1
|
Cappannoli L, Colantuono S, Animati FM, Fracassi F, Galli M, Aurigemma C, Romagnoli E, Montone RA, Lunardi M, Paraggio L, Ierardi C, Baglivo I, Caruso C, Trani C, Burzotta F. Aspirin Hypersensitivity in Patients with Coronary Artery Disease: An Updated Review and Practical Recommendations. Biomolecules 2024; 14:1329. [PMID: 39456262 PMCID: PMC11506836 DOI: 10.3390/biom14101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Acetylsalicylic acid (ASA) represents a cornerstone of antiplatelet therapy for the treatment of atherosclerotic coronary artery disease (CAD). ASA is in fact indicated in case of an acute coronary syndrome or after a percutaneous coronary intervention with stent implantation. Aspirin hypersensitivity is frequently reported by patients, and this challenging situation requires a careful evaluation of the true nature of the presumed sensitivity and of its mechanisms, as well as to differentiate it from a more frequent (and more easily manageable) aspirin intolerance. Two main strategies are available to allow ASA administration for patients with CAD and suspected ASA hypersensitivity: a low-dose ASA challenge, aimed at assessing the tolerability of ASA at the antiplatelet dose of 100 mg, and desensitization, a therapeutic procedure which aims to induce tolerance to ASA. For those patients who cannot undergo ASA challenge and desensitization due to previous serious adverse reactions, or for those in whom desensitization was unsuccessful, a number of further alternative strategies are available, even if these have not been validated and approved by guidelines. The aim of this state-of-the-art review is therefore to summarize the established evidence regarding pathophysiology, clinical presentation, diagnosis, and management of aspirin hypersensitivity and to provide a practical guide for cardiologists (and clinicians) who have to face the not uncommon situation of a patient with concomitant coronary artery disease and aspirin hypersensitivity.
Collapse
Affiliation(s)
- Luigi Cappannoli
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Dipartimento di Scienze Cardiovascolari—CUORE, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Stefania Colantuono
- UOSD DH Medicina Interna e Malattie Dell’apparato Digerente, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Maria Animati
- Facoltà di Medicina e Chirurgia, Dipartimento di Scienze Cardiovascolari—CUORE, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Francesco Fracassi
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Latina, Italy
| | - Cristina Aurigemma
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enrico Romagnoli
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Rocco Antonio Montone
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mattia Lunardi
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lazzaro Paraggio
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Carolina Ierardi
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ilaria Baglivo
- UOC CEMAD Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristiano Caruso
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Carlo Trani
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Dipartimento di Scienze Cardiovascolari—CUORE, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Francesco Burzotta
- Dipartimento di Scienze Cardiovascolari—CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Dipartimento di Scienze Cardiovascolari—CUORE, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| |
Collapse
|
2
|
Preda D, Radu GL, Iorgulescu EE, Cheregi MC, David IG. Curcumin-Based Molecularly Imprinted Polymer Electropolymerized on Single-Use Graphite Electrode for Dipyridamole Analysis. Molecules 2024; 29:4630. [PMID: 39407560 PMCID: PMC11477586 DOI: 10.3390/molecules29194630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A new molecularly imprinted polymer (MIP)-based disposable electrochemical sensor for dipyridamole (DIP) determination was obtained. The sensor was rapidly prepared by potentiodynamic electrochemical polymerization on a pencil graphite electrode (PGE) using curcumin (CUR) as a functional monomer and DIP as a template molecule. After the optimization of the conditions (pH, monomer-template ratio, scan rate, number of cyclic voltammetric cycles applied in the electro-polymerization process and extraction time of the template molecule) for MIP formation, DIP voltammetric behavior at the modified electrode (MIP_PGE) was investigated. DIP oxidation took place in a pH-dependent, irreversible mixed diffusion-adsorption controlled process. Differential pulse voltammetry (DPV) and adsorptive stripping differential pulse voltammetry (AdSDPV) were used to quantify DIP from pharmaceutical and tap water samples. Under optimized conditions (Britton-Robinson buffer at pH = 3.29), the obtained linear ranges were 5.00 × 10-8-1.00 × 10-5 mol/L and 5.00 × 10-9-1.00 × 10-7 mol/L DIP for DPV and AdSDPV, respectively. The limits of detection of the methods were 1.47 × 10-8 mol/L for DPV and 3.96 × 10-9 mol/L DIP for AdSDPV.
