpholine group on BDPd, the intracellular BDPd NPs can accumulate in the lysosome and induce robust lysosomal damage in cancer cells upon 660 nm laser irradiation, which results in the synergetic induction of pyroptosis and ICD via activating NLRP3/GSDMD and caspase-3/GSDME pathways simultaneously. More importantly, PTT/PDT-induced self-protective autophagic degradation was blocked due to the dysfunction of lysosomes. Either intratumorally or intravenously, the injected BDPd NPs could markedly inhibit the growth of established tumor tissues upon laser activation, provoke local and systemic antitumor immune responses, and prolong the survival time in the mouse triple-negative breast cancer model. Collectively, this work represents a promising strategy to boost the therapeutic potential of PTT/PDT by coupling phototherapeutic reagents with the subcellular organelles, creating a "one stone two birds" pattern.
Collapse
Affiliation(s)
- Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jinming Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021 ,China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021 ,China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| |
Collapse
|
20
|
Wilkerson AD, Parthasarathy PB, Stabellini N, Mitchell C, Pavicic PG, Fu P, Rupani A, Husic H, Rayman PA, Swaidani S, Abraham J, Budd GT, Moore H, Al-Hilli Z, Ko JS, Baar J, Chan TA, Alban T, Diaz-Montero CM, Montero AJ. Phase II Clinical Trial of Pembrolizumab and Chemotherapy Reveals Distinct Transcriptomic Profiles by Radiologic Response in Metastatic Triple-Negative Breast Cancer. Clin Cancer Res 2024; 30:82-93. [PMID: 37882661 PMCID: PMC10767305 DOI: 10.1158/1078-0432.ccr-23-1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE A single arm, phase II trial of carboplatin, nab-paclitaxel, and pembrolizumab (CNP) in metastatic triple-negative breast cancer (mTNBC) was designed to evaluate overall response rate (ORR), progression-free survival (PFS), duration of response (DOR), safety/tolerability, overall survival (OS), and identify pathologic and transcriptomic correlates of response to therapy. PATIENTS AND METHODS Patients with ≤2 prior therapies for metastatic disease were treated with CNP regardless of tumor programmed cell death-ligand 1 status. Core tissue biopsies were obtained prior to treatment initiation. ORR was assessed using a binomial distribution. Survival was analyzed via the Kaplan-Meier method. Bulk RNA sequencing was employed for correlative studies. RESULTS Thirty patients were enrolled. The ORR was 48.0%: 2 (7%) complete responses (CR), 11 (41%) partial responses (PR), and 8 (30%) stable disease (SD). The median DOR for patients with CR or PR was 6.4 months [95% confidence interval (CI), 4-8.5 months]. For patients with CR, DOR was >24 months. Overall median PFS and OS were 5.8 (95% CI, 4.7-8.5 months) and 13.4 months (8.9-17.3 months), respectively. We identified unique transcriptomic landscapes associated with each RECIST category of radiographic treatment response. In CR and durable PR, IGHG1 expression was enriched. IGHG1high tumors were associated with improved OS (P = 0.045) and were concurrently enriched with B cells and follicular helper T cells, indicating IGHG1 as a promising marker for lymphocytic infiltration and robust response to chemo-immunotherapy. CONCLUSIONS Pretreatment tissue sampling in mTNBC treated with CNP reveals transcriptomic signatures that may predict radiographic responses to chemo-immunotherapy.
Collapse
Affiliation(s)
- Avia D. Wilkerson
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
- Cleveland Clinic Digestive Disease & Surgery Institute, Department of General Surgery, Cleveland, Ohio
| | | | - Nickolas Stabellini
- Graduate Education Office, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Carley Mitchell
- University Hospitals Cleveland Medical Center, Department of Internal Medicine, Cleveland, Ohio
| | - Paul G. Pavicic
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Pingfu Fu
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland, Ohio
| | - Amit Rupani
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Hana Husic
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Patricia A. Rayman
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Shadi Swaidani
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Jame Abraham
- Cleveland Clinic Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland, Ohio
| | - G. Thomas Budd
- Cleveland Clinic Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland, Ohio
| | - Halle Moore
- Cleveland Clinic Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland, Ohio
| | - Zahraa Al-Hilli
- Cleveland Clinic Digestive Disease & Surgery Institute, Department of General Surgery, Cleveland, Ohio
| | - Jennifer S. Ko
- Cleveland Clinic Pathology & Laboratory Medicine, Department of Anatomic Pathology, Cleveland, Ohio
| | - Joseph Baar
- University Hospitals/Seidman Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Timothy A. Chan
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Tyler Alban
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - C. Marcela Diaz-Montero
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Alberto J. Montero
- University Hospitals/Seidman Cancer Center Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
21
|
Facca VJ, Cai Z, Ku A, Georgiou CJ, Reilly RM. Adjuvant Auger Electron-Emitting Radioimmunotherapy with [ 111In]In-DOTA-Panitumumab in a Mouse Model of Local Recurrence and Metastatic Progression of Human Triple-Negative Breast Cancer. Mol Pharm 2023; 20:6407-6419. [PMID: 37983089 DOI: 10.1021/acs.molpharmaceut.3c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Triple-negative breast cancer (TNBC) has a high risk for recurrence and metastasis. We studied the effectiveness of Auger electron (AE) radioimmunotherapy (RIT) with antiepidermal growth factor receptor (EGFR) panitumumab conjugated with DOTA complexed to 111In ([111In]In-DOTA-panitumumab) for preventing metastatic progression after local treatment of 231/LM2-4 Luc+ human TNBC tumors in the mammary fat pad of NRG mice. Prior to RIT, the primary tumor was resected, and tumor margins were treated with X-irradiation (XRT; 5 days × 6 Gy/d). RIT was administered 1 day post-XRT by intravenous injection of 26 MBq (15 μg) or 2 × 10 MBq (15 μg each) separated by 7 d. These treatments were compared to tumor resection with or without XRT combined with DOTA-panitumumab (15 μg) or irrelevant [111In]In-DOTA-IgG2 (24 MBq; 15 μg), and efficacy was evaluated by Kaplan-Meier survival curves. The effect of [111In]In-DOTA-panitumumab (23 MBq; 15 μg) after tumor resection without local XRT was also studied. Tumor resection followed by XRT and RIT with 26 MBq [111In]In-DOTA-panitumumab significantly increased the median survival to 35 d compared to tumor resection with or without XRT (23-24 d; P < 0.0001). Local treatment with tumor resection and XRT followed by 2 × 10 MBq of [111In]In-DOTA-panitumumab, DOTA-panitumumab, or [111In]In-DOTA-IgG2 did not significantly improve median survival (26 days for all treatments). RIT alone with [111In]In-DOTA-panitumumab postresection of the tumor without XRT increased median survival to 29 days, though this was not significant. Despite significantly improved survival in mice treated with tumor resection, XRT, and RIT with [111In]In-DOTA-panitumumab, all mice eventually succumbed to advanced metastatic disease by 45 d post-tumor resection. SPECT/CT with [111In]In-DOTA-panitumumab, PET/MRI with [64Cu]Cu-DOTA-panitumumab F(ab')2, and PET/CT with [18F]FDG were used to detect recurrent and metastatic disease. Uptake of [111In]In-DOTA-panitumumab at 4 d p.i. in the MFP tumor was 26.8 ± 9.7% ID/g and in metastatic lymph nodes (LN), lungs, and liver was 34.2 ± 26.9% ID/g, 17.5 ± 6.0% ID/g, and 9.4 ± 2.4%ID/g, respectively, while uptake in the lungs (6.0 ± 0.9% ID/g) and liver (5.2 ± 2.9% ID/g) of non-tumor-bearing NRG was significantly lower (P < 0.05). Radiation-absorbed doses in metastatic LN, lungs, and liver were 9.7 ± 6.1, 6.4 ± 2.1, and 10.9 ± 2.7 Gy, respectively. In conclusion, we demonstrated that RIT with [111In]In-DOTA-panitumumab combined with tumor resection and XRT significantly improved the survival of mice with recurrent TNBC. However, the aggressive nature of 231/LM2-4 Luc+ tumors in NRG mice may have contributed to the tumor recurrence and progression observed.
