1
|
Sarvari M, Alavi-Moghadam S, Aghayan HR, Tayanloo-Beik A, Payab M, Tootee A, Sajjadi-Jazi SM, Larijani B, Arjmand B. Stem cells researches and therapies towards endocrine diseases treatment; strategies, challenges, and opportunities. J Diabetes Metab Disord 2024; 23:1461-1467. [PMID: 39610510 PMCID: PMC11599503 DOI: 10.1007/s40200-020-00674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Due to the limitations of organ transplantation and the urgent need for treatment of chronic diseases, the benefit of stem cells for treatment has been studied and evaluated as an effective approach worldwide. One of the leading countries in this field is Iran. In this respect, several research and treatment institutes, including endocrinology and metabolism research institute are active in the use of stem cells in Iran. Herein, the aim is to review strategies, challenges, and opportunities for stem cell research and treatment in endocrinology and metabolism research institute.
Collapse
Affiliation(s)
- Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Tootee
- Diabetes Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Iqbal M, Zubair M, Saeed Awan A, Khan Y, Yasmin H, Rahim R, Srichand P, Pal SA, Mazhar SB, Sohail R, Zaman F, Ali S, Ali T. Consensus Statements for Assessment and Management of Threatened Miscarriage in the First Trimester in Pakistan: A Three-Step Modified Delphi Approach. Cureus 2024; 16:e65079. [PMID: 39171060 PMCID: PMC11337146 DOI: 10.7759/cureus.65079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVE It aimed to develop an expert consensus regarding the risk assessment, diagnosis, and threatened miscarriage management during the first trimester in Pakistan. METHODS A three-step modified Delphi method was applied to develop the consensus. Eleven specialized obstetricians and gynecologists participated in its development. If 75% or higher agreement level was attained on each assertion, it was declared as a consensus. RESULTS Age of 35 or above, previous history of two or more previous miscarriages, and direct strong trauma were considered to be threatened miscarriage risk factors. Infection was discussed and specified to include specific infectious diseases, like malaria, and COVID-19 as a risk factor. The experts agreed from the first time on considering endocrinological disorders, thrombophilia, and lifestyle variables as threatened miscarriage risk factors. They proposed adding a statement concerning acquired thrombophilia which was accepted unanimously. Finally, experts agreed on the importance of educating pregnant women about factors whose risk can be modified by modifying their behavior. As for diagnosis statements, it was agreed to be trifold: physical examination, imaging, and laboratory testing. Physical examination included abdominal and pelvic exams but focused more on vaginal examination with speculum to identify bleeding severity and etiology. The statements regarding the imaging approaches to diagnose threatened miscarriage in the first trimester achieved a consensus in most statements. TVS was recommended to check on uterine structural abnormalities, fetus viability focusing on heartbeat and crown-to-rump length, gestation sac size and emptiness, subchorionic hematoma, and ectopic pregnancy. Each was defined on how to identify and diagnose in separate statements. Statements about laboratory tests indicated the need for human chorionic gonadotropin hormone assessment whether serial or once is dependent on the ultrasound. Recommended hematologic investigations include complete blood count for anemia, Rh factor for potential bleeding risk and in special cases, thrombophilia assessment is undertaken. The first and foremost management aspect was follow-up while most management statements were controversial, and some were altogether removed with only some reaching agreement after discussion. CONCLUSION These consensus statements aggregated the best available evidence and experts' opinion-supported statements to improve patient education, risk assessment, diagnosis, and evaluation as well as management of threatened miscarriage during the first trimester in Pakistan.