Collapse
Affiliation(s)
- Daniel Preda
- Doctoral School of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu Street 1-7, District 1, 011061 Bucharest, Romania;
| | - Gabriel Lucian Radu
- National Institute of Biological Sciences, Centre of Bioanalysis, Splaiul Independentei 296, District 6, 060031 Bucharest, Romania
| | - Emilia-Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Avenue 90-92, District 5, 050663 Bucharest, Romania; (E.-E.I.); (M.-C.C.)
| | - Mihaela-Carmen Cheregi
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Avenue 90-92, District 5, 050663 Bucharest, Romania; (E.-E.I.); (M.-C.C.)
| | - Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Avenue 90-92, District 5, 050663 Bucharest, Romania; (E.-E.I.); (M.-C.C.)
| |
Collapse
|
3
|
Li H, Yang W, Shang Z, Lu Y, Shen A, Chen D, Lin G, Li M, Li R, Wu M, Guo Z, Qu H, Fu C, Yu Z, Chen K. Dehydrocorydaline attenuates myocardial ischemia-reperfusion injury via the FoXO signalling pathway: A multimodal study based on network pharmacology, molecular docking, and experimental study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118738. [PMID: 39222757 DOI: 10.1016/j.jep.2024.118738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dehydrocorydaline (DHC), an active component of Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae), exhibits protective and pain-relieving effects on coronary heart disease, but the underlying mechanism still remains unknown. AIM OF THE STUDY Network pharmacology and experimental validation both in vivo and in vitro were applied to assess whether DHC can treat myocardial ischemia-reperfusion injury (MIRI) by regulating the forkhead box O (FoxO) signalling pathway to inhibit apoptosis. MATERIALS AND METHODS DHC and MIRI targets were retrieved from various databases. Molecular docking and microscale thermophoresis (MST) determined potential binding affinity. An in vivo mouse model of MIRI was established by ligating the left anterior descending coronary artery. C57BL/6N mice were divided into sham, MIRI, and DHC (intraperitoneal injection of 5 mg/kg DHC) groups. Haematoxylin and eosin, Masson, and immunohistochemical stainings verified DHC treatment effects and the involved signalling pathways. In vitro, H9c2 cells were incubated with DHC and underwent hypoxia/reoxygenation. TUNEL, JC-1, and reactive oxygen species stainings and western blots were used to explore the protective effects of DHC and the underlying mechanisms. RESULTS Venny analysis identified 120 common targets from 121 DHC and 23,354 MIRI targets. DHC exhibited high affinity for CCND1, CDK2, and MDM2 (<-7 kcal/mol). In vivo, DHC attenuated decreases in left ventricular ejection fraction and fractional shortening, reduced infarct sizes, and decreased cTnI and lactate dehydrogenase levels. In vitro, DHC alleviated apoptosis and oxidative stress in the hypoxia/reoxygenation model by attenuating ΔΨm disruption; reducing the production of reactive oxygen species; upregulating Bax and CCND1 via the FoxO signalling pathway, as well as cleaved-caspase 8; downregulating the apoptosis-associated proteins Bcl-2, Bid, cleaved-caspase 3, and cleaved-caspase 9; and promoting the phosphorylation of FOXO1A and MDM2. CONCLUSION By upregulating the FoxO signaling pathway to inhibit apoptosis, DHC exerts a cardioprotective effect, which could serve as a potential therapeutic option for MIRI.