Collapse
Affiliation(s)
- Valerie J Facca
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Anthony Ku
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Constantine J Georgiou
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
- Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Joint Department of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
22
|
Dai X, Du Y, Li Y, Yan F. Nanomaterials-based precision sonodynamic therapy enhancing immune checkpoint blockade: A promising strategy targeting solid tumor. Mater Today Bio 2023; 23:100796. [PMID: 37766898 PMCID: PMC10520454 DOI: 10.1016/j.mtbio.2023.100796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Burgeoning is an evolution from conventional photodynamic therapy (PDT). Thus, sonodynamic therapy (SDT) regulated by nanoparticles (NPs) possesses multiple advantages, including stronger penetration ability, better biological safety, and not reactive oxygen species (ROS)-dependent tumor-killing effect. However, the limitation to tumor inhibition instead of shrinkage and the incapability of eliminating metastatic tumors hinder the clinical potential for SDT. Fortunately, immune checkpoint blockade (ICB) can revive immunological function and induce a long-term immune memory against tumor rechallenges. Hence, synergizing NPs-based SDT with ICB can provide a promising therapeutic outcome for solid tumors. Herein, we briefly reviewed the progress in NPs-based SDT and ICB therapy. We highlighted the synergistic anti-tumor mechanisms and summarized the representative preclinical trials on SDT-assisted immunotherapy. Compared to other reviews, we provided comprehensive and unique perspectives on the innovative sonosensitizers in each trial. Moreover, we also discussed the current challenges and future corresponding solutions.
Collapse
Affiliation(s)
- Xinlun Dai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
23
|
Lv Y, Li M, Weng L, Huang H, Mao Y, Yang DA, Wei Q, Zhao M, Wei Q, Rui K, Han X, Fan W, Cai X, Cao P, Cao M. Ginseng-derived nanoparticles reprogram macrophages to regulate arginase-1 release for ameliorating T cell exhaustion in tumor microenvironment. J Exp Clin Cancer Res 2023; 42:322. [PMID: 38012650 PMCID: PMC10683135 DOI: 10.1186/s13046-023-02888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Lines of evidence indicated that, immune checkpoints (ICs) inhibitors enhanced T cell immune response to exert anti-tumor effects. However, T cell exhaustion has been so far a major obstacle to antitumor immunotherapy in colorectal cancer patients. Our previous studies showed that ginseng-derived nanoparticles (GDNPs) inhibited the growth of various tumors by reprograming tumor-associated macrophages (TAMs) and downregulated the ICs expression on T cells in tumor microenvironment (TME), but the underlying effector mechanisms remained unclear. METHODS The correlation between arginase-1 (ARG1) and T cells was computed based on the colorectal cancer patients in TCGA database. In vitro, we observed that GDNPs reprogrammed TAMs inhibited ARG1 release and ultimately ameliorated T cell exhaustion according to several techniques including WB, PCR, ELISA and flow cytometry. We also used an in vivo MC38 tumor-bearing model and administered GDNPs to assess their anti-tumor effects through multiple indices. The mechanism that GDNPs improved T cell exhaustion was further clarified using the bioinformatics tools and flow cytometry. RESULTS GDNPs reprogramed TAMs via reducing ARG1 production. Moreover, normalized arginine metabolism ameliorated T cell exhaustion through mTOR-T-bet axis, resulting in reduced ICs expression and enhanced CD8+ T cells expansion. CONCLUSIONS By regulating the mTOR-T-bet axis, GDNPs reprogramed macrophages to regulate ARG1 release, which further ameliorated T cell exhaustion in TME. These findings provided new insights into comprehending the mechanisms underlying the mitigation of T cell exhaustion, which may facilitate the development of innovative therapeutic strategies in the field of cancer treatment.
Collapse
Affiliation(s)
- Yan Lv
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengyuan Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling Weng
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haoying Huang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yujie Mao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qingyun Wei
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmeng Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qin Wei
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuan Han
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weiwei Fan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xueting Cai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, China.