Collapse
Affiliation(s)
- Maryam Iqbal
- Obstetrics and Gynecology, Integrated Medical Care Hospital, Lahore, PAK
| | - Maryam Zubair
- Obstetrics and Gynecology, Azad Jammu Kashmir Medical College, Muzaffarabad, PAK
| | - Azra Saeed Awan
- Obstetrics and Gynecology, Fauji Foundation Hospital, Rawalpindi, PAK
| | - Yousaf Khan
- Obstetrics and Gynecology, Hameed Latif Hospital, Lahore, PAK
| | - Haleema Yasmin
- Obstetrics and Gynecology, Jinnah Postgraduate Medical Center (JPMC), Karachi, PAK
| | - Rehana Rahim
- Obstetrics and Gynecology, Lady Ready Hospital, Peshawar, PAK
| | - Pushpa Srichand
- Obstetrics and Gynecology, Isra University Hospital, Hyderabad, PAK
| | - Sadiah A Pal
- Epidemiology, Concept Fertility Center, Karachi, PAK
| | - Syeda Batool Mazhar
- Obstetrics and Gynecology, Pakistan Institute of Medical Sciences, Islamabad, PAK
| | - Rubina Sohail
- Epidemiology and Public Health, Hameed Latif Hospital, Lahore, PAK
| | - Farrukh Zaman
- Obstetrics and Gynecology, Hameed Latif Hospital, Lahore, PAK
| | - Sobia Ali
- Medical Affairs, Established Pharmaceutical Division, Abbott Laboratories (Pakistan) Limited, Karachi, PAK
| | - Tabrez Ali
- Medical Affairs, Established Pharmaceutical Division, Abbott Laboratories (Pakistan) Limited, Karachi, PAK
| |
Collapse
|
3
|
Zolfaghari Baghbadorani P, Rayati Damavandi A, Moradi S, Ahmadi M, Bemani P, Aria H, Mottedayyen H, Rayati Damavandi A, Eskandari N, Fathi F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev Neurosci 2023; 34:613-633. [PMID: 36496351 DOI: 10.1515/revneuro-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.
Collapse
Affiliation(s)
| | - Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Keshavarz Blvrd, Vesal Shirazi St., Tehran 1417613151, Iran
| | - Samira Moradi
- School of Medicine, Hormozgan University of Medical Sciences Chamran Blvrd., Hormozgan 7919693116, Bandar Abbass, Iran
| | - Meysam Ahmadi
- School of Medicine, Shiraz University of Medical Sciences, Fars, Zand St., Shiraz 7134814336, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fars, Ibn Sina Sq., Fasa 7461686688, Iran
| | - Hossein Mottedayyen
- Department of Immunology, School of Medicine, Kashan University of Medical Sciences, Ravandi Blvrd, Isfahan, Kashan 8715988141, Iran
| | - Amirhossein Rayati Damavandi
- Student's Research Committee, Pharmaceutical Sciences Branch, Islamic Azad University, Yakhchal St., Tehran 193951498, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| |
Collapse
|
4
|
Arjmand B, Alavi-Moghadam S, Aghayan HR, Rezaei-Tavirani M, Goodarzi P, Tayanloo-Beik A, Biglar M, Rajaeinejad M, Shouroki FF, Larijani B. How to establish infrastructures to achieve more efficient regenerative medicine? Cell Tissue Bank 2023; 24:1-9. [PMID: 35871425 DOI: 10.1007/s10561-022-10028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The field of regenerative medicine (RM) as an innovative technology has the ability to affect the healthcare system. It develops a variety of techniques through stem cell biology, genetics, bioengineering, biomaterial science, and tissue engineering to replace or restore the role of lost, disabled, or aging cells in the human body. However, the field's proficiency has still been underwhelming at the clinical trial level. This could be due to the innovation of such technologies, as well as their incredible nature. Therefore, managing the infrastructure framework for the safe and efficient application of the aforementioned field of science would help in the process of progress. In this context, the current review focuses on how to establish infrastructures for more effective RM.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Laser-assisted hatching improves pregnancy outcomes in frozen-thawed embryo transfer cycles of cleavage-stage embryos: a large retrospective cohort study with propensity score matching. J Assist Reprod Genet 2023; 40:417-427. [PMID: 36609944 PMCID: PMC9935798 DOI: 10.1007/s10815-022-02711-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Laser-assisted hatching (LAH) is a commonly used adjunct technique; however, its effectiveness has not been fully established. OBJECTIVE We evaluated the effects of LAH on pregnancy outcomes in frozen-thawed embryo transfer (FET) cycles of cleavage-stage embryos. MATERIALS AND METHODS This retrospective study involved 5779 FET cycles performed at the Reproductive and Genetic Center in the Affiliated Hospital of Shandong University of Traditional Chinese Medicine between January 2016 and December 2020. After propensity score matching, 3535 FET cycles were included, out of which 1238 were subjected to LAH while the remaining 2297 cycles were non-LAH (NLAH). The primary outcomes were clinical pregnancy rate (CPR) and live birth rate (LBR) while secondary outcomes included implantation rate (IR), biochemical pregnancy rate (BPR), ectopic pregnancy rate (EPR), pregnancy loss rate (PLR), multiple pregnancy rate (MPL), and monozygotic twinning rate (MTR). Logistic regression analysis was conducted to adjust for possible confounders. Subgroup analysis was also performed based on the endometrial preparation regimen. RESULTS The LAH group exhibited a higher LBR, compared to the NLAH group (34.9% vs. 31.4%, OR = 1.185, 95% CI = 1.023, 1.374, P = 0.024). Additionally, the LAH group showed a decreasing trend in PLR and EPR; however, differences were insignificant (P = 0.078, P = 0.063 respectively). Differences in IR (24.6% vs. 24.3%), BPR (41.8% vs. 40.4%), CPR (40.7% vs. 38.3%), MPR (14.1% vs. 17.3%), and MTR (1.4% vs. 1.1%) were insignificant. Subgroup analysis revealed that LAH may be more conducive for pregnancy outcomes in hormone replacement cycles. CONCLUSIONS In summary, LAH has an increased chance of achieving live births. However, further prospective studies should be performed to confirm our findings.