Collapse
Affiliation(s)
- Hongzheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, 100053, China.
| | - Wenwen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, 100053, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Mengfan Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Renfeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Zhi Guo
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Zikai Yu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| |
Collapse
|
4
|
Ehlen QT, Mirsky NA, Slavin BV, Parra M, Nayak VV, Cronstein B, Witek L, Coelho PG. Translational Experimental Basis of Indirect Adenosine Receptor Agonist Stimulation for Bone Regeneration: A Review. Int J Mol Sci 2024; 25:6104. [PMID: 38892291 PMCID: PMC11172580 DOI: 10.3390/ijms25116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Bone regeneration remains a significant clinical challenge, often necessitating surgical approaches when healing bone defects and fracture nonunions. Within this context, the modulation of adenosine signaling pathways has emerged as a promising therapeutic option, encouraging osteoblast activation and tempering osteoclast differentiation. A literature review of the PubMed database with relevant keywords was conducted. The search criteria involved in vitro or in vivo models, with clear methodological descriptions. Only studies that included the use of indirect adenosine agonists, looking at the effects of bone regeneration, were considered relevant according to the eligibility criteria. A total of 29 articles were identified which met the inclusion and exclusion criteria, and they were reviewed to highlight the preclinical translation of adenosine agonists. While preclinical studies demonstrate the therapeutic potential of adenosine signaling in bone regeneration, its clinical application remains unrealized, underscoring the need for further clinical trials. To date, only large, preclinical animal models using indirect adenosine agonists have been successful in stimulating bone regeneration. The adenosine receptors (A1, A2A, A2B, and A3) stimulate various pathways, inducing different cellular responses. Specifically, indirect adenosine agonists act to increase the extracellular concentration of adenosine, subsequently agonizing the respective adenosine receptors. The agonism of each receptor is dependent on its expression on the cell surface, the extracellular concentration of adenosine, and its affinity for adenosine. This comprehensive review analyzed the multitude of indirect agonists currently being studied preclinically for bone regeneration, discussing the mechanisms of each agonist, their cellular responses in vitro, and their effects on bone formation in vivo.
Collapse
Affiliation(s)
- Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bruce Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Hsu K. Erythroid anion transport, nitric oxide, and blood pressure. Front Physiol 2024; 15:1363987. [PMID: 38660536 PMCID: PMC11039876 DOI: 10.3389/fphys.2024.1363987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Glycophorin A and glycophorin B are structural membrane glycoproteins bound in the band 3 multiprotein complexes on human red blood cells (RBCs). Band 3 is an erythroid-specific anion exchanger (AE1). AE1-mediated HCO3 - transport provides the substrate for the enzyme-catalyzed conversion HCO3 - (aq) ⇌ CO2(g), which takes place inside the RBCs. Bicarbonate transport via AE1 supports intravascular acid-base homeostasis and respiratory excretion of CO2. In the past decade, we conducted several comparative physiology studies on Taiwanese people having the glycophorin variant GPMur RBC type (which accompanies greater AE1 expression). We found that increased anion transport across the erythrocyte membrane not only enhances gas exchange and lung functions but also elevates blood pressure (BP) and reduces nitric oxide (NO)-dependent vasodilation and exhaled NO fraction (FeNO) in healthy individuals with GP.Mur. Notably, in people carrying the GPMur blood type, the BP and NO-dependent, flow-mediated vasodilation (FMD) are both more strongly correlated with individual hemoglobin (Hb) levels. As blood NO and nitrite (NO2 -) are predominantly scavenged by intraerythrocytic Hb, and NO2 - primarily enters RBCs via AE1, could a more monoanion-permeable RBC membrane (i.e., GPMur/increased AE1) enhance NO2 -/NO3 - permeability and Hb scavenging of NO2 - and NO to affect blood pressure? In this perspective, a working model is proposed for the potential role of AE1 in intravascular NO availability, blood pressure, and clinical relevance.