| | - Meng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Liang Y, Wang B, Chen Q, Fu X, Jiang C, Lin Z, Zhuang Q, Zeng Y, Liu X, Zhang D. Systemic delivery of glycosylated-PEG-masked oncolytic virus enhances targeting of antitumor immuno-virotherapy and modulates T and NK cell infiltration. Theranostics 2023; 13:5452-5468. [PMID: 37908722 PMCID: PMC10614686 DOI: 10.7150/thno.87498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Immuno-virotherapy has emerged as a promising approach for cancer treatment, as it directly and cytotoxically eliminates tumors with systemic immune stimulation. However, the clinical efficacy of this approach remains limited by inappropriate delivery routes, robust antiviral responses, and the tumor immunosuppressive microenvironment. Methods: To address these challenges, we propose a surface engineering strategy that masks oncolytic herpes simplex virus (oHSV) with a galactose-polyethylene-glycol (PEG) polymer chain to minimize host antiviral responses and selectively targets tumors by limiting exposure to circulation upon systemic administration. We evaluated the antitumor efficacy of glycosylated-PEG-oHSV by examining tumor growth in animal models and analyzing tumor-infiltrating CD8+T cells and NK cells in the tumor microenvironment (TME). To assess the neutralizing antibody levels after systemic administration of glycosylated-PEG-oHSV, we utilized a mouse model and measured oHSV-specific IgG. Results: We demonstrate that the glycosylated-PEG modified oHSV does not affect the replication of oHSV yet exhibits high specificity to the asialoglycoprotein receptor (ASGPR) overexpressed in hepatocellular carcinoma cells. This results in selectively targeting cancer cells and deep penetration into tumors while avoiding spreading into the brain. Our approach also effectively reduces oHSV-specific neutralizing antibody levels to mitigate host antiviral immune response. Notably, our glycosylated-PEG-oHSV alleviates the immunosuppressive microenvironment within tumors by reducing regulatory T cells, augmenting the infiltration of activated CD8+T cells and NK cells with increasing release of anti-tumor cytokines, to impede tumor progression. Conclusion: Our findings offer a widely applicable and universal strategy to enhance cancer immuno-virotherapy through systemic administration of non-genetically engineered oncolytic viruses. This approach has the potential to overcome the limitations of current immune-virotherapy strategies and may improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Yuzhi Liang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Bing Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Qingjing Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Xingyue Fu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Chenwei Jiang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Zhiwen Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
25
|
Elgohary S, Eissa RA, El Tayebi HM. Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC Patients. Int J Mol Sci 2023; 24:14254. [PMID: 37762557 PMCID: PMC10531892 DOI: 10.3390/ijms241814254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is not only a mass of malignant cells but also a systemic inflammatory disease. BC pro-tumorigenic inflammation has been shown to promote immune evasion and provoke BC progression. The NOD-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome is activated when pattern recognition receptors (PRRs) sense danger signals such as calreticulin (CALR) from damaged/dying cells, leading to the secretion of interleukin-1β (IL-1β). CALR is a novel BC biological marker, and its high levels are associated with advanced tumors. NLRP3 expression is strongly correlated with an elevated proliferative index Ki67, BC progression, metastasis, and recurrence in patients with hormone receptor-positive (HR+) and triple-negative BC (TNBC). Tumor-associated macrophages (TAMs) secrete high levels of IL-1β promoting endocrine resistance in HR+ BC. Recently, an immunosuppressive soluble form of programmed death ligand 1 (sPD-L1) has been identified as a novel prognostic biomarker in triple-negative breast cancer (TNBC) patients. Interestingly, IL-1β induces sPD-L1 release. BC Patients with elevated IL-1β and sPD-L1 levels show significantly short progression-free survival. For the first time, this study aims to investigate the inhibitory impact of thymoquinone (TQ) on CALR, the NLRP3 pathway and sPD-L1 in HR+ and TNBC. Blood samples were collected from 45 patients with BC. The effect of differing TQ concentrations for different durations on the expression of CALR, NLRP3 complex components and IL-1β as well as the protein levels of sPD-L1 and IL-1β were investigated in the peripheral blood mononuclear cells (PBMCs) and TAMs of TNBC and HR+ BC patients, respectively. The findings showed that TQ significantly downregulated the expression of CALR, NLRP3 components and IL-1β together with the protein levels of secreted IL-1β and sPD-L1. The current findings demonstrated novel immunomodulatory effects of TQ, highlighting its potential role not only as an excellent adjuvant but also as a possible immunotherapeutic agent in HR+ and TNBC patients.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Reda A. Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
26
|
Fabi A, Carbognin L, Botticelli A, Paris I, Fuso P, Savastano MC, La Verde N, Strina C, Pedersini R, Guarino S, Curigliano G, Criscitiello C, Raffaele M, Beano A, Franco A, Valerio MR, Verderame F, Fontana A, Haspinger ER, Caldara A, Di Leone A, Tortora G, Giannarelli D, Scambia G. Real-world ANASTASE study of atezolizumab+nab-paclitaxel as first-line treatment of PD-L1-positive metastatic triple-negative breast cancer. NPJ Breast Cancer 2023; 9:73. [PMID: 37684252 PMCID: PMC10491680 DOI: 10.1038/s41523-023-00579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The combination of atezolizumab and nab-paclitaxel is recommended in the EU as first-line treatment for PD-L1-positive metastatic triple-negative breast cancer (mTNBC), based on the results of phase III IMpassion130 trial. However, 'real-world' data on this combination are limited. The ANASTASE study (NCT05609903) collected data on atezolizumab plus nab-paclitaxel in PD-L1-positive mTNBC patients enrolled in the Italian Compassionate Use Program. A retrospective analysis was conducted in 29 Italian oncology centers among patients who completed at least one cycle of treatment. Data from 52 patients were gathered. Among them, 21.1% presented de novo stage IV; 78.8% previously received (neo)adjuvant treatment; 55.8% patients had only one site of metastasis; median number of treatment cycles was five (IQR: 3-8); objective response rate was 42.3% (95% CI: 28.9-55.7%). The median time-to-treatment discontinuation was 5 months (95% CI: 2.8-7.1); clinical benefit at 12 months was 45.8%. The median duration of response was 12.7 months (95% CI: 4.1-21.4). At a median follow-up of 20 months, the median progression-free survival was 6.3 months (95% CI: 3.9-8.7) and the median time to next treatment or death was 8.1 months (95% CI: 5.5-10.7). At 12 months and 24 months, the overall survival rates were 66.3% and 49.1%, respectively. The most common immune-related adverse events included rash (23.1%), hepatitis (11.5%), thyroiditis (11.5%) and pneumonia (9.6%). Within the ANASTASE study, patients with PD-L1-positive mTNBC treated with first-line atezolizumab plus nab-paclitaxel achieved PFS and ORR similar to those reported in the IMpassion130 study, with no unexpected adverse events.
Collapse
Affiliation(s)
- Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Luisa Carbognin
- Division of Gynecology Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Botticelli
- Medical Oncology Unit, La Sapienza, University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ida Paris
- Division of Gynecology Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Fuso
- Division of Gynecology Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Nicla La Verde
- Medical Oncology Unit, ASST Fatebenefratelli Sacco PO Luigi Sacco - Polo Universitario, Milan, Italy
| | - Carla Strina
- Medical Oncology Unit Azienda Socio-Sanitaria Territoriale Cremona, Cremona, Italy
| | | | - Stefania Guarino
- Medical Oncology Unit Santa Maria della Misericordia Hospital, Urbino, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Mimma Raffaele
- Presidio Cassia Sant'andrea, Dipartimento Oncologico, Asl Roma1, Rome, Italy
| | - Alessandra Beano
- Department of Medical Oncology1, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Antonio Franco
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | | | - Andrea Fontana
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | | | - Alba Di Leone
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Giannarelli
- Epidemiology and Biostatistics Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Division of Gynecology Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
27
|
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer 2023; 22:145. [PMID: 37660039 PMCID: PMC10474743 DOI: 10.1186/s12943-023-01850-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
28
|
Zhu T, Wang J, Li J, Zhang Q, Shang Y, Zhou J, Min L, Lv B, Luo K. A serum LncRNA signature for predicting prognosis of triple-negative breast cancer. Clin Chim Acta 2023; 549:117535. [PMID: 37690662 DOI: 10.1016/j.cca.2023.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Breast cancer is the leading causes of cancer-associated mortality among women, and triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Long non-coding RNAs (LncRNAs) have recently been studied to predict the prognosis of various cancers, but whether it is an effective marker in TNBC is inconclusive. METHODS We used RNA-sequencing analysis to identify differentially expressed exosomal LncRNAs, and qRT-PCR assay was performed to verify dysregulated LncRNAs in multicenter validation cohorts. A signature, which was composed of LINC00989, CEA, and CA153, was then utilized to predict the progression and recurrence of TNBC. Kaplan-Meier analysis was applied to evaluate the prognostic values of the signature. RESULTS On the basis of RNA-sequencing analysis, we found that serum exosomal LncRNA LINC00989 was significantly up-regulated in metastatic patients of TNBC. Then LINC00989, together with clinic marker CEA and CA125, were selected to construct a prognostic signature. In both training and validation cohort, higher levels of this signature were significantly related with shorter overall and progression-free survival time. Univariate and multivariate analysis shown that the signature was the independent prognosis factor of TNBC patients. CONCLUSIONS Our results suggested that this prognostic signature might potentially predict prognosis and recurrence of TNBC, and was worth validation in future clinical trials.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 Guangdong, China
| | - Junjun Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong, China
| | - Juan Li
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 Guangdong, China
| | - Qichao Zhang
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 Guangdong, China
| | - Yanyan Shang
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 Guangdong, China
| | - Junhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 Guangdong, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 Guangdong, China
| | - Bo Lv
- Department of General Practice, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080 Guangdong, China.