Collapse
|
6
|
Arjmand B, Alavi-Moghadam S, Sarvari M, Rezaei-Tavirani M, Rezazadeh- Mafi A, Arjmand R, Nikandish M, Nasli‐Esfahani E, Larijani B. Critical roles of cytokine storm and bacterial infection in patients with COVID-19: therapeutic potential of mesenchymal stem cells. Inflammopharmacology 2023; 31:171-206. [PMID: 36600055 PMCID: PMC9812357 DOI: 10.1007/s10787-022-01132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 has been a shocking disaster for healthcare systems worldwide since December 2019. This virus can affect all systems of the body and its symptoms vary from a simple upper respiratory infection to fatal complications including end-organ damage. On the other hand, the normal immune system plays a pivotal role in the recovery of infectious diseases such as COVID-19. However, occasionally, exaggerated immune system inflammation and an excessive synthesis of cytokines, known as a "cytokine storm," can deteriorate the patient's clinical condition. Secondary bacterial co-infection is another problem in COVID-19 which affects the prognosis of patients. Although there are a few studies about this complication, they suggest not using antibiotics commonly, especially broad-spectrum ones. During this pandemic, various approaches and therapeutics were introduced for treating COVID-19 patients. However, available treatments are not helpful enough, especially for complicated cases. Hence, in this era, cell therapy and regenerative medicine will create new opportunities. Therefore, the therapeutic benefits of mesenchymal stem cells, especially their antimicrobial activity, will help us understand how to treat COVID-19. Herein, mesenchymal stem cells may stop the immune system from becoming overactive in COVID-19 patients. On the other side, the stem cells' capacity for repair could encourage natural healing processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ahmad Rezazadeh- Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli‐Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Giancotti A, D'Ambrosio V, Corno S, Pajno C, Carpino G, Amato G, Vena F, Mondo A, Spiniello L, Monti M, Muzii L, Bosco D, Gaudio E, Alvaro D, Cardinale V. Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy 2022; 24:376-384. [DOI: 10.1016/j.jcyt.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 12/28/2022]
|
8
|
The Fingerprints of Biomedical Science in Internal Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:173-189. [DOI: 10.1007/5584_2022_729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Potential for Stem Cell-Based Therapy in the Road of Treatment for Neurological Disorders Secondary to COVID-19. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:355-369. [PMID: 34746370 PMCID: PMC8555723 DOI: 10.1007/s40883-021-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 has led to the worldwide pandemic named coronavirus disease 2019 (COVID-19). It has caused a significant increase in the number of cases and mortalities since its first diagnosis in December 2019. Although COVID-19 primarily affects the respiratory system, neurological involvement of the central and peripheral nervous system has been also reported. Herein, the higher risk of neurodegenerative diseases in COVID-19 patients in future is also imaginable. Neurological complications of COVID-19 infection are more commonly seen in severely ill individuals; but, earlier diagnosis and treatment can lead to better long-lasting results. In this respect, stem cell biotechnologies with considerable self-renewal and differentiation capacities have experienced great progress in the field of neurological disorders whether in finding out their underlying processes or proving them promising therapeutic approaches. Herein, many neurological disorders have been found to benefit from stem cell medicine strategies. Accordingly, in the present review, the authors are trying to discuss stem cell-based biotechnologies as promising therapeutic options for neurological disorders secondary to COVID-19 infection through reviewing neurological manifestations of COVID-19 and current stem cell-based biotechnologies for neurological disorders. Lay Summary Due to the substantial burden of neurological disorders in the health, economic, and social system of society, the emergence of neurological manifestations following COVID-19 (as a life-threatening pandemic) creates the need to use efficient and modern methods of treatment. Since stem cell-based methods have been efficient for a large number of neurological diseases, it seems that the use of mentioned methods is also effective in the process of improving neurological disorders caused by COVID-19. Hereupon, the current review aims to address stem cell-based approaches as treatments showing promise to neurological disorders related to COVID-19.