Collapse
Affiliation(s)
- Kate Hsu
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
6
|
Watanabe T, Yamamoto Y, Kurahashi Y, Kawasoe K, Kidoguchi K, Ureshino H, Kamachi K, Yoshida-Sakai N, Fukuda-Kurahashi Y, Nakamura H, Okada S, Sueoka E, Kimura S. Reprogramming of pyrimidine nucleotide metabolism supports vigorous cell proliferation of normal and malignant T cells. Blood Adv 2024; 8:1345-1358. [PMID: 38190613 PMCID: PMC10945144 DOI: 10.1182/bloodadvances.2023011131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024] Open
Abstract
ABSTRACT Adult T-cell leukemia/lymphoma (ATL) is triggered by infection with human T-cell lymphotropic virus-1 (HTLV-1). Here, we describe the reprogramming of pyrimidine biosynthesis in both normal T cells and ATL cells through regulation of uridine-cytidine kinase 2 (UCK2), which supports vigorous proliferation. UCK2 catalyzes the monophosphorylation of cytidine/uridine and their analogues during pyrimidine biosynthesis and drug metabolism. We found that UCK2 was overexpressed aberrantly in HTLV-1-infected T cells but not in normal T cells. T-cell activation via T-cell receptor (TCR) signaling induced expression of UCK2 in normal T cells. Somatic alterations and epigenetic modifications in ATL cells activate TCR signaling. Therefore, we believe that expression of UCK2 in HTLV-1-infected cells is induced by dysregulated TCR signaling. Recently, we established azacitidine-resistant (AZA-R) cells showing absent expression of UCK2. AZA-R cells proliferated normally in vitro, whereas UCK2 knockdown inhibited ATL cell growth. Although uridine and cytidine accumulated in AZA-R cells, possibly because of dysfunction of pyrimidine salvage biosynthesis induced by loss of UCK2 expression, the amount of UTP and CTP was almost the same as in parental cells. Furthermore, AZA-R cells were more susceptible to an inhibitor of dihydroorotic acid dehydrogenase, which performs the rate-limiting enzyme of de novo pyrimidine nucleotide biosynthesis, and more resistant to dipyridamole, an inhibitor of pyrimidine salvage biosynthesis, suggesting that AZA-R cells adapt to UCK2 loss by increasing de novo pyrimidine nucleotide biosynthesis. Taken together, the data suggest that fine-tuning pyrimidine biosynthesis supports vigorous cell proliferation of both normal T cells and ATL cells.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- OHARA Pharmaceutical Co, Ltd, Shiga, Japan
| | - Kazunori Kawasoe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Keisuke Kidoguchi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- OHARA Pharmaceutical Co, Ltd, Shiga, Japan
| | - Hideaki Nakamura
- Department of Transfusion Medicine, Saga University Hospital, Saga, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
7
|
Šeba T, Kerep R, Weitner T, Šoić D, Keser T, Lauc G, Gabričević M. Influence of Desialylation on the Drug Binding Affinity of Human Alpha-1-Acid Glycoprotein Assessed by Microscale Thermophoresis. Pharmaceutics 2024; 16:230. [PMID: 38399284 PMCID: PMC10893521 DOI: 10.3390/pharmaceutics16020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Human serum alpha-1-acid glycoprotein (AAG) is an acute-phase plasma protein involved in the binding and transport of many drugs, especially basic and lipophilic substances. The sialic acid groups that terminate the N-glycan chains of AAG have been reported to change in response to numerous health conditions and may have an impact on the binding of drugs to AAG. In this study, we quantified the binding between native and desialylated AAG and seven drugs from different pharmacotherapeutic groups (carvedilol, diltiazem, dipyridamole, imipramine, lidocaine, propranolol, vinblastine) using microscale thermophoresis (MST). This method was chosen due to its robustness and high sensitivity, allowing precise quantification of molecular interactions based on the thermophoretic movement of fluorescent molecules. Detailed glycan analysis of native and desialylated AAG showed over 98% reduction in sialic acid content for the enzymatically desialylated AAG. The MST results indicate that desialylation generally alters the binding affinity between AAG and drugs, leading to either an increase or decrease in Kd values, probably due to conformational changes of AAG caused by the different sialic acid content. This effect is also reflected in an increased denaturation temperature of desialylated AAG. Our findings indicate that desialylation impacts free drug concentrations differently, depending on the binding affinity of the drug with AAG relative to human serum albumin (HSA). For drugs such as dipyridamole, lidocaine, and carvedilol, which have a higher affinity for AAG, desialylation significantly changes free drug concentrations. In contrast, drugs such as propranolol, imipramine, and vinblastine, which have a strong albumin binding, show only minimal changes. It is noteworthy that the free drug concentration of dipyridamole is particularly sensitive to changes in AAG concentration and glycosylation, with a decrease of up to 15% being observed, underscoring the need for dosage adjustments in personalized medicine.