| | - Kai Luo
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 Guangdong, China.
| |
Collapse
|
29
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
30
|
Wang C, Shen N, Guo Q, Tan X, He S. YAP/STAT3 inhibited CD8 + T cells activity in the breast cancer immune microenvironment by inducing M2 polarization of tumor-associated macrophages. Cancer Med 2023; 12:16295-16309. [PMID: 37329188 PMCID: PMC10469732 DOI: 10.1002/cam4.6242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/29/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of cancer-related death among women. One of the hallmarks of cancer is sustained angiogenesis. YAP/STAT3 may promote angiogenesis and driving BC progression. This study aimed to investigate how YAP/STAT3 affects the immune microenvironment in BC and understand the underlying mechanism. METHODS To establish a tumor-associated macrophages (TAMs) model, macrophages were cultured in the 4T1 cell culture medium. A BC mouse model was created by injecting 4T1 cells. The expression of YAP, STAT3, p-STAT3, VEGF, VEGFR-2, and PD-L1 was analyzed using immunofluorescence, western blotting, and quantitative real-time PCR. Flow cytometry was used to identify M1 and M2 macrophages, CD4+ T, CD8+ T, and Treg cells. Levels of iNOS, IL-12, IL-10, TGF-β, Arg-1, and CCL-22 were measured using enzyme-linked immunosorbent assay. Co-IP was used to verify whether YAP binds to STAT3. Hematoxylin-eosin staining was used to observe tumor morphology. Cell counting kit-8 was selected to detect T-cell proliferation. RESULTS YAP, STAT3, P-STAT3, VEGF, VEGFR-2, and PD-L1 were highly expressed in BC tissues. The M2/M1 macrophages ratio increased in the TAMs group compared with the control group. Inhibiting of YAP and STAT3 decreased the M2/M1 macrophages ratio. YAP was found to bind with STAT3. T-cell proliferation was enhanced after YAP inhibition, and overexpression of STAT3 reversed the regulation of YAP on T-cell proliferation. In animal studies, inhibiting YAP inhibited tumor weight and volume development. After YAP inhibition, inflammatory infiltration, M2/M1 macrophage ratio, and Treg cell ratio declined, while CD8+ and CD4+ T-cell ratio increased. CONCLUSION In conclusion, this study suggested inhibition of YAP/STAT3 reversed M2 polarization of TAMs and suppressed CD8+ T-cell activity in the BC immune microenvironment. These findings open up new avenues for the development of innovative therapies in the treatment of BC.
Collapse
Affiliation(s)
- Chen Wang
- Department of OncologyGanzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang UniversityGanzhouP. R. China
| | - Ningning Shen
- Department of pharmacyGanzhou Women and Children's Health Care HospitalGanzhouP. R. China
| | - Qingling Guo
- Department of OncologyBinhaiwan Central Hospital of DongguanDongguanP. R. China
| | - Xiaohua Tan
- Department of OncologyShenzhen Third People's HospitalShenzhenP. R. China
| | - Shaozhong He
- Department of OncologyBinhaiwan Central Hospital of DongguanDongguanP. R. China
- Department of OncologyShenzhen Third People's HospitalShenzhenP. R. China
| |
Collapse
|
31
|
Tian Y, Dong J, Li L. Bridging Pyroptosis and Immunity: A Comprehensive Study of the Pyroptosis-Related Long Non-Coding RNA Signature in Breast Cancer. Life (Basel) 2023; 13:1599. [PMID: 37511974 PMCID: PMC10381440 DOI: 10.3390/life13071599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer continuously poses serious clinical challenges to human health due to its intrinsic heterogenicity and evolving drug resistance. Recently, increasing evidence has shown that pyroptosis, known as a programmed and inflammatory form of cell death, participates in tumorigenesis, progression, and remodeling of the tumor immune microenvironment (TIME). However, a comprehensive insight into pyroptosis-related signatures for breast cancer remains elusive. The current study established a pyroptosis-related lncRNA signature using transcriptome data and corresponding clinical information from The Cancer Genome Atlas (TCGA). Pyroptosis-related gene clusters, the associated differential expression in breast cancer patients' subtypes, and the potential mechanisms were all discussed. This integrative analysis revealed a unique signature underpinning the dichotomy of breast cancer progression and survival outcomes. Interestingly, the pyroptosis-related lncRNA signature was revealed as closely intertwined with the TIME. A correlation was established between the pyroptosis-related LncRNA signature and the TIME, underlying the mutual effect between pyroptosis and the immune responses implicated in breast cancer. The findings in this work underline the critical role exerted by pyroptosis in breast cancer, providing new insights into disease progression, prognosis, and therapeutic potential. This work has been poised to provide new avenues for personalized, immune-based cancer therapeutics by enhancing our understanding of pyroptosis in breast cancer.