Collapse
|
10
|
Effect of Uterine Arterial Chemoembolization Combined with Ultrasound-Guided Uterine Curettage on Cervical Pregnancy and Influencing Factors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4609497. [PMID: 34512776 PMCID: PMC8426059 DOI: 10.1155/2021/4609497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 12/05/2022]
Abstract
This is a retrospective study to analyze the efficacy of uterine artery chemoembolization (UACE) combined with ultrasound-guided curettage in the treatment of cervical pregnancy and the factors affecting the postoperative outcome. A total of 26 subjects were included in the study and were divided into a control group of 12 and an observer group of 14, all patients with cervical pregnancy diagnosed in our hospital from January 2016 to January 2020. Patients in the control group were treated with methotrexate injection (MTX) combined with ultrasound-guided curettage in our hospital, while the observer group was treated with UACE combined with ultrasound-guided curettage. The efficacy of the two groups was evaluated at 3 months postoperatively, and data on patients' age, days of menopause, pregnancy frequency, and vaginal bleeding were collected retrospectively. Intraoperative bleeding, time to recovery of serum human chorionic gonadotropin (HCG), hospitalization time, time to return to normal menstruation, time to disappearance of gestational sac, pregnancy frequency, presence of endometrial inflammation, gestational week, maximum diameter of gestational sac, thinnest myometrium, endogenous-exogenous type, gestational sac size, and HCG level were recorded in both groups. Single-factor analysis and multifactor logistic regression models were used to analyze the factors influencing the surgical outcomes of patients. The results of the study showed that the overall efficiency of the observer group was significantly higher than that of the control group, while intraoperative bleeding, hospital stay, time to return to normal menstruation, and time to disappearance of the gestational sac were all lower than those of the control group (p < 0.05). The results of univariate and multifactorial analyses showed that endometrial inflammation, gestational week, maximum diameter of the gestational sac, thinnest myometrium, and endogenous-exogenous type could affect the patients' postoperative recovery (p < 0.05); gestational week, maximum diameter of the gestational sac, and thinnest myometrium were independent factors affecting the patients' postoperative recovery (p < 0.05). The above results suggest that UACE combined with ultrasound-guided uterine clearance for cervical pregnancy can significantly improve treatment efficacy, reduce intraoperative bleeding, and improve recovery time from postoperative related symptoms. The treatment efficacy of patients with cervical pregnancy was related to the gestational week, the maximum diameter of the gestational sac, and the thinnest muscle layer.
Collapse
|
11
|
Roudsari PP, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Tayanloo-Beik A, Sayahpour FA, Larijani B, Arjmand B. The Outcome of Stem Cell-Based Therapies on the Immune Responses in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:159-186. [PMID: 32926346 DOI: 10.1007/5584_2020_581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Rheumatoid arthritis as a common autoimmune inflammatory disorder with unknown etiology can affect 0.5-1% of adults in developed countries. It involves more than just the patient's joints and can be accompanied by several comorbidities and affect cardiovascular, pulmonary, and some other systems of the human body. Although cytokine-mediated pathways are mentioned to have a central role in RA pathogenesis, adaptive and innate immune systems and intracellular signaling pathways all have important roles in this process. Non-steroidal anti-inflammatory drugs, glucocorticoids, conventional disease-modifying anti-rheumatic drugs, and biological agents are some mentioned medications used for RA. They are accompanied by some adverse effects and treatment failures which elucidates the needing for novel and more powerful therapeutic approaches. Stem cell-based therapies and their beneficial effects on therapeutic processes of different diseases have been founded so far. They can be an alternative and promising therapeutic approach for RA, too; due to their effects on immune responses of the disease. This review, besides some explanations about RA characteristics, addresses the outcome of the stem cell-based therapies including mesenchymal stem cell transplantation and hematopoietic stem cell transplantation for RA and explains their effects on the disease improvement.