Collapse
Affiliation(s)
- Tino Šeba
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (T.Š.); (R.K.); (T.W.)
| | - Robert Kerep
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (T.Š.); (R.K.); (T.W.)
| | - Tin Weitner
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (T.Š.); (R.K.); (T.W.)
| | - Dinko Šoić
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (D.Š.); (T.K.); (G.L.)
| | - Toma Keser
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (D.Š.); (T.K.); (G.L.)
| | - Gordan Lauc
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (D.Š.); (T.K.); (G.L.)
| | - Mario Gabričević
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia; (T.Š.); (R.K.); (T.W.)
| |
Collapse
|
8
|
Xu J, Wang Y, Li P, Chen C, Jiang Z, Wang X, Liu P. PRUNE1 (located on chromosome 1q21.3) promotes multiple myeloma with 1q21 Gain by enhancing the links between purine and mitochondrion. Br J Haematol 2023; 203:599-613. [PMID: 37666675 DOI: 10.1111/bjh.19088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Patients with multiple myeloma (MM) with chromosome 1q21 Gain (1q21+) are clinically and biologically heterogeneous. 1q21+ in the real world actually reflects the prognosis for gain/amplification of the CKS1B gene. In this study, we found that the copy number of prune exopolyphosphatase 1 (PRUNE1), located on chromosome 1q21.3, could further stratify the prognosis of MM patients with 1q21+. Using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS), transmission electron microscopy (TEM), confocal fluorescence microscopy, calculation of adenosine triphosphate (ATP), intracellular reactive oxygen species (ROS) and mitochondrial oxygen consumption rates (OCRs), we demonstrated for the first time that PRUNE1 promotes the proliferation and invasion of MM cells by stimulating purine metabolism, purine synthesis enzymes and mitochondrial functions, enhancing links between purinosomes and mitochondria. SOX11 was identified as a transcription factor for PRUNE1. Through integrated analysis of the transcriptome and proteome, CD73 was determined to be the downstream target of PRUNE1. Furthermore, it has been determined that dipyridamole can effectively suppress the proliferation of MM cells with high-expression levels of PRUNE1 in vitro and in vivo. These findings provide insights into disease-causing mechanisms and new therapeutic targets for MM patients with 1q21+.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Panpan Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Jiang
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xiaona Wang
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| |
Collapse
|
9
|
Capuzzi E, Caldiroli A, Quitadamo C, Butturini F, Surace T, Clerici M, Buoli M. Novel pharmacotherapy targeting the positive symptoms of schizophrenia. Expert Opin Pharmacother 2023; 24:1623-1648. [PMID: 37401388 DOI: 10.1080/14656566.2023.2231346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION The severity of positive symptoms in schizophrenia is associated with poor prognosis. About one-third of schizophrenia patients partially respond to treatment with available antipsychotics. The purpose of the present manuscript is to provide an updated overview of novel pharmacotherapy targeting positive symptoms in schizophrenia. AREAS COVERED A comprehensive research on the main database sources (PubMed, PsychINFO, Isi Web of Knowledge, MEDLINE, and EMBASE) was performed to obtain original articles published till 31st January 2023 about new pharmacological strategies for the treatment of positive symptoms in schizophrenia. EXPERT OPINION The most promising compounds include: lamotrigine, pro-cognitive-compounds (donepezil - in the short term, idazoxan and piracetam) and drugs acting partially or totally outside the Central Nervous System (CNS) (anti-inflammatory drugs: celecoxib, methotrexate; cardiovascular compounds: L-theanine, mononitrate isosorbide, propentofylline, sodium nitroprusside; metabolic regulators: diazoxide, allopurinol; others: bexarotene, raloxifene [in women]). The effectiveness of the latter compounds indicates that other biological systems, such as immunity or metabolism can be object of future research to identify pharmacological targets for positive symptoms of schizophrenia. Mirtazapine could be useful for treating negative symptoms without increasing the risk of a worsening of delusions/hallucinations. Nevertheless, the lack of replication of studies prevents to draw definitive conclusions and future studies are needed to confirm the findings presented in this overview.