Collapse
Affiliation(s)
- Ye Tian
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
32
|
Park TS, Pusztai L. ASO Author Reflections: Immunotherapy and Breast Cancer-Spotlight on Early Stage TNBC. Ann Surg Oncol 2023:10.1245/s10434-023-13957-8. [PMID: 37474698 DOI: 10.1245/s10434-023-13957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Tristen S Park
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| | - Lajos Pusztai
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
33
|
Zheng Y, Li S, Tang H, Meng X, Zheng Q. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Front Immunol 2023; 14:1153990. [PMID: 37426654 PMCID: PMC10327275 DOI: 10.3389/fimmu.2023.1153990] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
The emergence of immunotherapy has profoundly changed the treatment model for triple-negative breast cancer (TNBC). But the heterogeneity of this disease resulted in significant differences in immunotherapy efficacy, and only some patients are able to benefit from this therapeutic modality. With the recent explosion in studies on the mechanism of cancer immunotherapy drug resistance, this article will focus on the processes of the immune response; summarize the immune evasion mechanisms in TNBC into three categories: loss of tumor-specific antigen, antigen presentation deficiency, and failure to initiate an immune response; together with the aberrant activation of a series of immune-critical signaling pathways, we will discuss how these activities jointly shape the immunosuppressive landscape within the tumor microenvironment. This review will attempt to elucidate the molecular mechanism of drug resistance in TNBC, identify potential targets that may assist in reversing drug resistance, and lay a foundation for research on identifying biomarkers for predicting immune efficacy and selection of breast cancer populations that may benefit from immunotherapy.
Collapse
Affiliation(s)
- Yiwen Zheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shujin Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Vinod N, Hwang D, Fussell SC, Owens TC, Tofade OC, Copling S, Ramsey JD, Rädler PD, Atkins HM, Livingston EE, Ezzell JA, Sokolsky-Papkov M, Yuan H, Perou CM, Kabanov AV. Combination of Polymeric Micelle Formulation of TGFβ Receptor Inhibitors and Paclitaxel Produce Consistent Response Across Different Mouse Models of TNBC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544381. [PMID: 37398150 PMCID: PMC10312717 DOI: 10.1101/2023.06.14.544381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Triple-negative breast cancer (TNBC) is notoriously difficult to treat due to the lack of targetable receptors and sometimes poor response to chemotherapy. The transforming growth factor-beta (TGFβ) family of proteins and their receptors (TGFR) are highly expressed in TNBC and implicated in chemotherapy-induced cancer stemness. Here we evaluated combination treatments using experimental TGFR inhibitors (TGFβi), SB525334 (SB), and LY2109761 (LY) with Paclitaxel (PTX) chemotherapy. These TGFβi target TGFR-I (SB) or both TGFR-I&II (LY). Due to the poor water solubility of these drugs, we incorporated each of them in poly(2-oxazoline) (POx) high-capacity polymeric micelles (SB-POx and LY-POx). We assessed their anti-cancer effect as single agents and in combination with micellar Paclitaxel (PTX-POx) using multiple immunocompetent TNBC mouse models that mimic human subtypes (4T1, T11-Apobec and T11-UV). While either TGFβi or PTX showed a differential effect in each model as single agents, the combinations were consistently effective against all three models. Genetic profiling of the tumors revealed differences in the expression levels of genes associated with TGFβ, EMT, TLR-4, and Bcl2 signaling, alluding to the susceptibility to specific gene signatures to the treatment. Taken together, our study suggests that TGFβi and PTX combination therapy using high-capacity POx micelle delivery provides a robust anti-tumor response in multiple TNBC subtype mouse models.
Collapse
Affiliation(s)
- Natasha Vinod
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
- Joint UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Sloane Christian Fussell
- Department of Biology, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tyler Cannon Owens
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Olaoluwa Christopher Tofade
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Sage Copling
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Jacob D. Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Patrick D. Rädler
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, United States
| | - Hannah M. Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Pathology and Laboratory Medicine, Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Eric E. Livingston
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - J. Ashley Ezzell
- Histology Research Core, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Hong Yuan
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, United States
| | - Alexander V. Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| |
Collapse
|
35
|
Zheng X, Ma H, Dong Y, Fang M, Wang J, Xiong X, Liang J, Han M, You A, Yin Q, Huang W. Immune-related biomarkers predict the prognosis and immune response of breast cancer based on bioinformatic analysis and machine learning. Funct Integr Genomics 2023; 23:201. [PMID: 37291471 DOI: 10.1007/s10142-023-01124-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Breast cancer (BC) is the malignancy with the highest mortality rate among women, identification of immune-related biomarkers facilitates precise diagnosis and improvement of the survival rate in early-stage BC patients. 38 hub genes significantly positively correlated with tumor grade were identified based on weighted gene coexpression network analysis (WGCNA) by integrating the clinical traits and transcriptome analysis. Six candidate genes were screened from 38 hub genes basing on least absolute shrinkage and selection operator (LASSO)-Cox and random forest. Four upregulated genes (CDC20, CDCA5, TTK and UBE2C) were identified as biomarkers with the log-rank p < 0.05, in which high expression levels of them showed a poor overall survival (OS) and recurrence-free survival (RFS). A risk model was finally constructed using LASSO-Cox regression coefficients and it possessed superior capability to identify high risk patients and predict OS (p < 0.0001, AUC at 1-, 3- and 5-years are 0.81, 0.73 and 0.79, respectively). Decision curve analysis demonstrated risk score was the best prognostic predictor, and low risk represented a longer survival time and lower tumor grade. Importantly, multiple immune cell types and immunotherapy targets were observed increase in expression levels in high-risk group, most of which were significantly correlated with four genes. In summary, the immune-related biomarkers could accurately predict the prognosis and character the immune responses in BC patients. In addition, the risk model is conducive to the tiered diagnosis and treatment of BC patients.
Collapse
Affiliation(s)
- Xuewei Zheng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yirui Dong
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Mengmiao Fang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Junxiang Wang
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, China
| | - Xin Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Liang
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Meng Han
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Aimin You
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinan Yin
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| | - Wenbin Huang
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
36
|
Qu X, Zhou D, Lu J, Qin D, Zhou J, Liu HJ. Cancer nanomedicine in preoperative therapeutics: Nanotechnology-enabled neoadjuvant chemotherapy, radiotherapy, immunotherapy, and phototherapy. Bioact Mater 2023; 24:136-152. [PMID: 36606253 PMCID: PMC9792706 DOI: 10.1016/j.bioactmat.2022.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Surgical resection remains a mainstay in the treatment of malignant solid tumors. However, the use of neoadjuvant treatments, including chemotherapy, radiotherapy, phototherapy, and immunotherapy, either alone or in combination, as a preoperative intervention regimen, have attracted increasing attention in the last decade. Early randomized, controlled trials in some tumor settings have not shown a significant difference between the survival rates in long-term neoadjuvant therapy and adjuvant therapy. However, this has not hampered the increasing use of neoadjuvant treatments in clinical practice, due to its evident downstaging of primary tumors to delineate the surgical margin, tailoring systemic therapy response as a clinical tool to optimize subsequent therapeutic regimens, and decreasing the need for surgery, with its potential for increased morbidity. The recent expansion of nanotechnology-based nanomedicine and related medical technologies provides a new approach to address the current challenges of neoadjuvant therapy for preoperative therapeutics. This review not only summarizes how nanomedicine plays an important role in a range of neoadjuvant therapeutic modalities, but also highlights the potential use of nanomedicine as neoadjuvant therapy in preclinical and clinic settings for tumor management.