Collapse
Affiliation(s)
- Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Arjmand B, Alavi-Moghadam S, Parhizkar Roudsari P, Rezaei-Tavirani M, Rahim F, Gilany K, Mohamadi-Jahani F, Adibi H, Larijani B. COVID-19 Pathology on Various Organs and Regenerative Medicine and Stem Cell-Based Interventions. Front Cell Dev Biol 2021; 9:675310. [PMID: 34195193 PMCID: PMC8238122 DOI: 10.3389/fcell.2021.675310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2, a novel betacoronavirus, has caused the global outbreak of a contagious infection named coronavirus disease-2019. Severely ill subjects have shown higher levels of pro-inflammatory cytokines. Cytokine storm is the term that can be used for a systemic inflammation leading to the production of inflammatory cytokines and activation of immune cells. In coronavirus disease-2019 infection, a cytokine storm contributes to the mortality rate of the disease and can lead to multiple-organ dysfunction syndrome through auto-destructive responses of systemic inflammation. Direct effects of the severe acute respiratory syndrome associated with infection as well as hyperinflammatory reactions are in association with disease complications. Besides acute respiratory distress syndrome, functional impairments of the cardiovascular system, central nervous system, kidneys, liver, and several others can be mentioned as the possible consequences. In addition to the current therapeutic approaches for coronavirus disease-2019, which are mostly supportive, stem cell-based therapies have shown the capacity for controlling the inflammation and attenuating the cytokine storm. Therefore, after a brief review of novel coronavirus characteristics, this review aims to explain the effects of coronavirus disease-2019 cytokine storm on different organs of the human body. The roles of stem cell-based therapies on attenuating cytokine release syndrome are also stated.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, The Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Larijani B, Parhizkar Roudsari P, Hadavandkhani M, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Sayahpour FA, Mohamadi-Jahani F, Arjmand B. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank 2021; 22:207-223. [PMID: 33387152 DOI: 10.1007/s10561-020-09888-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Arjmand B, Alaei S, Heravani NF, Alavi-Moghadam S, Payab M, Ebrahimpour M, Aghayan HR, Goodarzi P, Larijani B. Regenerative Medicine Perspectives in Polycystic Ovary Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:125-141. [PMID: 33748932 DOI: 10.1007/5584_2021_623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common gynecologic endocrine disorder in women between the ages of 15 and 40, with uncertain etiology. It is mostly presented with hyperandrogenism and insulin resistance along with a variety of comorbidities that significantly reduce a patient's quality of life. Many disturbed metabolic pathways are correlated with PCOS. Moreover, it is evident that there is a strong genetic factor for PCOS. Indeed, several altered gene expressions have been found in PCOS subjects, but the exact genetic origins are still unclear. The major treatment options such as pharmacological treatments are to improve the symptoms. In addition, surgical procedures (Bariatric surgery and assisted reproductive technologies) can be used to treat some of the patient's complications and reduce their severity. Generally, using pharmacological agents for a long period of time can increase the risk of adverse effects. Moreover, surgical options may have high-risk consequences. Herein, there is an undeniable need for a different multidisciplinary approach to PCOS. Regenerative medicine with the help of stem cells can develop a worthy alternative approach for the treatment of PCOS. Furthermore, animal models can provide valuable knowledge of genetic alterations and metabolic pathway disturbances in PCOS. They can also be used for testing novel treatments in pre-clinical stages. Therein, the current knowledge of PCOS and investigation about the potential role of regenerative medicine in developing new and more efficient treatments for PCOS are summarized here.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpour
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Parhizkar Roudsari P, Alavi-Moghadam S, Payab M, Sayahpour FA, Aghayan HR, Goodarzi P, Mohamadi-jahani F, Larijani B, Arjmand B. Auxiliary role of mesenchymal stem cells as regenerative medicine soldiers to attenuate inflammatory processes of severe acute respiratory infections caused by COVID-19. Cell Tissue Bank 2020; 21:405-425. [PMID: 32588163 PMCID: PMC7315014 DOI: 10.1007/s10561-020-09842-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Acute respiratory infections as one of the most common problems of healthcare systems also can be considered as an important reason for worldwide morbidity and mortality from infectious diseases. Coronaviruses are a group of well-known respiratory viruses that can cause acute respiratory infections. At the current state, the 2019 novel coronavirus is cited as the most worldwide problematic agent for the respiratory system. According to investigations, people with old age and underlying diseases are at higher risk of 2019 novel coronavirus infection. Indeed, they may show a severe form of the disease (with severe acute respiratory infections). Based on the promising role of cell therapy and regenerative medicine approaches in the treatment of several life-threatening diseases, it seems that applying cell-based approaches can also be a hopeful strategy for improving subjects with severe acute respiratory infections caused by the 2019 novel coronavirus. Herein, due to the amazing effects of mesenchymal stem cells in the treatment of various diseases, this review focuses on the auxiliary role of mesenchymal stem cells to reduce inflammatory processes of acute respiratory infections caused by the 2019 novel coronavirus.