Collapse
Affiliation(s)
- Enrico Capuzzi
- Fondazione IRCCS, Department of Mental Health and Addiction, San Gerardo Dei Tintori, Monza, Italy
| | - Alice Caldiroli
- Fondazione IRCCS, Department of Mental Health and Addiction, San Gerardo Dei Tintori, Monza, Italy
| | - Cecilia Quitadamo
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, MB, Italy
| | - Francesco Butturini
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, MB, Italy
| | - Teresa Surace
- Fondazione IRCCS, Department of Mental Health and Addiction, San Gerardo Dei Tintori, Monza, Italy
| | - Massimo Clerici
- Fondazione IRCCS, Department of Mental Health and Addiction, San Gerardo Dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, MB, Italy
| | - Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Virk HUH, Escobar J, Rodriguez M, Bates ER, Khalid U, Jneid H, Birnbaum Y, Levine GN, Smith SC, Krittanawong C. Dual Antiplatelet Therapy: A Concise Review for Clinicians. Life (Basel) 2023; 13:1580. [PMID: 37511955 PMCID: PMC10381391 DOI: 10.3390/life13071580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Dual antiplatelet therapy (DAPT) combines two antiplatelet agents to decrease the risk of thrombotic complications associated with atherosclerotic cardiovascular diseases. Emerging data about the duration of DAPT is being published continuously. New approaches are trying to balance the time, benefits, and risks for patients taking DAPT for established cardiovascular diseases. Short-term dual DAPT of 3-6 months, or even 1 month in high-bleeding risk patients, is equivalent in terms of efficacy and effectiveness compared to long-term DAPT for patients who experienced percutaneous coronary intervention in an acute coronary syndrome setting. Prolonged DAPT beyond 12 months reduces stent thrombosis, major adverse cardiovascular events, and myocardial infarction rates but increases bleeding risk. Extended DAPT does not significantly benefit stable coronary artery disease patients in reducing stroke, myocardial infarction, or cardiovascular death. Ticagrelor and aspirin reduce cardiovascular events in stable coronary artery disease with diabetes but carry a higher bleeding risk. Antiplatelet therapy duration in atrial fibrillation patients after percutaneous coronary intervention depends on individual characteristics and bleeding risk. Antiplatelet therapy is crucial for post-coronary artery bypass graft and transcatheter aortic valve implantation; Aspirin (ASA) monotherapy is preferred. Antiplatelet therapy duration in peripheral artery disease depends on the scenario. Adding vorapaxar and cilostazol may benefit secondary prevention and claudication, respectively. Carotid artery disease patients with transient ischemic attack or stroke benefit from antiplatelet therapy and combining ASA and clopidogrel is more effective than ASA alone. The optimal duration of DAPT after carotid artery stenting is uncertain. Resistance to ASA and clopidogrel poses an incremental risk of deleterious cardiovascular events and stroke. The selection and duration of antiplatelet therapy in patients with cardiovascular disease requires careful consideration of both efficacy and safety outcomes. The use of combination therapies may provide added benefits but should be weighed against the risk of bleeding. Further research and clinical trials are needed to optimize antiplatelet treatment in different patient populations and clinical scenarios.