Collapse
Affiliation(s)
- Xiaogang Qu
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Dong Zhou
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Jianpu Lu
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
37
|
Li J, Goh ELK, He J, Li Y, Fan Z, Yu Z, Yuan P, Liu DX. Emerging Intrinsic Therapeutic Targets for Metastatic Breast Cancer. BIOLOGY 2023; 12:697. [PMID: 37237509 PMCID: PMC10215321 DOI: 10.3390/biology12050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Eyleen L. K. Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ji He
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan 250033, China;
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
38
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
39
|
CD24-associated ceRNA network reveals prognostic biomarkers in breast carcinoma. Sci Rep 2023; 13:3826. [PMID: 36882451 PMCID: PMC9992383 DOI: 10.1038/s41598-022-25072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/24/2022] [Indexed: 03/09/2023] Open
Abstract
Breast cancer is one of the most common cancer types which is described as the leading cause of cancer death in women. After competitive endogenous RNA (ceRNA) hypothesis was proposed, this triple regulatory network has been observed in various cancers, and increasing evidences reveal that ceRNA network plays a significant role in the migration, invasion, proliferation of cancer cells. In the current study, our target is to construct a CD24-associated ceRNA network, and to further identify key prognostic biomarkers in breast cancer. Using the transcriptom profiles from TCGA database, we performed a comprehensive analysis between CD24high tumor samples and CD24low tumor samples, and identified 132 DElncRNAs, 602 DEmRNAs and 26 DEmiRNAs. Through comprehensive analysis, RP1-228H13.5/miR-135a-5p/BEND3 and SIM2 were identified as key CD24-associated biomarkers, which exhibited highly significance with overall survival, immune microenvironment as well as clinical features. To sum up the above, the current study constructed a CD24-associated ceRNA network, and RP1-228H13.5/miR-135a-5p/BEND3 and SIM2 axis worked as a potential therapeutic target and a predictor for BRCA diagnosis and prognosis.
Collapse
|
40
|
Chang Q, Fan L, Li M, Liu L. Novel diagnostic biomarkers of T cell-mediated tumor killing characteristics for early-stage triple negative breast cancer: A SEER analysis and molecular portraits. Medicine (Baltimore) 2023; 102:e33059. [PMID: 36827041 PMCID: PMC11309610 DOI: 10.1097/md.0000000000033059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
The primary objective was to investigate the epidemiology, molecular characteristics, and clinical survival to identify potential transcriptome biomarkers to promote early diagnosis and screening of triple-negative breast cancer patients. Early-stage triple-negative breast cancer patients (E-TNBC) and late-stage triple-negative breast cancer patients (L-TNBC) were identified from the Surveillance, Epidemiology, and End Results database from 2010 to 2019. The difference in cancer specific survival (CSS) and overall survival (OS) between E-TNBC and L-TNBC was analyzed via a Kaplan-Meier plotter. 118 triple-negative breast cancer samples and 114 normal samples with the RNA sequencing expression data were selected from the cohort of TCGA breast cancer from UCSC Xena Database. The study involved 13,690 patients with L-TNBC and 44,994 patients with E-TNBC. L-TNBC patients were more frequently to be ≤ 60 years old (54.9% vs 52.2%), multiple primary site (44.0% vs 30.1%), and were more likely to receive radiotherapy (49.6% vs 47.4%) and chemotherapy (81.1% vs 72.1%), while L-TNBC patients were less likely to be white (68.7% vs 73.0%), married or with domestic partner (46.7% vs 54.7%), poorly differentiated grade (54.0% vs 61.9%), < 3 months from diagnosis to treatment (91.6% vs 96.4%), and were less likely to receive surgery (72.3% vs 95.4%). Stage-stratified survival analysis revealed that the prognosis of L-TNBC was worse when compared to E-TNBC, Kaplan-Meier analysis demonstrated that there were striking differences in OS and CSS between E-TNBC and L-TNBC. In the multivariable regression models, L-TNBC was the single highest risk factor, with a death risk that was 4.741 and 6.074 times higher than E-TNBC in terms of OS and CSS, respectively. The results also showed that treatment with surgery, radiation, or chemotherapy was effective for a better prognosis. Transcriptome analyses revealed that the top 5 upregulated genes in L-TNBC were, respectively, ISX, ALOX15B, MADCAM1, TP63, and ARG1 compared with E-TNBC. And the top 5 downregulated genes were, respectively, CTAG1B, CT45A1, MAGEC2, TFF2, and TNFRSF11B. The L-TNBC exhibited a lower rate of survival than E-TNBC, and the 2 groups differed in terms of transcriptome characteristics. To date, the diagnostic value of T cell-mediated tumor killing portraits on E-TNBC may not be completely recognized.
Collapse
Affiliation(s)
- Qing Chang
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Early Screening and Health Management for Cancer, China-Japan Union Hospital of Jilin University, Changchun, China
- Biotechnology and Medical Materials Engineering Research Center of Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liwen Fan
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mo Li
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Early Screening and Health Management for Cancer, China-Japan Union Hospital of Jilin University, Changchun, China
- Biotechnology and Medical Materials Engineering Research Center of Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
A hierarchical tumor-targeting strategy for eliciting potent antitumor immunity against triple negative breast cancer. Biomaterials 2023; 296:122067. [PMID: 36854221 DOI: 10.1016/j.biomaterials.2023.122067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Triple negative breast cancer (TNBC) as a highly aggressive and metastatic malignancy lacks targeting therapies nowadays. Moreover, although immune checkpoint blockade (ICB) is known to trigger anti-tumor immune response, most TNBC falls into the immunologically "cold" category unsuitable for ICB therapy due to insufficient lymphocyte infiltration. Herein, we develop a hierarchical targeting strategy for preparing a core-shell-structural nanodrug to concurrently block the programmed death ligand 1 (PD-L1) and deliver a stimulator of interferon gene (STING) agonist into tumor-infiltrating antigen-presenting cells (APCs). The nanodrug complexed the interferon stimulatory DNA (ISD) for STING activation in its core, conjugated PD-L1 antibody (aPD-L1) on its shell through a matrix metalloproteinase-2 (MMP-2) substrate peptide, and incorporated "hidden" mannose in its sublayer. Through aPD-L1-mediated active targeting of tumor cells and tumor-infiltrating APCs, the nanodrug efficiently accumulated in tumor sites. Then, the PD-L1-conjugating peptide was cleaved by tumor-enriched MMP-2, leaving aPD-L1 on target cells for ICB while exposing mannose to mediate targeted delivery of ISD into tumor-infiltrating dendritic cells (DCs) and tumor-associated macrophages (TAMs). Activating the STING signaling in DCs and TAMs not only stimulated the APCs maturation to prime anti-tumor immunity but also induced their chemokine secretion to promote tumor infiltration of anti-tumor effector T cells, thus sensitizing TNBC to the ICB therapy. Consequently, a potent antitumor immunity was evoked to effectively inhibit the tumor growth and metastasis in mice bearing orthotopic 4T1 breast cancer, showing the great potential in treating immunologically "cold" tumors.