Collapse
Affiliation(s)
- Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mohamadi-jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Arjmand B, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Gilany K, Mehrdad N, Larijani B. Prospect of Stem Cell Therapy and Regenerative Medicine in Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:430. [PMID: 32719657 PMCID: PMC7347755 DOI: 10.3389/fendo.2020.00430] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The field of cell therapy and regenerative medicine can hold the promise of restoring normal tissues structure and function. Additionally, the main targets of stem cell-based therapies are chronic diseases and lifelong disabilities without definite cures such as osteoporosis. Osteoporosis as one of the important causes of morbidity in older men and post-menopausal women is characterized by reduced bone quantity or skeletal tissue atrophy that leads to an increased risk of osteoporotic fractures. The common therapeutic methods for osteoporosis only can prevent the loss of bone mass and recover the bone partially. Nevertheless, stem cell-based therapy is considered as a new approach to regenerate the bone tissue. Herein, mesenchymal stem cells as pivotal candidates for regenerative medicine purposes especially bone regeneration are the most common type of cells with anti-inflammatory, immune-privileged potential, and less ethical concerns than other types of stem cells which are investigated in osteoporosis. Based on several findings, the mesenchymal stem cells effectiveness near to a great extent depends on their secretory function. Indeed, they can be involved in the establishment of normal bone remodeling via initiation of specific molecular signaling pathways. Accordingly, the aim herein was to review the effects of stem cell-based therapies in osteoporosis.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACER), Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACER), Tehran, Iran
| | - Neda Mehrdad
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ebrahimi-Barough S, Ai J, Payab M, Alavi-Moghadam S, Shokati A, Aghayan HR, Larijani B, Arjmand B. Standard Operating Procedure for the Good Manufacturing Practice-Compliant Production of Human Endometrial Stem Cells for Multiple Sclerosis. Methods Mol Biol 2020; 2286:199-212. [PMID: 32504294 DOI: 10.1007/7651_2020_281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is the most common cause of neurological diseases. Although, there are some effective medications with regulatory approval for treating MS, they are only partially effective and cannot promote repairing of tissue damage directly which occurs in the central nervous system. Therefore, there is an essential need to develop novel therapeutic approaches for neuroprotection or repairing damaged tissue in MS. Accordingly, cell-based therapies as a novel therapeutic strategy have opened a new horizon in treatment of MS. Each setting in cell therapy has potential benefits. Human endometrial stem cells as an invaluable source for cell therapy have introduced treatment for MS. In this respect, good manufacturing practice (GMP) has a pivotal role in clinical production of stem cells. This chapter tries to describe the protocol of GMP-grade endometrial stem cells for treatment of MS.
Collapse
Affiliation(s)
- Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Shokati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Goodarzi P, Alavi-Moghadam S, Payab M, Larijani B, Rahim F, Gilany K, Bana N, Tayanloo-Beik A, Foroughi Heravani N, Hadavandkhani M, Arjmand B. Metabolomics Analysis of Mesenchymal Stem Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:30-40. [PMID: 32351907 PMCID: PMC7175611 DOI: 10.22088/ijmcm.bums.8.2.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the mechanism of different stem cell properties or stemness ability via a broad range of current high-throughput techniques. This field is fundamentally directed toward the analysis of whole genome (genomics), mRNAs (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in biological samples. According to several studies, metabolomics is more effective than other OMICs ّfor various system biology concerns. Metabolomics can elucidate the biological mechanisms of various mesenchymal stem cell function by measuring their metabolites such as their secretome components. Analyzing the metabolic alteration of mesenchymal stem cells can be useful to promote their regenerative medicine application.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran .,Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Nikoo Bana
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|