Collapse
Affiliation(s)
- Hafeez Ul Hassan Virk
- Harrington Heart & Vascular Institute, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH 44101, USA
| | - Johao Escobar
- International Transitional Medical Graduate, American College of Physician, Philadelphia, PA 19106, USA
| | - Mario Rodriguez
- John T Milliken Department of Medicine, Division of Cardiovascular Disease, Section of Advanced Heart Failure and Transplant, Barnes-Jewish Hospital, Washington University, St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Eric R Bates
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Umair Khalid
- Michael E. DeBakey VA Medical Center, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hani Jneid
- Division of Cardiology, University of Texas Medical Branch, Houston, TX 77555, USA
| | - Yochai Birnbaum
- Michael E. DeBakey VA Medical Center, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Glenn N Levine
- Michael E. DeBakey VA Medical Center, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sidney C Smith
- Division of Cardiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chayakrit Krittanawong
- Cardiology Division, NYU School of Medicine, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
11
|
Cassavaugh J, Qureshi N, Csizmadia E, Longhi MS, Matyal R, Robson SC. Regulation of Hypoxic-Adenosinergic Signaling by Estrogen: Implications for Microvascular Injury. Pharmaceuticals (Basel) 2023; 16:422. [PMID: 36986520 PMCID: PMC10059944 DOI: 10.3390/ph16030422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Loss of estrogen, as occurs with normal aging, leads to increased inflammation, pathologic angiogenesis, impaired mitochondrial function, and microvascular disease. While the influence of estrogens on purinergic pathways is largely unknown, extracellular adenosine, generated at high levels by CD39 and CD73, is known to be anti-inflammatory in the vasculature. To further define the cellular mechanisms necessary for vascular protection, we investigated how estrogen modulates hypoxic-adenosinergic vascular signaling responses and angiogenesis. Expression of estrogen receptors, purinergic mediators inclusive of adenosine, adenosine deaminase (ADA), and ATP were measured in human endothelial cells. Standard tube formation and wound healing assays were performed to assess angiogenesis in vitro. The impacts on purinergic responses in vivo were modeled using cardiac tissue from ovariectomized mice. CD39 and estrogen receptor alpha (ERα) levels were markedly increased in presence of estradiol (E2). Suppression of ERα resulted in decreased CD39 expression. Expression of ENT1 was decreased in an ER-dependent manner. Extracellular ATP and ADA activity levels decreased following E2 exposure while levels of adenosine increased. Phosphorylation of ERK1/2 increased following E2 treatment and was attenuated by blocking adenosine receptor (AR) and ER activity. Estradiol boosted angiogenesis, while inhibition of estrogen decreased tube formation in vitro. Expression of CD39 and phospho-ERK1/2 decreased in cardiac tissues from ovariectomized mice, whereas ENT1 expression increased with expected decreases in blood adenosine levels. Estradiol-induced upregulation of CD39 substantially increases adenosine availability, while augmenting vascular protective signaling responses. Control of CD39 by ERα follows on transcriptional regulation. These data suggest novel therapeutic avenues to explore in the amelioration of post-menopausal cardiovascular disease, by modulation of adenosinergic mechanisms.
Collapse
Affiliation(s)
- Jessica Cassavaugh
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
12
|
Keller M, Rohlf K, Glotzbach A, Leonhardt G, Lüke S, Derksen K, Demirci Ö, Göçener D, AlWahsh M, Lambert J, Lindskog C, Schmidt M, Brenner W, Baumann M, Zent E, Zischinsky ML, Hellwig B, Madjar K, Rahnenführer J, Overbeck N, Reinders J, Cadenas C, Hengstler JG, Edlund K, Marchan R. Inhibiting the glycerophosphodiesterase EDI3 in ER-HER2+ breast cancer cells resistant to HER2-targeted therapy reduces viability and tumour growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:25. [PMID: 36670508 PMCID: PMC9854078 DOI: 10.1186/s13046-022-02578-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored. METHODS EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo. RESULTS In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3β, and transcription factors, including HIF1α, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo. CONCLUSIONS Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.