Collapse
|
42
|
Wang F, Wang H. Diagnostic value of ultrasound elastography in triple negative breast cancer: A meta-analysis. Medicine (Baltimore) 2023; 102:e32879. [PMID: 36820576 PMCID: PMC9907922 DOI: 10.1097/md.0000000000032879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The purpose of this study was to determine the value of ultrasound elastic imaging (UE) in the differential diagnosis of the 3 negative breast cancer (TNBC) and non-TNBC. METHODS We searched the PubMed, Cochrane Library, and CBM databases from inception to July 20, 2022 and used STATA version 14.0 and Meta-Disc version 1.4 software. We computed summary statistics for sensitivity (Sen), specificity, positive and negative likelihood ratio (LR+/LR-), diagnostic odds ratio, and summary receiver operating characteristic curves. Cochran Q-statistic and I2 test were used to assess potential heterogeneity between studies. Sen analysis was carried out to evaluate the effect of a single study on overall estimation. We also conducted a meta regression analysis to investigate potential sources of heterogeneity. RESULTS Nine studies that fulfilled all the criteria for acceptance were incorporated into the meta-analysis. TNBC 317 and non-TNBC 1055 cases were evaluated. All breast tumors were histologically confirmed. The pooled Sen was 0.78 (95% confidence interval [CI] = 0.58-0.90); the pooled specificity was 0.86 (95%CI = 0.78-0.91). The pooled LR+ was 5.46 (95%CI = 3.07-9.73); the pooled negative LR- was 0.26 (95%CI = 0.12-0.55). The pooled diagnostic odds ratio of UE was 21.00 (95% CI = 6.14-71.78). The area under the summary receiver operating characteristic curve was 0.89 (SE = 0.0378). No evidence was found to reveal bias (t = 0.10, P = .92). CONCLUSION Our meta-analysis showed that UE could have high diagnostic accuracy in distinguishing TNBC and non-TNBC.
Collapse
Affiliation(s)
- Fei Wang
- Breast surgery Department of the First Affiliated Hospital of Dalian Medical University, Liaoning Province, China
| | - Hongjiang Wang
- Breast surgery Department of the First Affiliated Hospital of Dalian Medical University, Liaoning Province, China
- * Correspondence: Hongjiang Wang, Breast Surgery Department of the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian City, Liaoning Province 116001, China (e-mail: )
| |
Collapse
|
43
|
Mishra A, Kumar D, Gupta K, Lofland G, Sharma AK, Banka DS, Hobbs RF, Dannals RF, Rowe SP, Gabrielson E, Nimmagadda S. Gallium-68-labeled Peptide PET Quantifies Tumor Exposure of PD-L1 Therapeutics. Clin Cancer Res 2023; 29:581-591. [PMID: 36449662 PMCID: PMC9890130 DOI: 10.1158/1078-0432.ccr-22-1931] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Immune checkpoint therapy (ICT) is currently ineffective in a majority of patients. Tumor drug exposure measurements can provide vital insights into mechanisms involved in the resistance of solid tumors to those therapeutics; however, tools to quantify in situ drug exposure are few. We have investigated the potential of programmed death-ligand 1 (PD-L1) pharmacodynamics, quantified using PET, to inform on the tumor exposure of anti-PD-L1 (aPD-L1) therapeutics. EXPERIMENTAL DESIGN To noninvasively quantify PD-L1 levels, we first developed a novel peptide-based gallium-68-labeled binder, [68Ga]Ga-DK223, and evaluated its in vivo distribution, pharmacokinetics, and PD-L1 specificity in preclinical models of triple-negative breast cancer and urothelial carcinoma with variable PD-L1 expression. We then quantified baseline and accessible PD-L1 levels in tumors as a noninvasive pharmacodynamic measure to assess tumor exposure to two aPD-L1 antibodies (avelumab and durvalumab). RESULTS DK223 exhibited a KD of 1.01±0.83 nmol/L for PD-L1 and inhibited the PD-1:PD-L1 interaction in a dose-dependent manner. [68Ga]Ga-DK223 provides high-contrast PET images within 60 minutes of administration and detects PD-L1 in an expression-dependent manner in xenograft models. PD-L1 pharmacodynamics measured using [68Ga]Ga-DK223-PET revealed that avelumab and durvalumab had similar exposure early during therapy, but only durvalumab exhibited sustained exposure at the tumor. CONCLUSIONS [68Ga]Ga-DK223 detected variable PD-L1 levels and exhibited salient features required for clinical translation. [68Ga]Ga-DK223-PET could be useful for quantifying total PD-L1 levels at baseline and accessible PD-L1 levels during therapy to understand drug exposure at the tumor, thus supporting its use for guiding and optimizing ICT.
Collapse
Affiliation(s)
- Akhilesh Mishra
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Chemical & Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Dhiraj Kumar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kuldeep Gupta
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gabriela Lofland
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ajay Kumar Sharma
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dhanush S. Banka
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert F. Hobbs
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert F. Dannals
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg–Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg–Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Corresponding Author: Sridhar Nimmagadda, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB II, #492, Baltimore, MD 21287. Phone: 410-502-6244, Fax: 410-614-3147, E-mail:
| |
Collapse
|
44
|
Li Y, Zhang Y, Wu Z, Sun P. Overexpression of TPM4 is associated with worse prognosis and immune infiltration in patients with glioma. BMC Neurol 2023; 23:17. [PMID: 36639743 PMCID: PMC9837963 DOI: 10.1186/s12883-023-03058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Tropomyosin 4 (TPM4), a member of the tropomyosin family, is aberrantly expressed and plays an important role in a variety of cancers. However, studies on TPM4 in glioma patients are currently lacking. OBJECTIVE Our study aimed to evaluate the diagnostic and prognostic characteristics of TPM4 in glioma and its correlation with immune infiltration. METHODS Bioinformatic analysis was performed to determine whether TPM4 has diagnostic and prognostic value for glioma. The following databases and analytical tools were used to explore the clinical significance of TPM4 in glioma: TCGA, GTEx, GEO, STRING, and TISIDB. RESULTS Our study showed that the mRNA and protein expression levels of TPM4 were significantly higher in glioma than in healthy brain tissue. Kaplan-Meier analysis indicated that high expression of TPM4 in glioma correlated with poor prognosis. Univariate Cox analysis indicated that the high expression level of TPM4 in glioma was an independent prognostic characteristic for low overall survival (OS). The areas under the 1-year survival ROC, 2-year survival ROC, and 3-year survival ROC were all greater than 0.8. GO and KEGG enrichment analysis and GSEA showed that humoral immune response and cytokine receptor interaction were significantly enriched in the TPM4 high expression group, where M phase of the cell cycle, neutrophil degranulation, signaling by interleukins, and signaling by rho GTPases were significantly enriched. Furthermore, according to the analysis of immune cell infiltration, TPM4 was associated with tumor infiltration of a variety of immune cells. CONCLUSIONS In conclusion, our study suggests that TPM4 may be an effective prognostic biomarker for glioma patients, providing new ideas and research directions for glioma research.