Collapse
Affiliation(s)
- Magdalena Keller
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Katharina Rohlf
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Annika Glotzbach
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Gregor Leonhardt
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Simon Lüke
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Katharina Derksen
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Özlem Demirci
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Defne Göçener
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Mohammad AlWahsh
- grid.419243.90000 0004 0492 9407Leibniz Institut Für Analytische Wissenschaften - ISAS E.V, Dortmund, Germany ,grid.411778.c0000 0001 2162 1728Institute of Pathology and Medical Research Center (ZMF), University Medical Center Mannheim, Heidelberg University, Mannheim, Germany ,grid.443348.c0000 0001 0244 5415Department of Pharmacy, AlZaytoonah University of Jordan, Amman, Jordan
| | - Jörg Lambert
- grid.419243.90000 0004 0492 9407Leibniz Institut Für Analytische Wissenschaften - ISAS E.V, Dortmund, Germany
| | - Cecilia Lindskog
- grid.8993.b0000 0004 1936 9457Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcus Schmidt
- grid.410607.4Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Walburgis Brenner
- grid.410607.4Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Baumann
- grid.505582.fPharmacology Department, Lead Discovery Center, Dortmund, Germany
| | - Eldar Zent
- grid.505582.fPharmacology Department, Lead Discovery Center, Dortmund, Germany
| | - Mia-Lisa Zischinsky
- grid.505582.fPharmacology Department, Lead Discovery Center, Dortmund, Germany
| | - Birte Hellwig
- grid.5675.10000 0001 0416 9637Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Katrin Madjar
- grid.5675.10000 0001 0416 9637Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Jörg Rahnenführer
- grid.5675.10000 0001 0416 9637Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Nina Overbeck
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Jörg Reinders
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Cristina Cadenas
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Jan G. Hengstler
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Karolina Edlund
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Rosemarie Marchan
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
13
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
14
|
Thakker RA, Salazar L, Jazar DA, Bhakta P, Baker B, Patel C, Elbadawi A, Agarwal M, Albaeni A, Saleh M, Esclovan J, El Haddad D, Alwash H, Kalra A, Goel SS, Widmer RJ, Chatila K, Khalife W, Motiwala A, McCracken J, Jneid H, Gilani S. Coronary Artery Disease and Aspirin Intolerance: Background and Insights on Current Management. Cardiol Ther 2022; 11:175-183. [PMID: 35344187 PMCID: PMC9135937 DOI: 10.1007/s40119-022-00255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Aspirin is one of the most widely used medications across the global healthcare system and is the foundation in treating ischemic heart disease, as well as secondary prevention for ischemic and valvular heart disease. Challenges arise in treating patients with cardiovascular disease who have concomitant aspirin intolerance. Through an extensive review of the literature, we provide a comprehensive background on the pharmacology of aspirin, the mechanisms behind aspirin intolerance, the importance of aspirin in cardiovascular disease, and the management of aspirin intolerance in both acute coronary syndrome and stable coronary artery disease. Our review includes a multidisciplinary approach from the internist, allergist/immunologist, and cardiologist when evaluating this important patient population.
Collapse
Affiliation(s)
- Ravi A Thakker
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Leonardo Salazar
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Deaa Abu Jazar
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pooja Bhakta
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Bryan Baker
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chandani Patel
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ayman Elbadawi
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mayank Agarwal
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Aiham Albaeni
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mohammed Saleh
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan Esclovan
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Danielle El Haddad
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hashim Alwash
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ankur Kalra
- Division of Cardiovascular Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sachin S Goel
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Robert Jay Widmer
- Division of Cardiology, Scott and White Heart Memorial Hospital, Baylor Scott and White Health, Temple, TX, USA
| | - Khaled Chatila
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wissam Khalife
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Afaq Motiwala
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer McCracken
- Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hani Jneid
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Syed Gilani
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|