Collapse
Affiliation(s)
- Yao Li
- grid.410645.20000 0001 0455 0905Department of Neurosurgery, Qingdao University, Qingdao, 266003 Shandong Province China
| | - Yanan Zhang
- grid.268079.20000 0004 1790 6079Department of Anesthesiology, Weifang Medical University, Weifang, 261053 Shandong Province China
| | - Zeyu Wu
- grid.412521.10000 0004 1769 1119Department of Neurosurgery, Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266003 Shandong Province China
| | - Peng Sun
- grid.412521.10000 0004 1769 1119Department of Neurosurgery, Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266003 Shandong Province China
| |
Collapse
|
45
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
46
|
He R, Yuan X, Chen Z, Zheng Y. Combined immunotherapy for metastatic triple-negative breast cancer based on PD-1/PD-L1 immune checkpoint blocking. Int Immunopharmacol 2022; 113:109444. [DOI: 10.1016/j.intimp.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
47
|
Capaccione KM, Valiplackal JP, Huang A, Roa T, Fruauff A, Liou C, Kim E, Khurana S, Maher M, Ma H, Ngyuen P, Mak S, Dumeer S, Lala S, D'souza B, Laifer-Narin S, Desperito E, Ruzal-Shapiro C, Salvatore MM. Checkpoint Inhibitor Immune-Related Adverse Events: A Multimodality Pictorial Review. Acad Radiol 2022; 29:1869-1884. [PMID: 35382975 DOI: 10.1016/j.acra.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapies are drugs that modulate the body's own immune system as an anticancer strategy. Checkpoint inhibitor immunotherapies interfere with cell surface binding proteins that function to promote self-recognition and tolerance, ultimately leading to upregulation of the immune response. Given the striking success of these agents in early trials in melanoma and lung cancer, they have now been studied in many types of cancer and have become a pillar of anticancer therapy for many tumor types. However, abundant upregulation results in a new class of side effects, known as immune-related adverse events (IRAEs). It is critical for the practicing radiologist to be able to recognize these events to best contribute to care for patients on checkpoint inhibitor immunotherapy. Here, we provide a comprehensive system-based review of immune-related adverse events and associated imaging findings. Further, we detail the best imaging modalities for each as well as describe problem solving modalities. Given that IRAEs can be subclinical before becoming clinically apparent, radiologists may be the first provider to recognize them, providing an opportunity for early treatment. Awareness of IRAEs and how to best image them will prepare radiologists to make a meaningful contribution to patient care as part of the clinical team.
Collapse
Affiliation(s)
- Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032.
| | - Jacienta P Valiplackal
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Alice Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Tina Roa
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Alana Fruauff
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Connie Liou
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Eleanor Kim
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Sakshi Khurana
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Mary Maher
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Pamela Ngyuen
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Serena Mak
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Shifali Dumeer
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Sonali Lala
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Belinda D'souza
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Sherelle Laifer-Narin
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Carrie Ruzal-Shapiro
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| | - Mary M Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168(th) Street, New York, New York, 10032
| |
Collapse
|
48
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Xie J, Zheng S, Zou Y, Tang Y, Tian W, Wong CW, Wu S, Ou X, Zhao W, Cai M, Xie X. Turning up a new pattern: Identification of cancer-associated fibroblast-related clusters in TNBC. Front Immunol 2022; 13:1022147. [PMID: 36275659 PMCID: PMC9583405 DOI: 10.3389/fimmu.2022.1022147] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Growing evidence indicates a connection between cancer-associated fibroblasts (CAFs) and tumor microenvironment (TME) remodeling and tumor progression. Nevertheless, how patterns of CAFs impact TME and immunotherapy responsiveness in triple-negative breast cancer (TNBC) remains unclear. Here, we systematically investigate the relationship between TNBC progression and patterns of CAFs. By using unsupervised clustering methods in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, we identified two distinct CAF-associated clusters that were related to clinical features, characteristics of TME, and prognosis of patients. Then, we established a CAF-related prognosis index (CPI) by the least absolute shrinkage and selection operator (LASSO)-Cox regression method. CPI showed prognostic accuracy in both training and validation cohorts (METABRIC, GSE96058, and GSE21653). Consequently, we constructed a nomogram with great predictive performance. Moreover, the CPI was verified to be correlated with the responsiveness of immunotherapy in three independent cohorts (GSE91061, GSE165252, and GSE173839). Taken together, the CPI might help us improve our recognition of the TME of TNBC, predict the prognosis of TNBC patients, and offer more immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Jindong Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuhui Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenwen Tian
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chau-Wei Wong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Song Wu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xueqi Ou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wanzhen Zhao
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xiaoming Xie, ; Manbo Cai,
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Xiaoming Xie, ; Manbo Cai,
| |
Collapse
|
50
|
Chang Q, Chang L, Li M, Fan L, Bao S, Wang X, Liu L. Nanobiotherapeutic strategies to target immune microenvironment of triple-negative breast cancer. Am J Cancer Res 2022; 12:4083-4102. [PMID: 36225648 PMCID: PMC9548023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the subtype with the least favourable outcomes in breast cancer. Besides chemotherapy, there is a chronic lack of other effective treatments. Advances in omic technologies have liberated us from the ambiguity of TNBC heterogeneity in terms of cancer cell and immune microenvironment in recent years. This new understanding of TNBC pathology has already led to the exploitation of novel nanoparticulate systems, including tumor vaccines, oncolytic viruses, and antibody derivatives. The revolutionary ideas in the therapeutic landscape provide new opportunities for TNBC patients. Translating these experimental medicines into clinical benefit is both appreciated and challenging. In this review, we describe the prospective nanobiotherapy of TNBC that has been developed to overcome clinical obstacles, and provide our vision for this booming field at the overlap of cancer biotherapy and nanomaterial design.
Collapse
Affiliation(s)
- Qing Chang
- Department of Radiotherapy, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
- Jilin Provincial Key Laboratory of Early Screening and Health Management for Cancer, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
- Biotechnology and Medical Materials Engineering Research Center of Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
| | - Liang Chang
- Xi’an Technological UniversityXi’an, Shanxi, China
| | - Mo Li
- The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Liwen Fan
- Department of Radiotherapy, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
| | - Shunchao Bao
- Department of Radiotherapy, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
| | - Xinyu Wang
- The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Linlin Liu
- Department of Radiotherapy, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
- Jilin Provincial Key Laboratory of Early Screening and Health Management for Cancer, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
- Biotechnology and Medical Materials Engineering Research Center of Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|